Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2024

Open Access 01.12.2024 | Research

A new reverse Mulholland’s inequality with one partial sum in the kernel

verfasst von: Xianyong Huang, Ricai Luo, Bicheng Yang, Xingshou Huang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2024

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By means of the techniques of real analysis, applying some basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given. We obtain the equivalent conditions of the parameters related to the best value in the new inequality. As applications, we reduce to the equivalent forms and a few inequalities for particular parameters.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

If \(p > 1\), \(\frac{1}{p} + \frac{1}{q} = 1\), \(a_{m},b_{n} \ge 0\) are such that \(0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty\) and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty \), then we have the following Hardy–Hilbert’s inequality with the best value \(\frac{\pi}{\sin (\pi /p)}\) (cf. [1, Theorem 315]):
$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(1)
With regards to a similar assumption, the well-known Mulholland’s inequality was given as follows (cf. [1, Theorem 343]):
$$ \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{a_{m}b_{n}}{mn\ln mn} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{n = 2}^{\infty} \frac{b_{n}^{q}}{n} \Biggr)^{\frac{1}{q}}. $$
(2)
For \(\lambda _{i} \in (0,2]\) (\(i = 1,2\)), \(\lambda _{1} + \lambda _{2} = \lambda \in (0,4]\), a generalization of (1) was obtained (see [2]) in 2016 as follows:
$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{(m + n)^{\lambda}} < B(\lambda _{1},\lambda _{2}) \Biggl[ \sum _{m = 1}^{\infty} m^{p(1 - \lambda _{1}) - 1}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 1}^{\infty} n^{q(1 - \lambda _{2}) - 1}b_{n}^{q} \Biggr]^{\frac{1}{q}}, $$
(3)
where the constant \(B(\lambda _{1},\lambda _{2})\) is the best value and
$$ B(u,v): = \int _{0}^{\infty} \frac{t^{u - 1}}{(1 + t)^{u + v}}\,dt = \frac{\Gamma (u)\Gamma (v)}{\Gamma (u + v)}\quad (u,v > 0) $$
is the Beta function related to the Gamma function. For \(\lambda = 1\), \(\lambda _{1} = \frac{1}{q}\), \(\lambda _{2} = \frac{1}{p}\), (3) reduces to (1); for \(p = q = 2\), \(\lambda _{1} = \lambda _{2} = \frac{\lambda}{2}\), (3) reduces to an inequality published in [3].
In 2019, by means of (3), Adiyasuren et al. [4] gave a generalization of (3) as follows: For \(\lambda _{i} \in (0,1] \cap (0,\lambda )\) (\(\lambda \in (0,2]\); \(i = 1,2\)), \(\lambda _{1} + \lambda _{2} = \lambda \), \(a_{m},b_{n} \ge 0\), we have
$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{(m + n)^{\lambda}} < \lambda _{1}\lambda _{2}B(\lambda _{1},\lambda _{2}) \Biggl( \sum_{m = 1}^{\infty} m^{ - p\lambda _{1} - 1}A_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 1}^{\infty} n^{ - q\lambda _{2} - 1}B_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(4)
where \(\lambda _{1}\lambda _{2}B(\lambda _{1},\lambda _{2})\) is the best value, and two partial sums \(A_{m}: = \sum_{i = 1}^{m} a_{i}\) and \(B_{n}: = \sum_{k = 1}^{n} b_{k}\) (\(m,n \in \{ 1,2, \ldots \} \)) satisfy
$$ 0 < \sum_{m = 1}^{\infty} m^{ - p\lambda _{1} - 1}A_{m}^{p} < \infty \quad \text{and} \quad 0 < \sum_{n = 1}^{\infty} n^{ - q\lambda _{2} - 1}B_{n}^{q} < \infty . $$
Some generalizations of (1) and (2) were obtained in [515]. In 2021, Gu and Yang [16] gave an improvement of (4) with the kernel \(\frac{1}{(m^{\alpha} + n^{\beta} )^{\lambda}} \). But we find that the constant is not the best possible unless \(\alpha = \beta = 1\). In 2016, Hong et al. [17] gave a few equivalent conditions of the parameters related to the best value in the general form of (1). Some further works were provided in [1829].
In this article, following the methods of [16, 17], by means of the techniques of analysis, several basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given. The equivalent conditions of the parameters related to the best value in the new inequality are obtained. We also deduce the equivalent forms and a few equivalent inequalities for particular parameters.

