Skip to main content

17.05.2024

A hybrid recursive direct system for multi-step mortality rate forecasting

verfasst von: Filipe Coelho de Lima Duarte, Paulo S. G. de Mattos Neto, Paulo Renato Alves Firmino

Erschienen in: The Journal of Supercomputing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bravo J (2007) Tábuas de mortalidade contemporâneas e prospectivas: Modelos estocásticos, aplicações actuariais e cobertura do risco de longevidade. PhD thesis, Universidade de Évora Bravo J (2007) Tábuas de mortalidade contemporâneas e prospectivas: Modelos estocásticos, aplicações actuariais e cobertura do risco de longevidade. PhD thesis, Universidade de Évora
2.
Zurück zum Zitat Shen Y, Yang X, Liu H et al (2024) Advancing mortality rate prediction in European population clusters: integrating deep learning and multiscale analysis. Sci Rep 14(1):6255CrossRef Shen Y, Yang X, Liu H et al (2024) Advancing mortality rate prediction in European population clusters: integrating deep learning and multiscale analysis. Sci Rep 14(1):6255CrossRef
3.
Zurück zum Zitat van de Walk F (2017) Infant mortality and the european demographic transition. In: Watkins SC (ed) The decline of fertility in Europe. Princeton University Press, New Jersey, pp 201–233 van de Walk F (2017) Infant mortality and the european demographic transition. In: Watkins SC (ed) The decline of fertility in Europe. Princeton University Press, New Jersey, pp 201–233
4.
5.
Zurück zum Zitat Kruk ME, Gage AD, Joseph NT et al (2018) Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. The Lancet 392(10160):2203–2212CrossRef Kruk ME, Gage AD, Joseph NT et al (2018) Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. The Lancet 392(10160):2203–2212CrossRef
6.
Zurück zum Zitat Chen N, Pan J (2022) The causal effect of delivery volume on severe maternal morbidity: an instrumental variable analysis in sichuan, china. BMJ Glob Health 7(5):e008428CrossRef Chen N, Pan J (2022) The causal effect of delivery volume on severe maternal morbidity: an instrumental variable analysis in sichuan, china. BMJ Glob Health 7(5):e008428CrossRef
7.
Zurück zum Zitat Luy M, Di Giulio P, Di Lego V et al (2020) Life expectancy: frequently used, but hardly understood. Gerontology 66(1):95–104CrossRef Luy M, Di Giulio P, Di Lego V et al (2020) Life expectancy: frequently used, but hardly understood. Gerontology 66(1):95–104CrossRef
8.
Zurück zum Zitat Bravo JM (2021) Forecasting mortality rates with recurrent neural networks: a preliminary investigation using portuguese data. In: CAPSI 2021 Proceedings Bravo JM (2021) Forecasting mortality rates with recurrent neural networks: a preliminary investigation using portuguese data. In: CAPSI 2021 Proceedings
9.
Zurück zum Zitat Nigri A, Levantesi S, Aburto JM (2022) Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth. Demogr Res 47:199–232CrossRef Nigri A, Levantesi S, Aburto JM (2022) Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth. Demogr Res 47:199–232CrossRef
10.
Zurück zum Zitat Carone G, Eckefeldt P, Giamboni L, et al (2016) Pension reforms in the EU since the early 2000’s: achievements and challenges ahead. European economy discussion paper Carone G, Eckefeldt P, Giamboni L, et al (2016) Pension reforms in the EU since the early 2000’s: achievements and challenges ahead. European economy discussion paper
11.
Zurück zum Zitat Janssen F (2018) Advances in mortality forecasting: introduction. Genus 74(1):21CrossRef Janssen F (2018) Advances in mortality forecasting: introduction. Genus 74(1):21CrossRef
12.
Zurück zum Zitat Olivieri A (2001) Uncertainty in mortality projections: an actuarial perspective. Insur: Math Econ 29(2):231–245 Olivieri A (2001) Uncertainty in mortality projections: an actuarial perspective. Insur: Math Econ 29(2):231–245
13.
Zurück zum Zitat Shi Y (2021) Forecasting mortality rates with the penalized exponential smoothing state space model. J Operat Res Soci 73(5):955–968CrossRef Shi Y (2021) Forecasting mortality rates with the penalized exponential smoothing state space model. J Operat Res Soci 73(5):955–968CrossRef
14.
