Skip to main content
Top
Published in: Journal of Electronic Materials 6/2024

26-03-2024 | Original Research Article

Composite Membranes of PVDF/PES/SPEES for Flow Battery Applications

Authors: Brenda Y. García-Limón, Luis J. Salazar-Gastélum, Moisés I. Salazar-Gastélum, Shui Wai Lin, Julio C. Calva-Yañez, Mara Beltrán-Gastelum, Arturo Zizumbo-López, Sergio Pérez-Sicairos

Published in: Journal of Electronic Materials | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work reports the preparation and characterization of composite membranes with potential applications in flow battery devices. A polymer solution of polyvinylidene fluoride (PVDF), sulfonated polyether ether sulfone (SPEES), and polyether sulfone (PES) was used to prepare proton exchange membranes with low permeation of cationic species, which is a desirable feature in energy conversion devices, such as vanadium flow batteries (VRFB). Vanadyl ion (VO2+) acidic solution was selected as a model to reveal the permeation capacity through the membranes as an affordable alternative to the Nafion® 117 commercial membrane. The effects of the chemical composition and the thickness of the membranes on the morphology and proton exchange properties were evaluated. Characterization of the membranes was performed using physicochemical techniques including water uptake, swelling ratio, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, surface charge density, atomic force microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy for proton conductivity, proton exchange rate, and the permeability of VO2+ ions. With VO2+ ion permeability of the order of 0.62 mM and H+ exchange rates of up to 498.5 × 1018 H+ cm−2*µm−1*min−1, the PVDF/PES/SPEES composite membranes emerge as an option with potential application for VRFB compared to the Nafion® 117 membrane, which presented a VO2+ ion permeation value of 2.72 mM and H+ exchange rates of 445.2 × 1018 H+ cm−2*µm−1*min−1.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.N. Papadakis, M. Fafalakis, and D. Katsaprakakis, A Review of Pumped Hydro-Storage Systems. Energies 16(11), 4561 (2023). C.N. Papadakis, M. Fafalakis, and D. Katsaprakakis, A Review of Pumped Hydro-Storage Systems. Energies 16(11), 4561 (2023).
2.
go back to reference C.R. Matos, P.P. Silva, and J.F. Carneiro, Overview of Compressed Air Energy Storage Projects and Regulatory Framework for Energy Storage. J. Energy Storage 55, 105862 (2022).CrossRef C.R. Matos, P.P. Silva, and J.F. Carneiro, Overview of Compressed Air Energy Storage Projects and Regulatory Framework for Energy Storage. J. Energy Storage 55, 105862 (2022).CrossRef
3.
go back to reference A. Berrada, A. Emrani, and A. Ameur, Life-Cycle Assessment of Gravity Energy Storage Systems for Large-Scale Application. J. Energy Storage 40, 102825 (2021).CrossRef A. Berrada, A. Emrani, and A. Ameur, Life-Cycle Assessment of Gravity Energy Storage Systems for Large-Scale Application. J. Energy Storage 40, 102825 (2021).CrossRef
4.
go back to reference S. Maddukuri, D. Malka, M.S. Chae, Y. Elias, S. Luski, and D. Aurbach, On the Challenge of Large Energy Storage by Electrochemical Devices. Electrochem. Acta 354, 136771 (2021).CrossRef S. Maddukuri, D. Malka, M.S. Chae, Y. Elias, S. Luski, and D. Aurbach, On the Challenge of Large Energy Storage by Electrochemical Devices. Electrochem. Acta 354, 136771 (2021).CrossRef
5.
go back to reference K. Lourenssen, J. Williams, F. Ahnadpour, R. Clemmer, and S. Tasnim, Vanadium Redox Flow Batteries: A Comprehensive Review. J. Energy Storage 25, 100844 (2019).CrossRef K. Lourenssen, J. Williams, F. Ahnadpour, R. Clemmer, and S. Tasnim, Vanadium Redox Flow Batteries: A Comprehensive Review. J. Energy Storage 25, 100844 (2019).CrossRef
6.