2 Some lemmas

In what follows, we assume that \(0 < p < 1\) (\(q < 0\)), \(\frac{1}{p} + \frac{1}{q} = 1\), \(\lambda > 0\), \(\lambda _{i} \in (0,2] \cap (0,\lambda )\) (\(i = 1,2\)), \(\hat{\lambda}_{1}: = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} \), \(\hat{\lambda}_{2}: = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}\), \(\mathrm{N} = \{ 1,2, \ldots \}\), \(m,n \in \mathrm{N}\backslash \{ 1\}\), \(a_{m},b_{n} \ge 0\), \(A_{m}: = \sum_{k = 2}^{m} a_{k} = o(e^{t\ln m})\) (\(t > 0\); \(m \to \infty \)), and
$$ 0 < \sum_{m = 2}^{\infty} \frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} < \infty ,\qquad 0 < \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} < \infty . $$
Lemma 1
(cf. [5, (2.2.3)])
(i) If \(( - 1)^{i}\frac{d^{i}}{dt^{i}}h(t) > 0\), \(t \in [m,\infty )\) (\(m \in \mathrm{N}\)), \(h^{(i)}(\infty ) = 0\) (\(i = 0,1,2,3\)), \(P_{i}(t)\), \(B_{i}\) (\(i \in \mathrm{N}\)) are the Bernoulli functions and numbers, then
$$ \int _{m}^{\infty} P_{2q - 1} (t)h(t)\,dt = - \varepsilon _{q}\frac{B_{2q}}{2q}h(m)\quad (0 < \varepsilon _{q} < 1;q = 1,2, \ldots ). $$
(5)
For \(q = 1\), \(B_{2} = \frac{1}{6}\), we have
$$ - \frac{1}{12}h(m) < \int _{m}^{\infty} P_{1} (t)h(t)\,dt < 0. $$
(6)
If \(( - 1)^{i}\frac{d^{i}}{dt^{i}}h(t) > 0\), \(t \in [m,\infty )\), \(h^{(i)}(\infty ) = 0\) (\(i = 0,1\)), then we still have (cf. [5, (2.2.13)])
$$ - \frac{1}{8}h(m) < \int _{m}^{\infty} P_{1} (t)h(t)\,dt < 0. $$
(7)
(ii) (cf. [5, (2.1.14)]) If \(n > m \in \mathrm{N}\), \(f(t)( > 0) \in C^{1}[m,\infty )\), \(f^{(i)}(\infty ) = 0\) (\(i = 0,1\)), then the following Euler–Maclaurin summation formulas are valid:
$$\begin{aligned}& \sum_{i = m}^{n} f(i) = \int _{m}^{n} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(n)\bigr) + \int _{m}^{n} P_{1} (t)f'(t)\,dt, \end{aligned}$$
(8)
$$\begin{aligned}& \sum_{i = m}^{\infty} f(i) = \int _{m}^{\infty} f(t)\,dt + \frac{1}{2} f(m) + \int _{m}^{\infty} P_{1} (t)f'(t)\,dt. \end{aligned}$$
(9)
Lemma 2
If \(s > 0\), \(s_{2} \in (0,2] \cap (0,s)\), \(K_{s}(s_{2}): = B(s_{2},s - s_{2})\), and the weight coefficient is defined as follows:
$$ \varpi _{s}(s_{2},m): = \ln ^{s - s_{2}}m\sum _{n = 2}^{\infty} \frac{\ln ^{s_{2} - 1}n}{n(\ln mn)^{s}} \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), $$
(10)
then we have the following inequalities:
$$ 0 < K_{s}(s_{2}) \biggl(1 - O\biggl( \frac{1}{\ln ^{s_{2}}m}\biggr)\biggr) < \varpi _{s}(s_{2},m) < K_{s}(s_{2}) \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), $$
(11)
where \(O(\frac{1}{\ln ^{s_{2}}m}): = \frac{1}{k_{s}(s_{2})}\int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv > 0 \).
Proof
For a fixed \(m \in \mathrm{N}\backslash \{ 1\} \), we set \(g_{m}(t)\) as follows: \(g_{m}(t): = \frac{\ln ^{s_{2} - 1}t}{(\ln m + \ln t)^{s}t}\) (\(t > 1\)).