Zurück zum Zitat Hyndman RJ, Shahid Ullah M (2007) Robust forecasting of mortality and fertility rates: a functional data approach. Comput Stat Data Anal 51(10):4942–4956MathSciNetCrossRef Hyndman RJ, Shahid Ullah M (2007) Robust forecasting of mortality and fertility rates: a functional data approach. Comput Stat Data Anal 51(10):4942–4956MathSciNetCrossRef
15.
Zurück zum Zitat Vanella P, Deschermeier P, Wilke CB (2020) An overview of population projections-methodological concepts, international data availability, and use cases. Forecasting 2(3):346–363CrossRef Vanella P, Deschermeier P, Wilke CB (2020) An overview of population projections-methodological concepts, international data availability, and use cases. Forecasting 2(3):346–363CrossRef
16.
Zurück zum Zitat Dushi I, Friedberg L, Webb T (2010) The impact of aggregate mortality risk on defined benefit pension plans. J Pension Econ Finance 9(4):481–503CrossRef Dushi I, Friedberg L, Webb T (2010) The impact of aggregate mortality risk on defined benefit pension plans. J Pension Econ Finance 9(4):481–503CrossRef
17.
Zurück zum Zitat Mitchell D, Brockett P, Mendoza-Arriaga R et al (2013) Modeling and forecasting mortality rates. Insur: Math Econ 52(2):275–285MathSciNet Mitchell D, Brockett P, Mendoza-Arriaga R et al (2013) Modeling and forecasting mortality rates. Insur: Math Econ 52(2):275–285MathSciNet
18.
Zurück zum Zitat Wang J, Wen L, Xiao L et al (2024) Time-series forecasting of mortality rates using transformer. Scand Actuar J 2:109–123MathSciNetCrossRef Wang J, Wen L, Xiao L et al (2024) Time-series forecasting of mortality rates using transformer. Scand Actuar J 2:109–123MathSciNetCrossRef
19.
Zurück zum Zitat Bi L, Fili M, Hu G (2022) Covid-19 forecasting and intervention planning using gated recurrent unit and evolutionary algorithm. Neural Computing and Applications pp 1–19 Bi L, Fili M, Hu G (2022) Covid-19 forecasting and intervention planning using gated recurrent unit and evolutionary algorithm. Neural Computing and Applications pp 1–19
20.
Zurück zum Zitat Wu R, Wang B (2018) Gaussian process regression method for forecasting of mortality rates. Neurocomputing 316:232–239CrossRef Wu R, Wang B (2018) Gaussian process regression method for forecasting of mortality rates. Neurocomputing 316:232–239CrossRef
21.
Zurück zum Zitat Feng L, Shi Y (2018) Forecasting mortality rates: multivariate or univariate models? J Popul Res 35(3):289–318CrossRef Feng L, Shi Y (2018) Forecasting mortality rates: multivariate or univariate models? J Popul Res 35(3):289–318CrossRef
22.
Zurück zum Zitat Lee RD, Carter LC (1992) Modeling and forecasting US mortality. J Am Stat Associat 87(419):659–671 Lee RD, Carter LC (1992) Modeling and forecasting US mortality. J Am Stat Associat 87(419):659–671
23.
Zurück zum Zitat Booth H, Maindonald J, Smith L (2002) Applying Lee-Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336CrossRef Booth H, Maindonald J, Smith L (2002) Applying Lee-Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336CrossRef
24.
Zurück zum Zitat Deprez P, Shevchenko PV, Wüthrich MV (2017) Machine learning techniques for mortality modeling. Eur Actuar J 7(2):337–352MathSciNetCrossRef Deprez P, Shevchenko PV, Wüthrich MV (2017) Machine learning techniques for mortality modeling. Eur Actuar J 7(2):337–352MathSciNetCrossRef
25.
Zurück zum Zitat Nigri A, Levantesi S, Marino M et al (2019) A deep learning integrated lee-carter model. Risks 7(1):33CrossRef Nigri A, Levantesi S, Marino M et al (2019) A deep learning integrated lee-carter model. Risks 7(1):33CrossRef
26.
Zurück zum Zitat McNown R, Rogers A (1989) Forecasting mortality: a parameterized time series approach. Demography 26(4):645–660CrossRef McNown R, Rogers A (1989) Forecasting mortality: a parameterized time series approach. Demography 26(4):645–660CrossRef
27.
