Skip to main content

01.03.2024

A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data

verfasst von: Damitri Kundu, Shekhar Krishnan, Manash Pratim Gogoi, Kiranmoy Das

Erschienen in: Lifetime Data Analysis

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Linear mixed models are traditionally used for jointly modeling (multivariate) longitudinal outcomes and event-time(s). However, when the outcomes are non-Gaussian a quantile regression model is more appropriate. In addition, in the presence of some time-varying covariates, it might be of interest to see how the effects of different covariates vary from one quantile level (of outcomes) to the other, and consequently how the event-time changes across different quantiles. For such analyses linear quantile mixed models can be used, and an efficient computational algorithm can be developed. We analyze a dataset from the Acute Lymphocytic Leukemia (ALL) maintenance study conducted by Tata Medical Center, Kolkata. In this study, the patients suffering from ALL were treated with two standard drugs (6MP and MTx) for the first two years, and three biomarkers (e.g. lymphocyte count, neutrophil count and platelet count) were longitudinally measured. After treatment the patients were followed nearly for the next three years, and the relapse-time (if any) for each patient was recorded. For this dataset we develop a Bayesian quantile joint model for the three longitudinal biomarkers and time-to-relapse. We consider an Asymmetric Laplace Distribution (ALD) for each outcome, and exploit the mixture representation of the ALD for developing a Gibbs sampler algorithm to estimate the regression coefficients. Our proposed model allows different quantile levels for different biomarkers, but still simultaneously estimates the regression coefficients corresponding to a particular quantile combination. We infer that a higher lymphocyte count accelerates the chance of a relapse while a higher neutrophil count and a higher platelet count (jointly) reduce it. Also, we infer that across (almost) all quantiles 6MP reduces the lymphocyte count, while MTx increases the neutrophil count. Simulation studies are performed to assess the effectiveness of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alfó M, Marino MF, Ranalli MG, Salvati N, Tzavidis N (2021) M-quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study. J R Stat Soc Ser C Appl Stat 70:122–146MathSciNetCrossRef Alfó M, Marino MF, Ranalli MG, Salvati N, Tzavidis N (2021) M-quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study. J R Stat Soc Ser C Appl Stat 70:122–146MathSciNetCrossRef
Zurück zum Zitat Biswas J, Das K (2021) A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data. Comput Stat 36:241–260MathSciNetCrossRef Biswas J, Das K (2021) A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data. Comput Stat 36:241–260MathSciNetCrossRef
Zurück zum Zitat Biswas J, Ghosh P, Das K (2020) A semi-parametric quantile regression approach to longitudinal outcomes with zero inflation and incompleteness. Adv Stat Anal 104:261–283CrossRef Biswas J, Ghosh P, Das K (2020) A semi-parametric quantile regression approach to longitudinal outcomes with zero inflation and incompleteness. Adv Stat Anal 104:261–283CrossRef
Zurück zum Zitat Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455MathSciNet Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455MathSciNet
Zurück zum Zitat Das K (2016) A semiparametric Bayesian approach for joint modeling of longitudinal trait and event time. J Appl Stat 43:2850–2865MathSciNetCrossRef Das K (2016) A semiparametric Bayesian approach for joint modeling of longitudinal trait and event time. J Appl Stat 43:2850–2865MathSciNetCrossRef
Zurück zum Zitat Farcomeni A, Viviani S (2015) Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modelling. Stat Med 34:1199–1213MathSciNetCrossRefPubMed Farcomeni A, Viviani S (2015) Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modelling. Stat Med 34:1199–1213MathSciNetCrossRefPubMed
Zurück zum Zitat Fieuws S, Verbeke G (2004) Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effect approach. Stat Med 23:3093–3104CrossRefPubMed Fieuws S, Verbeke G (2004) Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effect approach. Stat Med 23:3093–3104CrossRefPubMed
Zurück zum Zitat Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8:140–154CrossRefPubMed Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8:140–154CrossRefPubMed
Zurück zum Zitat Guo X, Carlin BP (2004) Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat 58:16–24MathSciNetCrossRef Guo X, Carlin BP (2004) Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat 58:16–24MathSciNetCrossRef