(i)
For \(s_{2} \in (0,1] \cap (0,s)\), in view of the decreasingness property of series, we have
$$ \int _{2}^{\infty} g_{m}(t)\,dt < \sum _{n = 2}^{\infty} g_{m}(n) < \int _{1}^{\infty} g_{m}(t)\,dt. $$
(12)
 
(ii)
For \(s_{2} \in (1,2] \cap (0,s)\), in view of (9), we have
$$\begin{aligned}& \begin{aligned} \sum_{n = 2}^{\infty} g_{m}(n)& = \int _{2}^{\infty} g_{m}(t)\,dt + \frac{1}{2} g_{m}(2) + \int _{2}^{\infty} P{}_{1}(t)g'_{m}(t)\,dt= \int _{1}^{\infty} g_{m}(t)\,dt - h(m), \end{aligned} \\& h(m): = \int _{1}^{2} g_{m}(t)\,dt - \frac{1}{2}g_{m}(2) - \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt. \end{aligned}$$
We obtain \(- \frac{1}{2}g_{m}(2) = \frac{ - \ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}}\). Setting \(v = \ln t\) and using integration by parts, we find
$$\begin{aligned} \int _{1}^{2} g_{m} (t)\,dt &= \int _{0}^{\ln 2} \frac{v^{s_{2} - 1}}{(\ln m + v)^{s}}\,dv = \int _{0}^{\ln 2} \frac{dv^{s_{2}}}{s_{2}(\ln m + v)^{s}} \\ &= \frac{v^{s_{2}}}{s_{2}(\ln m + v)^{s}}|_{0}^{\ln 2} - \int _{0}^{\ln 2} \frac{v^{s_{2}}}{s_{2}}\,d \frac{1}{(\ln m + v)^{s}} \\ &= \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)} \int _{0}^{\ln 2} \frac{dv^{s_{2} + 1}}{(\ln m + v)^{s + 1}} \\ &> \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)}\frac{\ln ^{s_{2} + 1}2}{(\ln m + \ln 2)^{s + 1}}. \end{aligned}$$
Since \(\frac{\ln t}{t^{2}} > 0\), \((\frac{\ln t}{t^{2}})' = \frac{1 - 2\ln t}{t^{3}} < 0\) (\(t > 2\)), by (7), we have
$$\begin{aligned}& g'_{m}(t) = \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}} - \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} - \frac{\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}}\frac{\ln t}{t^{2}}, \\& - \int _{2}^{\infty} P_{1}(t) \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt \\& \quad = (1 - s_{2}) \int _{2}^{\infty} P_{1}(t) \frac{\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt > 0 \quad (s_{2} \in (1,2]), \\& \int _{2}^{\infty} P_{1}(t)\biggl[ \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} + \frac{\ln ^{s_{2}2}t}{(\ln m + \ln t)^{s}} \frac{\ln t}{t^{2}}\biggr]\,dt\\& \quad > - \frac{1}{8}\biggl[ \frac{s\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s + 1}} + \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}}\biggr], \\& - \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt > - \frac{s\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s + 1}} - \frac{\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s}}. \end{aligned}$$
Hence, for \(s_{2} \in (1,2] \cap (0,s)\), we obtain
$$\begin{aligned} h(m) >{}& \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)}\frac{\ln ^{s_{2} + 1}2}{(\ln m + \ln 2)^{s + 1}}\\ &{}- \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}} - \frac{s\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s + 1}} - \frac{\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s}}\\ ={}& \frac{\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s}}\biggl(\frac{\ln 2}{s_{2}} - \frac{1}{4} - \frac{1}{32}\biggr) + \frac{s\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s + 1}} \biggl[\frac{\ln ^{2}2}{s_{2}(s_{2} + 1)} - \frac{1}{32}\biggr] \\ \ge{}& \frac{\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s}}\biggl(\frac{\ln 2}{2} - \frac{9}{32} \biggr) + \frac{s\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s + 1}}\biggl(\frac{\ln ^{2}2}{6} - \frac{1}{32}\biggr)\\ >{}& 0\quad \bigl(\ln 2 = 0.6931^{ +} \bigr). \end{aligned}$$
Therefore, we have \(h(m) > 0\). We still have
$$\begin{aligned}& \begin{aligned} \sum_{n = 2}^{\infty} g_{m}(n) &= \int _{2}^{\infty} g_{m}(t)\,dt + \frac{1}{2} g_{m}(2) + \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt \\ &= \int _{2}^{\infty} g_{m}(t)\,dt + h_{1}(m), \end{aligned} \\& h_{1}(m): = \frac{1}{2}g_{m}(2) + \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt. \end{aligned}$$
For \(s_{2} \in (1,2] \cap (0,s)\), in view of (7), we find
$$\begin{aligned}& \int _{2}^{\infty} P_{1}(t) \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt > - \frac{s_{2} - 1}{32}\frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}},\\& - \int _{2}^{\infty} P_{1}(t)\biggl[ \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} + \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}} \frac{\ln t}{t^{2}}\biggr]\,dt > 0,\\& \begin{gathered} \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt > - \frac{s_{2} - 1}{32}\frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}}, \\ h_{1}(m) > \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}} - \frac{s_{2} - 1}{32} \frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}} \ge \frac{\ln ^{s_{2} - 2}2}{4(\ln m + \ln 2)^{s}}\biggl(\ln 2 - \frac{1}{8}\biggr) > 0. \end{gathered} \end{aligned}$$
Hence, we have (12).