Zurück zum Zitat de Mattos Neto PS, Cavalcanti GD, Madeiro F (2017) Nonlinear combination method of forecasters applied to PM time series. Patt Recogn Lett 95:65–72CrossRef de Mattos Neto PS, Cavalcanti GD, Madeiro F (2017) Nonlinear combination method of forecasters applied to PM time series. Patt Recogn Lett 95:65–72CrossRef
28.
Zurück zum Zitat Richman R, Wüthrich MV (2018) A neural network extension of the Lee-Carter Model to multiple populations. SSRN Richman R, Wüthrich MV (2018) A neural network extension of the Lee-Carter Model to multiple populations. SSRN
29.
Zurück zum Zitat Petneházi G, Gáll J (2019) Mortality rate forecasting: can recurrent neural networks beat the lee-carter model? arXiv preprint arXiv:1909.05501 Petneházi G, Gáll J (2019) Mortality rate forecasting: can recurrent neural networks beat the lee-carter model? arXiv preprint arXiv:​1909.​05501
30.
Zurück zum Zitat Perla F, Richman R, Scognamiglio S et al (2021) Time-series forecasting of mortality rates using deep learning. Scand Actuar J 2021(7):572–598MathSciNetCrossRef Perla F, Richman R, Scognamiglio S et al (2021) Time-series forecasting of mortality rates using deep learning. Scand Actuar J 2021(7):572–598MathSciNetCrossRef
31.
Zurück zum Zitat Hong WH, Yap JH, Selvachandran G et al (2021) Forecasting mortality rates using hybrid lee-carter model, artificial neural network and random forest. Complex Intell Syst 7:163–189CrossRef Hong WH, Yap JH, Selvachandran G et al (2021) Forecasting mortality rates using hybrid lee-carter model, artificial neural network and random forest. Complex Intell Syst 7:163–189CrossRef
32.
Zurück zum Zitat Chen Y, Khaliq AQ (2022) Comparative study of mortality rate prediction using data-driven recurrent neural networks and the lee-carter model. Big Data Cognit Comput 6(4):134CrossRef Chen Y, Khaliq AQ (2022) Comparative study of mortality rate prediction using data-driven recurrent neural networks and the lee-carter model. Big Data Cognit Comput 6(4):134CrossRef
33.
Zurück zum Zitat Roshani A, Izadi M, Khaledi BE (2022) Transformer self-attention network for forecasting mortality rates. J Iran Stat Soci 21(1):81–103MathSciNet Roshani A, Izadi M, Khaledi BE (2022) Transformer self-attention network for forecasting mortality rates. J Iran Stat Soci 21(1):81–103MathSciNet
34.
Zurück zum Zitat de Mattos Neto PS, Cavalcanti GD, de Santos Júnior ODS et al (2022) Hybrid systems using residual modeling for sea surface temperature forecasting. Scientific Reports 12(1):487CrossRef de Mattos Neto PS, Cavalcanti GD, de Santos Júnior ODS et al (2022) Hybrid systems using residual modeling for sea surface temperature forecasting. Scientific Reports 12(1):487CrossRef
35.
Zurück zum Zitat Pang X, Zhou Y, Wang P et al (2020) An innovative neural network approach for stock market prediction. J Supercomput 76:2098–2118CrossRef Pang X, Zhou Y, Wang P et al (2020) An innovative neural network approach for stock market prediction. J Supercomput 76:2098–2118CrossRef
36.
Zurück zum Zitat Bravo JM (2021) Forecasting longevity for financial applications: a first experiment with deep learning methods. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp 232–249 Bravo JM (2021) Forecasting longevity for financial applications: a first experiment with deep learning methods. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp 232–249
37.
Zurück zum Zitat Bravo JM, Santos V (2021) Backtesting recurrent neural networks with gated recurrent unit: probing with chilean mortality data. In: International Conference on Computer Science. Springer, Electronics and Industrial Engineering (CSEI), pp 159–174 Bravo JM, Santos V (2021) Backtesting recurrent neural networks with gated recurrent unit: probing with chilean mortality data. In: International Conference on Computer Science. Springer, Electronics and Industrial Engineering (CSEI), pp 159–174
38.