go back to reference P. Qian, H. Wang, L. Zhang, Y. Zhou, and H. Shi, An Enhanced Stability and Efficiency of SPEEK-Based Composite Membrane Influenced by Amphoteric Side-Chain Polymer for Vanadium Redox Flow Battery. J. Membr. Sci. 643, 120011 (2022).CrossRef P. Qian, H. Wang, L. Zhang, Y. Zhou, and H. Shi, An Enhanced Stability and Efficiency of SPEEK-Based Composite Membrane Influenced by Amphoteric Side-Chain Polymer for Vanadium Redox Flow Battery. J. Membr. Sci. 643, 120011 (2022).CrossRef
7.
go back to reference S.J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrog. Energy 35, 9349 (2010).CrossRef S.J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrog. Energy 35, 9349 (2010).CrossRef
8.
go back to reference C.C. Yang and G.M. Wu, Study of Microporous PVA/PVC Composite Polymer Membrane and if Application to MnO2 Capacitors. Mater. Chem. Phys. 114, 948 (2009).CrossRef C.C. Yang and G.M. Wu, Study of Microporous PVA/PVC Composite Polymer Membrane and if Application to MnO2 Capacitors. Mater. Chem. Phys. 114, 948 (2009).CrossRef
9.
go back to reference K. Fan, C. Wei, and J. Feng, Recent Progress of Mxene-Based Materials as Anodes in Sodium-Ion Batteries. J. Electron. Mater. 52, 847 (2023).CrossRef K. Fan, C. Wei, and J. Feng, Recent Progress of Mxene-Based Materials as Anodes in Sodium-Ion Batteries. J. Electron. Mater. 52, 847 (2023).CrossRef
10.
go back to reference T. Wang, J.Y. Jeon, J. Han, J.H. Kim, C. Bae, and S. Kim, Poly(Terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). J. Membr. Sci. 598, 117665 (2020).CrossRef T. Wang, J.Y. Jeon, J. Han, J.H. Kim, C. Bae, and S. Kim, Poly(Terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). J. Membr. Sci. 598, 117665 (2020).CrossRef
11.
go back to reference C.Y. Lee, C.A. Jiang, C.L. Hsieh, C.H. Chen, K.F. Lin, Y.M. Liu, and Y.P. Huang, Application of Flexible Integrated Microsensor to Internal Real-Time Measurement of Vanadium Redox Flow Battery. Sens. Actuators A Phys. 267, 135 (2017).CrossRef C.Y. Lee, C.A. Jiang, C.L. Hsieh, C.H. Chen, K.F. Lin, Y.M. Liu, and Y.P. Huang, Application of Flexible Integrated Microsensor to Internal Real-Time Measurement of Vanadium Redox Flow Battery. Sens. Actuators A Phys. 267, 135 (2017).CrossRef
12.
go back to reference L. Ding, X. Song, L. Wang, Z. Zhao, and G. He, Preparation of Dense Polybenzimidazole Proton Exchange Membranes with Different Basicity and Flexibility for Vanadium Redox Flow Battery Applications. Electrochim. Acta 292, 10 (2018).CrossRef L. Ding, X. Song, L. Wang, Z. Zhao, and G. He, Preparation of Dense Polybenzimidazole Proton Exchange Membranes with Different Basicity and Flexibility for Vanadium Redox Flow Battery Applications. Electrochim. Acta 292, 10 (2018).CrossRef
13.
go back to reference N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Y. Volfkovich, Porous Structure of Ion Exchange Membranes Investigated by Various Techniques. Adv. Colloid Interface Sci. 246, 196 (2017).CrossRefPubMed N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Y. Volfkovich, Porous Structure of Ion Exchange Membranes Investigated by Various Techniques. Adv. Colloid Interface Sci. 246, 196 (2017).CrossRefPubMed
14.