 
(iii)
For \(s_{2} \in (0,2] \cap (0,s)\), by (12), setting \(v = \frac{\ln t}{\ln m}\), it follows that
$$\begin{aligned}& \begin{aligned} \varpi _{s}(s_{2},m) &= \ln ^{s - s_{2}}m\sum_{n = 2}^{\infty} g_{m}(n) < \ln ^{s - s_{2}}m \int _{1}^{\infty} g_{m}(t)\,dt \\ &= \int _{0}^{\infty} \frac{v^{s_{2} - 1}\,dv}{(1 + v)^{s}} = B(s_{2},s - s_{2}) = k_{s}(s_{2}), \end{aligned}\\& \varpi _{s}(s_{2},m) > \ln ^{s - s_{2}}m \int _{2}^{\infty} g_{m}(t)\,dt = \int _{\frac{\ln 2}{\ln m}}^{\infty} \frac{v^{s_{2} - 1}\,dv}{(1 + v)^{s}} = k_{s}(s_{2}) \biggl(1 - O\biggl(\frac{1}{\ln ^{s_{2}}m} \biggr)\biggr) > 0, \end{aligned}$$
where we indicate that \(O(\frac{1}{\ln ^{s_{2}}m}) = \frac{1}{k_{s}(s_{2})}\int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv\), satisfying
$$ 0 < \int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv \le \int _{0}^{\frac{\ln 2}{\ln m}} v^{s_{2} - 1}\,dv = \frac{1}{s_{2}} \biggl(\frac{\ln 2}{\ln m}\biggr)^{s_{2}}. $$
Therefore, inequalities (11) follow.
 
This proves the lemma. □
Lemma 3
If \(a \in ( - 1,1)\), \(m \in \mathrm{N}\backslash \{ 1\}\), then there exists a constant C such that
$$ \sum_{k = 2}^{m} \frac{\ln ^{a}k}{k} = \frac{\ln ^{a + 1}m}{a + 1} + C + O\biggl(\frac{1}{m}\ln ^{a}m \biggr)\quad (m \to \infty ). $$
(13)
Proof
We set \(f(t): = \frac{1}{t}\ln ^{a}t\) (\(t \ge 2\)). Then we find
$$ f'(t) = \frac{a}{t^{2}}\ln ^{a - 1}t - \frac{1}{t^{2}}\ln ^{a}t = ag_{1}(t) - g_{2}(t), $$
where \(g_{1}(t) = \frac{1}{t^{2}}\ln ^{a - 1}t\), \(g_{2}(t) = \frac{1}{t^{2}}\ln ^{a}t\) (\(t \ge 2\)).
We obtain \(( - 1)^{i}g_{1}^{(i)}(t) > 0\) (\(t \ge 2\); \(i = 0,1\)). Since
$$ a < 1 < 2\ln 2 \le 2\ln t,g_{2}'(t) = \frac{a - 2\ln t}{t^{3}}\ln ^{a - 1}t < 0\quad (t \ge 2), $$
it follows that \(( - 1)^{i}g_{2}^{(i)}(t) > 0\) (\(i = 0,1\)). In view of (2.2.12) in [5], we have
$$ \int _{2}^{m} P_{1} (t)g_{j}(t)\,dt = \frac{\varepsilon _{j}}{8}g_{j}(t)|_{2}^{m}\quad (0 < \varepsilon _{j} < 1;j = 0,1). $$
By (8), we have
$$\begin{aligned} \sum_{k = 2}^{m} f(k) &= \int _{2}^{m} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(2)\bigr) + \int _{2}^{m} P_{1}(t)f'(t)\,dt \\ &= \int _{2}^{m} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(2)\bigr) + a \int _{2}^{m} P_{1}(t)g_{1}(t)\,dt - \int _{2}^{m} P_{1}(t)g_{2}(t)\,dt. \end{aligned}$$
By simplification, we obtain (13), where
$$\begin{aligned}& C: = - \frac{1}{a + 1}\ln ^{a + 1}2 + \biggl( \frac{1}{4} + \frac{\varepsilon _{2}}{32}\biggr)\ln ^{a}2 - \frac{\varepsilon _{1}a}{32}\ln ^{a - 1}2\quad \text{and}\\& O\biggl(\frac{1}{m}\ln ^{a}m\biggr): = \frac{\ln ^{a}m}{2m} + \frac{\varepsilon _{1}a}{8m^{2}}\ln ^{a - 1}m - \frac{\varepsilon _{2}}{8m^{2}}\ln ^{a}m\quad (m \to \infty ). \end{aligned}$$
This proves the lemma. □
Lemma 4
For \(t > 0\), the following inequality is valid:
$$ \sum_{m = 2}^{\infty} e^{ - t\ln m} m^{ - 1}A_{m} \ge \frac{1}{t}\sum _{m = 2}^{\infty} e^{ - t\ln m} a_{m}. $$
(14)
Proof
Since \(A_{m}e^{ - t\ln m} = o(1)\) (\(m \to \infty \)), by Abel’s summation by parts formula, it follows that