Zurück zum Zitat Jackins V, Vimal S, Kaliappan M et al (2021) Ai-based smart prediction of clinical disease using random forest classifier and naive bayes. J Supercomput 77(5):5198–5219CrossRef Jackins V, Vimal S, Kaliappan M et al (2021) Ai-based smart prediction of clinical disease using random forest classifier and naive bayes. J Supercomput 77(5):5198–5219CrossRef
39.
Zurück zum Zitat Ashofteh A, Bravo JM, Ayuso M (2022) An ensemble learning strategy for panel time series forecasting of excess mortality during the covid-19 pandemic. Appl Soft Comput 128:109422CrossRef Ashofteh A, Bravo JM, Ayuso M (2022) An ensemble learning strategy for panel time series forecasting of excess mortality during the covid-19 pandemic. Appl Soft Comput 128:109422CrossRef
40.
Zurück zum Zitat Xu Y, Wang E, Yang Y et al (2021) A unified collaborative representation learning for neural-network based recommender systems. IEEE Trans Knowl Data Eng 34(11):5126–5139CrossRef Xu Y, Wang E, Yang Y et al (2021) A unified collaborative representation learning for neural-network based recommender systems. IEEE Trans Knowl Data Eng 34(11):5126–5139CrossRef
41.
Zurück zum Zitat Kavianpour P, Kavianpour M, Jahani E et al (2023) A cnn-bilstm model with attention mechanism for earthquake prediction. J Supercomput 79(17):19194–19226CrossRef Kavianpour P, Kavianpour M, Jahani E et al (2023) A cnn-bilstm model with attention mechanism for earthquake prediction. J Supercomput 79(17):19194–19226CrossRef
42.
Zurück zum Zitat Santos WR, Sampaio AR Jr, Rosa NS et al (2024) Microservices performance forecast using dynamic multiple predictor systems. Eng Appl Artif Intell 129:107649CrossRef Santos WR, Sampaio AR Jr, Rosa NS et al (2024) Microservices performance forecast using dynamic multiple predictor systems. Eng Appl Artif Intell 129:107649CrossRef
43.
Zurück zum Zitat Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRef Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRef
44.
Zurück zum Zitat Khashei M, Bijari M (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 11(2):2664–2675CrossRef Khashei M, Bijari M (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 11(2):2664–2675CrossRef
45.
Zurück zum Zitat Meng H, Han L, Hou L (2022) An ensemble learning-based short-term load forecasting on small datasets. In: 2022 IEEE 33rd Annual International Symposium on Personal. Indoor and Mobile Radio Communications (PIMRC), IEEE, pp 346–350 Meng H, Han L, Hou L (2022) An ensemble learning-based short-term load forecasting on small datasets. In: 2022 IEEE 33rd Annual International Symposium on Personal. Indoor and Mobile Radio Communications (PIMRC), IEEE, pp 346–350
46.
Zurück zum Zitat de Mattos Neto PS, de Oliveira JF, de O Santos Júnior DS, et al (2021) An adaptive hybrid system using deep learning for wind speed forecasting. Inform Sci 581:495–514 de Mattos Neto PS, de Oliveira JF, de O Santos Júnior DS, et al (2021) An adaptive hybrid system using deep learning for wind speed forecasting. Inform Sci 581:495–514
48.
Zurück zum Zitat Shaikhina T, Lowe D, Daga S et al (2015) Machine learning for predictive modelling based on small data in biomedical engineering. IFAC-PapersOnLine 48(20):469–474CrossRef Shaikhina T, Lowe D, Daga S et al (2015) Machine learning for predictive modelling based on small data in biomedical engineering. IFAC-PapersOnLine 48(20):469–474CrossRef
49.
Zurück zum Zitat D’souza RN, Huang PY, Yeh FC (2020) Structural analysis and optimization of convolutional neural networks with a small sample size. Sci Rep 10(1):834CrossRef D’souza RN, Huang PY, Yeh FC (2020) Structural analysis and optimization of convolutional neural networks with a small sample size. Sci Rep 10(1):834CrossRef
50.
Zurück zum Zitat Meroni M, Waldner F, Seguini L et al (2021) Yield forecasting with machine learning and small data: what gains for grains? Agric For Meteorol 308:108555CrossRef Meroni M, Waldner F, Seguini L et al (2021) Yield forecasting with machine learning and small data: what gains for grains? Agric For Meteorol 308:108555CrossRef
51.