go back to reference L. Kong, E. Palacios, X. Guan, M. Shen, and X. Liu, Mechanisms for Enhanced Transport Selectivity of Like-Charged Ions in Hydrophobic-Polymer-Modified Ion-Exchange Membranes. J. Membr. Sci. 658, 120645 (2022).CrossRef L. Kong, E. Palacios, X. Guan, M. Shen, and X. Liu, Mechanisms for Enhanced Transport Selectivity of Like-Charged Ions in Hydrophobic-Polymer-Modified Ion-Exchange Membranes. J. Membr. Sci. 658, 120645 (2022).CrossRef
15.
go back to reference B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries. J. Membr. Sci. 510, 18 (2016).CrossRef B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries. J. Membr. Sci. 510, 18 (2016).CrossRef
16.
go back to reference Z. Fu, J. Liu, and Q. Liu, SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries. J. Electron. Mater. 45, 666 (2015).CrossRef Z. Fu, J. Liu, and Q. Liu, SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries. J. Electron. Mater. 45, 666 (2015).CrossRef
17.
go back to reference P. Kumar, S.K. Jagwani, and P.P. Kundu, A Study on the Heat Behaviour of PEM, Prepared by Incorporation of Crosslinked Sulfonated Polystyrene in the Blend of PVDF-co-HFP/Nafion, for its High Temperature Application in DMFC. Mater. Today Commun. 2, 1e (2015).CrossRef P. Kumar, S.K. Jagwani, and P.P. Kundu, A Study on the Heat Behaviour of PEM, Prepared by Incorporation of Crosslinked Sulfonated Polystyrene in the Blend of PVDF-co-HFP/Nafion, for its High Temperature Application in DMFC. Mater. Today Commun. 2, 1e (2015).CrossRef
18.
go back to reference B.Y. García Limón, M.I. Salazar Gastelum, S.W. Lin, J.C. Calva-Yañez, and S. Perez-Sicairos, Preparation and Characterization of PVDF/PES/Nafion® 117 Membranes with Potential Application in Vanadium Flow Batteries. Rev. Mex. Ing. Quim. 18, 477 (2019).CrossRef B.Y. García Limón, M.I. Salazar Gastelum, S.W. Lin, J.C. Calva-Yañez, and S. Perez-Sicairos, Preparation and Characterization of PVDF/PES/Nafion® 117 Membranes with Potential Application in Vanadium Flow Batteries. Rev. Mex. Ing. Quim. 18, 477 (2019).CrossRef
19.
go back to reference H.J. Choi, C. Youn, S.C. Kim, D. Jeong, S.N. Lim, D.R. Chang, J.W. Bae, and J. Park, Nafion/Functionalized Metal–Organic Framework Composite Membrane for Vanadium Redox Flow Battery. Adv. Microporous Mesoporous Mater. 341, 112054 (2022).CrossRef H.J. Choi, C. Youn, S.C. Kim, D. Jeong, S.N. Lim, D.R. Chang, J.W. Bae, and J. Park, Nafion/Functionalized Metal–Organic Framework Composite Membrane for Vanadium Redox Flow Battery. Adv. Microporous Mesoporous Mater. 341, 112054 (2022).CrossRef
20.
go back to reference Y. Wang, K. Feng, L. Ding, L. Wang, and X. Han, Influence of Solvent on Ion Conductivity of Polybenzimidazole Proton Exchange Membranes for Vanadium Redox Flow Batteries. Chin. J. Chem. Eng. 28, 1701 (2020).CrossRef Y. Wang, K. Feng, L. Ding, L. Wang, and X. Han, Influence of Solvent on Ion Conductivity of Polybenzimidazole Proton Exchange Membranes for Vanadium Redox Flow Batteries. Chin. J. Chem. Eng. 28, 1701 (2020).CrossRef
21.