$$ \begin{aligned} \sum_{m = 2}^{\infty} e^{ - t\ln m} a_{m} &= \lim_{m \to \infty} A_{m}e^{ - t\ln m} + \sum_{m = 2}^{\infty} A_{m} \bigl[ e^{ - t\ln m} - e^{ - t\ln (m + 1)} \bigr] \\ &= \sum_{m = 2}^{\infty} A_{m} \bigl[ e^{ - t\ln m} - e^{ - t\ln (m + 1)} \bigr]. \end{aligned} $$
For a fixed \(m \in \mathrm{N}\backslash \{ 1\}\), we set \(f(x): = e^{ - t\ln x}\), \(x \in [m,m + 1]\). Since \(f'(x) = - th(x)\), where \(h(x): = x^{ - 1}e^{ - t\ln x}\) is decreasing in \([m,m + 1]\), by the differentiation intermediate value theorem, there exists a constant \(\theta \in (0,1)\) such that
$$ \begin{aligned} \sum_{m = 2}^{\infty} e^{ - t\ln m} a_{m} &= - \sum_{m = 2}^{\infty} A_{m} \bigl( f(m + 1) - f(m) \bigr) \\ &= - \sum_{m = 2}^{\infty} A_{m} f'(m + \theta ) = t\sum_{m = 2}^{\infty} h( m + \theta )A_{m} \\ &\le t\sum_{m = 2}^{\infty} h( m)A_{m} = t\sum_{m = 2}^{\infty} m^{ - 1} e^{ - t\ln m}A_{m}, \end{aligned} $$
namely, inequality (14) follows.
This proves lemma. □
Lemma 5
For \(0 < p < 1\) (\(q < 0\)), the following reverse inequality is valid:
$$\begin{aligned} I_{\lambda}: ={}& \sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{a_{m}b_{n}}{(\ln mn)^{\lambda}} > \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}} \bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}} \\ &{}\times \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(15)
Proof
In view of the symmetry, for \(s_{1} \in (0,2] \cap (0,s)\), \(s > 0\), we set and obtain the next weight coefficient as follows:
$$\begin{aligned} 0 &< k_{s}(s_{1}) \biggl(1 - O\biggl( \frac{1}{\ln ^{s_{1}}n}\biggr)\biggr) < \omega _{s}(s_{1},n): = \ln ^{s - s_{1}}n\sum_{m = 2}^{\infty} \frac{\ln ^{s_{1} - 1}m}{m(\ln mn)^{s}} \\ &< k_{s}(s_{1}) = B(s_{1},s - s_{1}) \quad \bigl(n \in \mathrm{N}\backslash \{ 1\} \bigr), \end{aligned}$$
(16)
where \(O(\frac{1}{\ln ^{s_{1}}n}): = \frac{1}{k_{s}(s_{1})}\int _{0}^{\frac{\ln 2}{\ln n}} \frac{v^{s_{1} - 1}}{(1 + v)^{s}}\,dv > 0\).
In view of the reverse Hölder’s inequality (cf. [30]), we find
$$\begin{aligned} I_{\lambda} &= \sum _{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \biggl[ \frac{m^{1/q}\ln ^{(\lambda _{2} - 1)/p}n}{n^{1/p}\ln ^{(\lambda _{1} - 1)/q}m}a_{m} \biggr] \biggl[ \frac{n^{1/p}\ln ^{(\lambda _{1} - 1)/q}m}{m^{1/q}\ln ^{(\lambda _{2} - 1)/p}n}b_{n} \biggr] \\ &\ge \Biggl[ \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \frac{m^{p - 1}\ln ^{\lambda _{2} - 1}n}{n\ln ^{(\lambda _{1} - 1)(p - 1)}m}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \frac{n^{(q - 1)}\ln ^{\lambda _{1} - 1}m}{m\ln ^{(\lambda _{2} - 1)(q - 1)}n}b_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &= \Biggl( \sum_{m = 2}^{\infty} \varpi _{\lambda} (\lambda _{2},m) \frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \omega _{\lambda} (\lambda {}_{1},n) \frac{n^{q(1 - \hat{\lambda}_{2}) - 11}n}{n^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
By (11) and (16) (for \(s = \lambda \), \(s_{i} = \lambda _{i} \in (0,2] \cap (0,\lambda )\) (\(i = 1,2\))), we obtain (15).