Zurück zum Zitat Oreshkin BN, Carpov D, Chapados N, et al. (2019) N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 Oreshkin BN, Carpov D, Chapados N, et al. (2019) N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:​1905.​10437
52.
Zurück zum Zitat Oreshkin BN, Dudek G, Pełka P et al (2021) N-beats neural network for mid-term electricity load forecasting. Appl Energy 293:116918CrossRef Oreshkin BN, Dudek G, Pełka P et al (2021) N-beats neural network for mid-term electricity load forecasting. Appl Energy 293:116918CrossRef
53.
Zurück zum Zitat Human Mortality Database (2021) University of California, Berkeley (USA), and Max Plank Institute for Demographic Research (Germany). Available at www.mortality.org; accessed on 04/20/2021 Human Mortality Database (2021) University of California, Berkeley (USA), and Max Plank Institute for Demographic Research (Germany). Available at www.​mortality.​org; accessed on 04/20/2021
54.
Zurück zum Zitat Hyndman RJ, Koehler AB, Snyder RD et al (2002) A state space framework for automatic forecasting using exponential smoothing methods. Int J Forecast 18(3):439–454CrossRef Hyndman RJ, Koehler AB, Snyder RD et al (2002) A state space framework for automatic forecasting using exponential smoothing methods. Int J Forecast 18(3):439–454CrossRef
55.
Zurück zum Zitat De Livera AM, Hyndman RJ, Snyder RD (2011) Forecasting time series with complex seasonal patterns using exponential smoothing. J Am Stat Assoc 106(496):1513–1527MathSciNetCrossRef De Livera AM, Hyndman RJ, Snyder RD (2011) Forecasting time series with complex seasonal patterns using exponential smoothing. J Am Stat Assoc 106(496):1513–1527MathSciNetCrossRef
56.
Zurück zum Zitat Box GE, Jenkins GM, Reinsel GC et al (2015) Time series analysis: forecasting and control. Wiley, Hoboken Box GE, Jenkins GM, Reinsel GC et al (2015) Time series analysis: forecasting and control. Wiley, Hoboken
57.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, et al. (2017) Attention is all you need. Advances in neural information processing systems 30 Vaswani A, Shazeer N, Parmar N, et al. (2017) Attention is all you need. Advances in neural information processing systems 30
58.
Zurück zum Zitat Wu H, Xu J, Wang J et al (2021) Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv Neural Inf Process Syst 34:22419–22430 Wu H, Xu J, Wang J et al (2021) Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv Neural Inf Process Syst 34:22419–22430
59.
Zurück zum Zitat Zhou T, Ma Z, Wen Q, et al. (2022) Fedformer: fenhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, PMLR, pp 27268–27286 Zhou T, Ma Z, Wen Q, et al. (2022) Fedformer: fenhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, PMLR, pp 27268–27286
60.
Zurück zum Zitat Challu C, Olivares KG, Oreshkin BN, et al. (2023) Nhits: neural hierarchical interpolation for time series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 6989–6997 Challu C, Olivares KG, Oreshkin BN, et al. (2023) Nhits: neural hierarchical interpolation for time series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 6989–6997
61.
Zurück zum Zitat Bell WR (1997) Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates. J Off Stat 13:279–303 Bell WR (1997) Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates. J Off Stat 13:279–303
62.
Zurück zum Zitat Renshaw A, Haberman S (2006) A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur: Math Econ 38(3):556–570 Renshaw A, Haberman S (2006) A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur: Math Econ 38(3):556–570
63.
Zurück zum Zitat Hyndman RJ, Booth H, Yasmeen F (2013) Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50(1):261–283CrossRef Hyndman RJ, Booth H, Yasmeen F (2013) Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50(1):261–283CrossRef
64.
Zurück zum Zitat Wu R, Wang B (2019) Coherent mortality forecasting by the weighted multilevel functional principal component approach. J Appl Stat 46(10):1774–1791MathSciNetCrossRef Wu R, Wang B (2019) Coherent mortality forecasting by the weighted multilevel functional principal component approach. J Appl Stat 46(10):1774–1791MathSciNetCrossRef
65.
66.