go back to reference V.I. Vlasov, N.A. Gvozdik, M.D. Mokrousov, S.V. Ryazantsev, S.Y. Luchkin, D.A. Gorin, and K.J. Stevenson, Ion-Exchange Membrane Impact on Preferential Water Transfer in all-Vanadium Redox Flow Battery. J. Power. Sources 540, 231640 (2022).CrossRef V.I. Vlasov, N.A. Gvozdik, M.D. Mokrousov, S.V. Ryazantsev, S.Y. Luchkin, D.A. Gorin, and K.J. Stevenson, Ion-Exchange Membrane Impact on Preferential Water Transfer in all-Vanadium Redox Flow Battery. J. Power. Sources 540, 231640 (2022).CrossRef
22.
go back to reference I.A. Prikhno, E.Y. Safronova, I.A. Stenina, P.A. Yurova, and A.B. Yaroslavtsev, Dependence of the Transport Properties of Perfluorinated Sulfonated Cation-Exchange Membranes on Ion-Exchange Capacity. Membr. Membr. Technol. 2, 265 (2020).CrossRef I.A. Prikhno, E.Y. Safronova, I.A. Stenina, P.A. Yurova, and A.B. Yaroslavtsev, Dependence of the Transport Properties of Perfluorinated Sulfonated Cation-Exchange Membranes on Ion-Exchange Capacity. Membr. Membr. Technol. 2, 265 (2020).CrossRef
23.
go back to reference J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, and H. Zhang, Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of its Composite Membranes in Fuel Cells. Phys. Chem. Chem. Phys. 5, 611 (2003).CrossRef J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, and H. Zhang, Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of its Composite Membranes in Fuel Cells. Phys. Chem. Chem. Phys. 5, 611 (2003).CrossRef
24.
go back to reference A.L. Moster and B.S. Mitchell, Hydration and Proton Conduction in Nafion/Ceramic Nanocomposite Membranes Produced by Solid-State Processing of Powders from Mechanical Attrition. J. Appl. Polym. Sci. 113, 611 (2009).CrossRef A.L. Moster and B.S. Mitchell, Hydration and Proton Conduction in Nafion/Ceramic Nanocomposite Membranes Produced by Solid-State Processing of Powders from Mechanical Attrition. J. Appl. Polym. Sci. 113, 611 (2009).CrossRef
25.
go back to reference T. Wang, S.J. Moon, D.S. Hwang, H. Park, J. Lee, S. Kim, Y.M. Lee, and S. Kim, Selective Ion Transport for a Vanadium Redox Flow Battery (VRFB) in Nano-Crack Regulated Proton Exchange Membranes. J. Membr. Sci. 583, 16 (2019).CrossRef T. Wang, S.J. Moon, D.S. Hwang, H. Park, J. Lee, S. Kim, Y.M. Lee, and S. Kim, Selective Ion Transport for a Vanadium Redox Flow Battery (VRFB) in Nano-Crack Regulated Proton Exchange Membranes. J. Membr. Sci. 583, 16 (2019).CrossRef
26.
go back to reference M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G.L. Graff, and J. Hu, Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries. Solid State Nucl. Magn. Reson. 42, 71 (2012).CrossRefPubMed M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G.L. Graff, and J. Hu, Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries. Solid State Nucl. Magn. Reson. 42, 71 (2012).CrossRefPubMed
27.
go back to reference P. Sharma, S. Kumar, M. Bhushan, and V.K. Shahi, Ion Selective Redox Active Anion Exchange Membrane: Improved Performance of Vanadium Redox Flow Battery. J. Memb. Sci. 637, 119626 (2021).CrossRef P. Sharma, S. Kumar, M. Bhushan, and V.K. Shahi, Ion Selective Redox Active Anion Exchange Membrane: Improved Performance of Vanadium Redox Flow Battery. J. Memb. Sci. 637, 119626 (2021).CrossRef
28.
go back to reference J.A. Domínguez-Maldonado, O. García-Rodríguez, M. Aguilar-Vega, M. Smit, and L. Alzate-Gaviria, Reduction of Cation Exchange Capacity in a Microbial Fuel Cell and its Relation to the Power Density. Rev. Mex. Ing. Quim. 13, 527 (2014). J.A. Domínguez-Maldonado, O. García-Rodríguez, M. Aguilar-Vega, M. Smit, and L. Alzate-Gaviria, Reduction of Cation Exchange Capacity in a Microbial Fuel Cell and its Relation to the Power Density. Rev. Mex. Ing. Quim. 13, 527 (2014).