This proves the lemma. □

3 Main results

Theorem 1
The following reverse Mulholland’s inequality with \(A_{m}\) in the kernel is valid:
$$\begin{aligned} I: = {}&\sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \\ &{}\times \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(17)
In particular, for \(\lambda _{1} + \lambda _{2} = \lambda \), we have
$$ 0 < \sum_{m = 2}^{\infty} \frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} < \infty ,\qquad 0 < \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} b_{n}^{q} < \infty , $$
and the following reverse inequality:
$$\begin{aligned} \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m}>{}& \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(18)
Proof
In view of the following expression related to the Gamma function:
$$ \frac{1}{(\ln m + \ln n)^{\lambda + 1}} = \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} e^{ - (\ln m + \ln n)t}\,dt, $$
by (14), it follows that
$$\begin{aligned} I& = \frac{1}{\Gamma (\lambda + 1)}\sum_{m = 2}^{\infty} \sum_{n = 2}^{\infty} \frac{1}{m}A_{m}b_{n} \int _{0}^{\infty} t^{\lambda} e^{ - (\ln m + \ln n)t}\,dt\\ & = \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} \Biggl( \sum _{m = 2}^{\infty} e^{ - t\ln m} \frac{1}{m}A_{m} \Biggr)\sum_{n = 2}^{\infty} e^{ - t\ln n}b_{n}\,dt \\ &\ge \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} \Biggl( \frac{1}{t}\sum_{m = 2}^{\infty} e^{ - t\ln m}a_{m} \Biggr)\sum_{n = 2}^{\infty} e^{ - t\ln n}b_{n}\,dt \\ & = \frac{1}{\Gamma (\lambda + 1)}\sum _{m = 2}^{\infty} \sum_{n = 2}^{\infty} a_{m}b_{n} \int _{0}^{\infty} t^{\lambda - 1} e^{ - (\ln m + \ln n)t}\,dt \\ &= \frac{\Gamma (\lambda )}{\Gamma (\lambda + 1)}\sum_{m = 2}^{\infty} \sum_{n = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} a_{m}b_{n}. \end{aligned}$$
Then by (15), in view of \(\Gamma (\lambda + 1) = \lambda \Gamma (\lambda )\), we have (17). For \(\lambda _{1} + \lambda _{2} = \lambda \) in (17), we have (18).
This proves the theorem. □
Theorem 2
Assume that \(\lambda _{1} \in (0,2) \cap (0,\lambda )\), \(\lambda _{2} \in (0,2) \cap (0,\lambda )\). If \(\lambda _{1} + \lambda _{2} = \lambda \), then the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible.
Proof
We now show that \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) in (18) is the best value under the assumptions of this theorem.
For any \(0 < \varepsilon < \min \{ p\lambda _{1},|q|(2 - \lambda _{2})\}\), we set
$$ \tilde{a}_{m}: = \frac{1}{m}\ln ^{(\lambda _{1} - \frac{\varepsilon}{p}) - 1}m,\qquad \tilde{b}_{n}: = \frac{1}{n}\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n\quad \bigl(m,n \in \mathrm{N}\backslash \{ 1\} \bigr). $$
For \(a = \lambda _{1} - \frac{\varepsilon}{p} - 1 \in ( - 1,1)\), by (13), we have
$$ \tilde{A}_{m}: = \sum_{k = 2}^{m} \tilde{a}_{k} = \sum_{k = 2}^{m} \frac{\ln ^{\lambda _{1} - \frac{\varepsilon}{p} - 1}k}{k} = \frac{\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m}{\lambda _{1} - \frac{\varepsilon}{p}} + C + O\biggl(\frac{1}{m} \ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \quad (m \to \infty ), $$
satisfying \(\tilde{A}_{m} = o(e^{t\ln m})\) (\(t > 0\); \(m \to \infty \)).