Zurück zum Zitat Henderson R, Diggle P, Dobson A (2000) Joint modelling of longitudinal measurements and event time data. Biostatistics 1:465–480CrossRefPubMed Henderson R, Diggle P, Dobson A (2000) Joint modelling of longitudinal measurements and event time data. Biostatistics 1:465–480CrossRefPubMed
Zurück zum Zitat Koenker R, Bassett G Jr (1978) Regression quantiles. Econom J Econom Soc 46:33–50MathSciNet Koenker R, Bassett G Jr (1978) Regression quantiles. Econom J Econom Soc 46:33–50MathSciNet
Zurück zum Zitat Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578MathSciNetCrossRef Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578MathSciNetCrossRef
Zurück zum Zitat Kulkarni H, Biswas J, Das K (2019) A joint quantile regression model for multiple longitudinal outcomes. Adv Stat Anal 103:453–473MathSciNetCrossRef Kulkarni H, Biswas J, Das K (2019) A joint quantile regression model for multiple longitudinal outcomes. Adv Stat Anal 103:453–473MathSciNetCrossRef
Zurück zum Zitat Kundu D, Sarkar P, Gogoi M, Das K (2024) A Bayesian joint model for multivariate longitudinal and time-to-event data with application to aLL maintenance studies. J Biopharm Stat 34:37–54CrossRefPubMed Kundu D, Sarkar P, Gogoi M, Das K (2024) A Bayesian joint model for multivariate longitudinal and time-to-event data with application to aLL maintenance studies. J Biopharm Stat 34:37–54CrossRefPubMed
Zurück zum Zitat Picchini U, Gaetano AD, Ditlevsen S (2010) Stochastic differential mixed-effects models. Scand J Stat 37:67–90MathSciNetCrossRef Picchini U, Gaetano AD, Ditlevsen S (2010) Stochastic differential mixed-effects models. Scand J Stat 37:67–90MathSciNetCrossRef
Zurück zum Zitat Pui CH, Yang JJ, Bhakta N, Rodriguez-Galindo C (2018) Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc Health 2:440–454CrossRefPubMedPubMedCentral Pui CH, Yang JJ, Bhakta N, Rodriguez-Galindo C (2018) Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc Health 2:440–454CrossRefPubMedPubMedCentral
Zurück zum Zitat Rizopoulos D, Ghosh P (2011) A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med 30:1366–1380MathSciNetCrossRefPubMed Rizopoulos D, Ghosh P (2011) A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med 30:1366–1380MathSciNetCrossRefPubMed
Zurück zum Zitat Rizopoulos D (2016) The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J Stat Softw 72:1–45CrossRef Rizopoulos D (2016) The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J Stat Softw 72:1–45CrossRef
Zurück zum Zitat Rizopoulos D, Molenberghs G, Lesaffre E (2017) Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom J 59:1261–1276MathSciNetCrossRefPubMed Rizopoulos D, Molenberghs G, Lesaffre E (2017) Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom J 59:1261–1276MathSciNetCrossRefPubMed
Zurück zum Zitat Tsiatis AA, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 14:809–834MathSciNet Tsiatis AA, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 14:809–834MathSciNet
Zurück zum Zitat Wang Y, Taylor JMG (2001) Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 96:895–905MathSciNetCrossRef Wang Y, Taylor JMG (2001) Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 96:895–905MathSciNetCrossRef
Zurück zum Zitat Yang M, Luo S, DeSantis S (2019) Bayesian quantile regression joint models: inference and dynamic predictions. Stat Methods Med Res 28:2524–2537MathSciNetCrossRefPubMed Yang M, Luo S, DeSantis S (2019) Bayesian quantile regression joint models: inference and dynamic predictions. Stat Methods Med Res 28:2524–2537MathSciNetCrossRefPubMed
Zurück zum Zitat Zhang H, Huang Y (2020) Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. Lifetime Data Anal 26:339–368MathSciNetCrossRefPubMed Zhang H, Huang Y (2020) Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. Lifetime Data Anal 26:339–368MathSciNetCrossRefPubMed
Zurück zum Zitat Zhu L, Sun J, Kumar SD, Tong X, Leisenring WM, Zhang H, Robison LL (2011) Semiparametric transformation models for joint analysis of multivariate recurrent and terminal events. Stat Med 30:3010–3023MathSciNetCrossRefPubMed Zhu L, Sun J, Kumar SD, Tong X, Leisenring WM, Zhang H, Robison LL (2011) Semiparametric transformation models for joint analysis of multivariate recurrent and terminal events. Stat Med 30:3010–3023MathSciNetCrossRefPubMed
Metadaten
Titel
A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
verfasst von
Damitri Kundu
Shekhar Krishnan
Manash Pratim Gogoi
Kiranmoy Das
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Lifetime Data Analysis
Print ISSN: 1380-7870
Elektronische ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-024-09622-1