Zurück zum Zitat Makridakis S, Hyndman RJ, Petropoulos F (2020) Forecasting in social settings: the state of the art. Int J Forecast 36(1):15–28CrossRef Makridakis S, Hyndman RJ, Petropoulos F (2020) Forecasting in social settings: the state of the art. Int J Forecast 36(1):15–28CrossRef
67.
Zurück zum Zitat Booth H, Tickle L (2008) Mortality modelling and forecasting: a review of methods. Ann Act Sci 3(1–2):3–43CrossRef Booth H, Tickle L (2008) Mortality modelling and forecasting: a review of methods. Ann Act Sci 3(1–2):3–43CrossRef
68.
Zurück zum Zitat Giacometti R, Bertocchi M, Rachev ST et al (2012) A comparison of the Lee-Carter model and AR-ARCH model for forecasting mortality rates. Insur: Math Econ 50(1):85–93MathSciNet Giacometti R, Bertocchi M, Rachev ST et al (2012) A comparison of the Lee-Carter model and AR-ARCH model for forecasting mortality rates. Insur: Math Econ 50(1):85–93MathSciNet
69.
Zurück zum Zitat Shang HL, Hyndman RJ (2017) Grouped functional time series forecasting: an application to age-specific mortality rates. J Comput Graph Stat 26(2):330–343MathSciNetCrossRef Shang HL, Hyndman RJ (2017) Grouped functional time series forecasting: an application to age-specific mortality rates. J Comput Graph Stat 26(2):330–343MathSciNetCrossRef
70.
Zurück zum Zitat Santos JDSdO, Oliveira JFd, de Mattos Neto PSG (2019) An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl-Based Syst 175:72–86CrossRef Santos JDSdO, Oliveira JFd, de Mattos Neto PSG (2019) An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl-Based Syst 175:72–86CrossRef
71.
Zurück zum Zitat Hajirahimi Z, Khashei M (2019) Hybrid structures in time series modeling and forecasting: A review. Eng Appl Artif Intell 86:83–106CrossRef Hajirahimi Z, Khashei M (2019) Hybrid structures in time series modeling and forecasting: A review. Eng Appl Artif Intell 86:83–106CrossRef
72.
Zurück zum Zitat Pai PF, Lin CS (2005) A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33(6):497–505CrossRef Pai PF, Lin CS (2005) A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33(6):497–505CrossRef
73.
Zurück zum Zitat Panigrahi S, Behera HS (2017) A hybrid ETS-ANN model for time series forecasting. Eng Appl Artif Intell 66:49–59CrossRef Panigrahi S, Behera HS (2017) A hybrid ETS-ANN model for time series forecasting. Eng Appl Artif Intell 66:49–59CrossRef
74.
Zurück zum Zitat Hajirahimi Z, Khashei M (2019) Weighted sequential hybrid approaches for time series forecasting. Physica A: Stat Mech Appl 531 Hajirahimi Z, Khashei M (2019) Weighted sequential hybrid approaches for time series forecasting. Physica A: Stat Mech Appl 531
75.
Zurück zum Zitat Babu CN, Reddy BE (2014) A moving-average filter based hybrid arima-ann model for forecasting time series data. Appl Soft Comput 23:27–38CrossRef Babu CN, Reddy BE (2014) A moving-average filter based hybrid arima-ann model for forecasting time series data. Appl Soft Comput 23:27–38CrossRef
76.
Zurück zum Zitat Shi J, Guo J, Zheng S (2012) Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 16(5):3471–3480CrossRef Shi J, Guo J, Zheng S (2012) Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 16(5):3471–3480CrossRef
77.
Zurück zum Zitat Chakraborty T, Chattopadhyay S, Ghosh I (2019) Forecasting dengue epidemics using a hybrid methodology. Physica A 527:121266CrossRef Chakraborty T, Chattopadhyay S, Ghosh I (2019) Forecasting dengue epidemics using a hybrid methodology. Physica A 527:121266CrossRef
78.
Zurück zum Zitat Iftikhar H, Daniyal M, Qureshi M et al (2023) A hybrid forecasting technique for infection and death from the mpox virus. Digital Health 9:20552076231204748CrossRef Iftikhar H, Daniyal M, Qureshi M et al (2023) A hybrid forecasting technique for infection and death from the mpox virus. Digital Health 9:20552076231204748CrossRef
79.