If there exists a constant \(M( \ge \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}))\) such that (18) is valid when we replace \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) by M, then for \(a_{m} = \tilde{a}_{m}\), \(b_{n} = \tilde{b}_{n}\), and \(A_{m} = \tilde{A}_{m}\), we have
$$\begin{aligned} \tilde{I}&: = \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\tilde{A}_{m}\tilde{b}_{n}}{(\ln mn)^{\lambda + 1}m} \\ &> M \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} \tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
We obtain
$$\begin{aligned} \tilde{I} &> M \Biggl[ \sum _{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}n}{n} \Biggr)^{\frac{1}{q}} \\ &= M \Biggl( \sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} - \sum_{m = 2}^{\infty} \frac{1}{m} O\biggl(\frac{1}{\ln ^{\lambda _{2} + \varepsilon + 1}m}\biggr) \Biggr)^{\frac{1}{p}} \Biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \sum_{m = 3}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr)^{\frac{1}{q}} \\ &> M \biggl( \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx - O(1) \biggr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx \biggr)^{\frac{1}{q}} \\ &> \frac{M}{\varepsilon} \bigl( \ln ^{ - \varepsilon} 2 - \varepsilon O(1) \bigr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2}\varepsilon + \ln ^{ - \varepsilon} 2 \biggr)^{\frac{1}{q}}. \end{aligned}$$
In view of (11) (for \(s = \lambda + 1 > 0\), \(s_{2} = \lambda _{2} - \frac{\varepsilon}{q} \in (0,2) \cap (0,\lambda )\)), we obtain
$$\begin{aligned} \tilde{I} = {}&\sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda = 1}mn} \biggl[\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m + C + O\biggl( \frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr)\biggr] \\ ={}& \frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}\sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggl[ \ln ^{(\lambda _{1} + 1 + \frac{\varepsilon}{q})}m\sum _{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}m}{(\ln mn)^{\lambda + 1}n} \Biggr] + \sum _{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{C\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda + 1}mn} \\ &{}+ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda + 1}mn} O\biggl( \frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \\ < {}&\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr)\sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} + \sum_{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln n)^{\lambda _{2} + 1}n}\sum_{m = 2}^{\infty} \frac{C}{(\ln m)^{\lambda _{1}}m} \\ &{}+ \sum_{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln n)^{\lambda _{2} + \frac{\varepsilon}{p} + 1}n} \sum_{m = 2}^{\infty} \frac{1}{(\ln m)^{\lambda _{1} - \frac{\varepsilon}{p}}m} O \biggl(\frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \\ ={}& \frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \Biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \sum _{m = 3}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr) + \sum _{n = 2}^{\infty} \frac{1}{(\ln n)^{\frac{\varepsilon}{q} + 2}n} \cdot \sum_{m = 2}^{\infty} \frac{C}{(\ln m)^{\lambda _{1}}m} \\ &{}+ \sum_{n = 2}^{\infty} \frac{1}{(\ln n)^{\varepsilon + 2}n} \cdot \sum_{m = 2}^{\infty} O \biggl( \frac{1}{m^{2}}\biggr) \\ < {}&\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx \biggr) + O_{1}(1) + O_{2}(1) \\ ={}& \frac{1}{\varepsilon (\lambda _{1} - \frac{\varepsilon}{p})}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \varepsilon \frac{\ln ^{ - \varepsilon - 1}2}{2} + \ln ^{ - \varepsilon} 2 \biggr) + O_{1}(1) + O_{2}(1). \end{aligned}$$
Then we have
$$\begin{aligned} &\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \varepsilon \frac{\ln ^{ - \varepsilon - 1}2}{2} + \ln ^{ - \varepsilon} 2 \biggr) + \varepsilon O_{1}(1) + \varepsilon O_{2}(1)\\ &\quad > \varepsilon \tilde{I} > M \bigl( \ln ^{ - \varepsilon} 2 - \varepsilon O(1) \bigr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2}\varepsilon + \ln ^{ - \varepsilon} 2 \biggr)^{\frac{1}{q}}. \end{aligned}$$
Setting \(\varepsilon \to 0^{ +} \), in view of the continuity of the Beta function, we obtain
$$ \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) = \frac{1}{\lambda _{1}}B(\lambda _{1} + 1,\lambda _{2}) \ge M. $$
Therefore, \(M = \frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) is the best value in (18).
This proves the theorem. □
Theorem 3
Assume that \(\lambda > 0\), \(\lambda _{1} \in (0,2] \cap (0,\lambda )\), \(\lambda _{2} \in (0,2) \cap (0,\lambda )\). If the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible, then for
$$ \lambda - \lambda _{1} - \lambda _{2} \in \bigl( - p \lambda _{1},p(\lambda - \lambda _{1})\bigr) \cap \bigl[q(2 - \lambda _{2}),p(2 - \lambda _{1}) \bigr], $$
(19)
we have \(\lambda _{1} + \lambda _{2} = \lambda \).