29.
go back to reference M. Jung, W. Lee, N.N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, and D. Henkensmeier, Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries. Appl. Surf. Sci. 4501, 301 (2018).CrossRef M. Jung, W. Lee, N.N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, and D. Henkensmeier, Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries. Appl. Surf. Sci. 4501, 301 (2018).CrossRef
30.
go back to reference S. Thangarasu and T.H. Oh, Progress in Poly(Phenylene Oxide) Based Cation Exchange Membranes for Fuel Cells and Redox Flow Batteries Applications. Int. J. Hydrog. Energy 46, 38381 (2021).CrossRef S. Thangarasu and T.H. Oh, Progress in Poly(Phenylene Oxide) Based Cation Exchange Membranes for Fuel Cells and Redox Flow Batteries Applications. Int. J. Hydrog. Energy 46, 38381 (2021).CrossRef
31.
go back to reference J. Xi, Z. Wu, X. Qiu, and L. Chen, Nafion/SiO2 Hybrid Membrane for Vanadium Redox Flow Battery. J. Power. Sources 166, 531 (2007).CrossRef J. Xi, Z. Wu, X. Qiu, and L. Chen, Nafion/SiO2 Hybrid Membrane for Vanadium Redox Flow Battery. J. Power. Sources 166, 531 (2007).CrossRef
32.
go back to reference E. Sgreccia, J.F. Chailan, M. Khadhraoui, M.L. Di Vona, and P. Knauth, Mechanical Properties of Proton-Conducting Sulfonated. J. Power. Sources 195, 7770 (2010).CrossRef E. Sgreccia, J.F. Chailan, M. Khadhraoui, M.L. Di Vona, and P. Knauth, Mechanical Properties of Proton-Conducting Sulfonated. J. Power. Sources 195, 7770 (2010).CrossRef
33.
go back to reference W. Mabrouk, K. Charradi, A. Mellekh, A. Hafiane, Q.A. Alsulami, H.M. Meherzi, R. Chtourou, and S.M. Keshk, Enhanced Proton Conductivity of a Sulfonated Polyether Sulfone Octyl Sulfonamide Membrane via the Incorporation of Protonated Montmorillonite. J. Electron. Mater. 52, 2158 (2023).CrossRef W. Mabrouk, K. Charradi, A. Mellekh, A. Hafiane, Q.A. Alsulami, H.M. Meherzi, R. Chtourou, and S.M. Keshk, Enhanced Proton Conductivity of a Sulfonated Polyether Sulfone Octyl Sulfonamide Membrane via the Incorporation of Protonated Montmorillonite. J. Electron. Mater. 52, 2158 (2023).CrossRef
Metadata
Title
Composite Membranes of PVDF/PES/SPEES for Flow Battery Applications
Authors
Brenda Y. García-Limón
Luis J. Salazar-Gastélum
Moisés I. Salazar-Gastélum
Shui Wai Lin
Julio C. Calva-Yañez
Mara Beltrán-Gastelum
Arturo Zizumbo-López
Sergio Pérez-Sicairos
Publication date
26-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-11011-1

Other articles of this Issue 6/2024

Journal of Electronic Materials 6/2024 Go to the issue

Topical Collection: 65th Electronic Materials Conference 2023

Silicon Ion Implant Activation in β-(Al0.2Ga0.8)2O3