Zurück zum Zitat Iftikhar H, Zafar A, Turpo-Chaparro JE et al (2023) Forecasting day-ahead brent crude oil prices using hybrid combinations of time series models. Mathematics 11(16):3548CrossRef Iftikhar H, Zafar A, Turpo-Chaparro JE et al (2023) Forecasting day-ahead brent crude oil prices using hybrid combinations of time series models. Mathematics 11(16):3548CrossRef
80.
Zurück zum Zitat Carbo-Bustinza N, Iftikhar H, Belmonte M et al (2023) Short-term forecasting of ozone concentration in metropolitan lima using hybrid combinations of time series models. Appl Sci 13(18):10514CrossRef Carbo-Bustinza N, Iftikhar H, Belmonte M et al (2023) Short-term forecasting of ozone concentration in metropolitan lima using hybrid combinations of time series models. Appl Sci 13(18):10514CrossRef
81.
Zurück zum Zitat Sorjamaa A, Hao J, Reyhani N et al (2007) Methodology for long-term prediction of time series. Neurocomputing 70(16–18):2861–2869CrossRef Sorjamaa A, Hao J, Reyhani N et al (2007) Methodology for long-term prediction of time series. Neurocomputing 70(16–18):2861–2869CrossRef
82.
Zurück zum Zitat Hamzaçebi C, Akay D, Kutay F (2009) Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst Appl 36(2):3839–3844CrossRef Hamzaçebi C, Akay D, Kutay F (2009) Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst Appl 36(2):3839–3844CrossRef
83.
Zurück zum Zitat Taieb SB, Bontempi G, Atiya AF et al (2012) A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Syst Appl 39(8):7067–7083CrossRef Taieb SB, Bontempi G, Atiya AF et al (2012) A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Syst Appl 39(8):7067–7083CrossRef
84.
Zurück zum Zitat Kline DM (2004) Methods for multi-step time series forecasting neural networks. In: Zhang GP (ed) Neural networks in business forecasting. IGI Global, Hershey, PA, USA, pp 226–250 Kline DM (2004) Methods for multi-step time series forecasting neural networks. In: Zhang GP (ed) Neural networks in business forecasting. IGI Global, Hershey, PA, USA, pp 226–250
85.
Zurück zum Zitat Bontempi G (2008) Long term time series prediction with multi-input multi-output local learning. In: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08 Bontempi G (2008) Long term time series prediction with multi-input multi-output local learning. In: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08
86.
Zurück zum Zitat Ming W, Bao Y, Hu Z, et al (2014) Multistep-ahead air passengers traffic prediction with hybrid arima-svms models. The Scientific World Journal 2014 Ming W, Bao Y, Hu Z, et al (2014) Multistep-ahead air passengers traffic prediction with hybrid arima-svms models. The Scientific World Journal 2014
87.
Zurück zum Zitat Taieb SB, Bontempi G, Sorjamaa A, et al. (2009) Long-term prediction of time series by combining direct and mimo strategies. In: 2009 International Joint Conference on Neural Networks, IEEE, pp 3054–3061 Taieb SB, Bontempi G, Sorjamaa A, et al. (2009) Long-term prediction of time series by combining direct and mimo strategies. In: 2009 International Joint Conference on Neural Networks, IEEE, pp 3054–3061
88.
Zurück zum Zitat Beyaztas U, Shang H (2022) Machine-learning-based functional time series forecasting: application to age-specific mortality rates. Forecasting 4(1):394–408CrossRef Beyaztas U, Shang H (2022) Machine-learning-based functional time series forecasting: application to age-specific mortality rates. Forecasting 4(1):394–408CrossRef
89.
Zurück zum Zitat Ouyang Z, Ravier P, Jabloun M (2022) Are deep learning models practically good as promised? a strategic comparison of deep learning models for time series forecasting. In: 2022 30th European Signal Processing Conference (EUSIPCO), IEEE, pp 1477–1481 Ouyang Z, Ravier P, Jabloun M (2022) Are deep learning models practically good as promised? a strategic comparison of deep learning models for time series forecasting. In: 2022 30th European Signal Processing Conference (EUSIPCO), IEEE, pp 1477–1481
90.
Zurück zum Zitat Atiya A, El-Shoura S, Shaheen S et al (1999) A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans Neural Networks 10(2):402–409CrossRef Atiya A, El-Shoura S, Shaheen S et al (1999) A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans Neural Networks 10(2):402–409CrossRef
91.
Zurück zum Zitat Taieb SB (2014) Machine learning strategies for multi-step-ahead time series forecasting. Universit Libre de Bruxelles, Belgium pp 75–86 Taieb SB (2014) Machine learning strategies for multi-step-ahead time series forecasting. Universit Libre de Bruxelles, Belgium pp 75–86
92.
Zurück zum Zitat Mendes-Moreira J, Soares C, Jorge AM et al (2012) Ensemble approaches for regression: a survey. ACM Comput Surv (csur) 45(1):1–40CrossRef Mendes-Moreira J, Soares C, Jorge AM et al (2012) Ensemble approaches for regression: a survey. ACM Comput Surv (csur) 45(1):1–40CrossRef
93.
Zurück zum Zitat Lam KK, Wang B (2021) Robust non-parametric mortality and fertility modelling and forecasting: Gaussian process regression approaches. Forecasting 3(1):207–227CrossRef Lam KK, Wang B (2021) Robust non-parametric mortality and fertility modelling and forecasting: Gaussian process regression approaches. Forecasting 3(1):207–227CrossRef
94.
Zurück zum Zitat da Rocha AM, Espíndola AL, Penna T (2020) Mortality curves using a bit-string aging model. Physica A 560:125134CrossRef da Rocha AM, Espíndola AL, Penna T (2020) Mortality curves using a bit-string aging model. Physica A 560:125134CrossRef
95.
Zurück zum Zitat Hyndman RJ, Booth H (2008) Stochastic population forecasts using functional data models for mortality, fertility and migration. Int J Forecast 24(3):323–342CrossRef Hyndman RJ, Booth H (2008) Stochastic population forecasts using functional data models for mortality, fertility and migration. Int J Forecast 24(3):323–342CrossRef
96.
Zurück zum Zitat Chandra R, Goyal S, Gupta R (2021) Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access 9:83105–83123CrossRef Chandra R, Goyal S, Gupta R (2021) Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access 9:83105–83123CrossRef
98.
Zurück zum Zitat Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27(1):1–22 Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27(1):1–22
100.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNet Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNet
102.
105.
Zurück zum Zitat de Oliveira JF, Silva EG, de Mattos Neto PS (2021) A hybrid system based on dynamic selection for time series forecasting. IEEE Trans Neural Netw Learn Syst 33(8):3251–3263MathSciNetCrossRef de Oliveira JF, Silva EG, de Mattos Neto PS (2021) A hybrid system based on dynamic selection for time series forecasting. IEEE Trans Neural Netw Learn Syst 33(8):3251–3263MathSciNetCrossRef
106.
Zurück zum Zitat Kim S, Kim H (2016) A new metric of absolute percentage error for intermittent demand forecasts. Int J Forecast 32(3):669–679CrossRef Kim S, Kim H (2016) A new metric of absolute percentage error for intermittent demand forecasts. Int J Forecast 32(3):669–679CrossRef
107.
Zurück zum Zitat Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688CrossRef Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688CrossRef
108.
Zurück zum Zitat Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13(3):253–263CrossRef Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13(3):253–263CrossRef
110.
Zurück zum Zitat Medina MCC, de Oliveira JFL (2023) A selective hybrid system for state-of-charge forecasting of lithium-ion batteries. J Supercomput 79(14):15623–15642CrossRef Medina MCC, de Oliveira JFL (2023) A selective hybrid system for state-of-charge forecasting of lithium-ion batteries. J Supercomput 79(14):15623–15642CrossRef
111.
Zurück zum Zitat Silva EG, Júunior DSdO, Cavalcanti GD, et al. (2018) Improving the accuracy of intelligent forecasting models using the perturbation theory. In: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–7 Silva EG, Júunior DSdO, Cavalcanti GD, et al. (2018) Improving the accuracy of intelligent forecasting models using the perturbation theory. In: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–7
Metadaten
Titel
A hybrid recursive direct system for multi-step mortality rate forecasting
verfasst von
Filipe Coelho de Lima Duarte
Paulo S. G. de Mattos Neto
Paulo Renato Alves Firmino
Publikationsdatum
17.05.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06182-x

Premium Partner