Proof
Since \(\hat{\lambda}_{1} = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} = \frac{\lambda - \lambda _{1} - \lambda _{2}}{p} + \lambda _{1}\), \(\hat{\lambda}_{2} = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p} = \frac{\lambda - \lambda _{1} - \lambda _{2}}{q} + \lambda _{2}\), we find \(\hat{\lambda}_{1} + \hat{\lambda}_{2} = \lambda \). In view of (19), for \(\lambda - \lambda _{1} - \lambda _{2} \in ( - p\lambda _{1},p(\lambda - \lambda _{1}))\), we have \(\hat{\lambda}_{1} \in (0,\lambda )\), \(\hat{\lambda}_{2} = \lambda - \hat{\lambda}_{1} \in (0,\lambda )\), and then \(B(\hat{\lambda}_{1},\hat{\lambda}_{2}) \in \mathrm{R}_{ +} \); for \(\lambda - \lambda _{1} - \lambda _{2} \le p(2 - \lambda _{1})\), we have \(\hat{\lambda}_{1} \le 2\); for \(\lambda - \lambda _{1} - \lambda _{2}\ \ge q(2 - \lambda _{2})\), we have \(\hat{\lambda}_{2} \le 2\). Then, for \(\lambda _{i} = \hat{\lambda}_{i}\) (\(i = 1,2\)) in (18), we still have
$$\begin{aligned} \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} >{}& \frac{1}{\lambda} B(\hat{\lambda}_{1},\hat{\lambda}_{2})\Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\hat{\lambda}_{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(20)
In view of the reverse Hölder’s inequality (cf. [30]), we find
$$\begin{aligned} B(\hat{\lambda}_{1},\hat{ \lambda}_{2}) &= k_{\lambda} \biggl(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q}\biggr) \\ &= \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} - 1}\,du = \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} \bigl( u^{\frac{\lambda - \lambda _{2} - 1}{p}} \bigr) \bigl( u^{\frac{\lambda _{1} - 1}{q}} \bigr)\,du \\ &\ge \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda - \lambda _{2} - 1}\,du \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda _{1} - 1}\,du \biggr]^{\frac{1}{q}} \\ &= \biggl[ \int _{0}^{\infty} \frac{1}{(1 + v)^{\lambda}} v^{\lambda _{2} - 1}\,dv \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda _{1} - 1}\,du \biggr]^{\frac{1}{q}} \\ &= \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}} \bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}}. \end{aligned}$$
(21)
If the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible, then, comparing with the constants in (17) and (20), we have
$$ \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}}\ge \frac{1}{\lambda} B(\hat{\lambda}_{1}, \hat{\lambda}_{2}) (\in \mathrm{R}_{ +}), $$
namely, \(B(\hat{\lambda}_{1},\hat{\lambda}_{2}) \le (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\), and then (21) attains the form of an equality.
Inequality (21) becomes an equality if and only if there exist constants A and B such that they are not both zero and (cf. [30]) \(Au^{\lambda - \lambda _{2} - 1} = Bu^{\lambda _{1} - 1}\) a.e. in \(\mathrm{R}_{ +} \). Supposing that \(A \ne 0\), we have \(u^{\lambda - \lambda _{2} - \lambda _{1}} = \frac{B}{A}\) a.e. in \(\mathrm{R}_{ +} \). It follows that \(\lambda - \lambda _{2} - \lambda _{1} = 0\), namely, \(\lambda _{1} + \lambda _{2} = \lambda \).
This proves the theorem. □

4 Equivalent forms and some particular inequalities

Theorem 4
The following reverse inequality equivalent to (17) is valid:
$$\begin{aligned} J&: = \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{p\hat{\lambda}_{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &> \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(22)
Particularly, for \(\lambda _{1} + \lambda _{2} = \lambda \), the following reverse inequality equivalent to (18) is valid:
$$\begin{aligned}& \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{p\lambda _{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\& \quad > \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(23)
Proof
Assuming that (23) is valid, by the reverse Hölder’s inequality, we have
$$ I = \sum_{n = 2}^{\infty} \Biggl[ \frac{\ln ^{ - \frac{1}{p} + \hat{\lambda}_{2}}n}{n^{\frac{1}{p}}}\sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr] \biggl( \frac{\ln ^{\frac{1}{p} - \hat{\lambda}_{2}}n}{n^{ - 1/p}}b_{n} \biggr) \ge J \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(24)
In view of (23), we have (17). Assuming that (17) is valid, we set
$$ b_{n}: = \frac{\ln ^{p\hat{\lambda}_{2} - 1}n}{n} \Biggl[ \sum _{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p - 1}, \quad n \in \mathrm{N}\backslash \{ 1\}. $$
Then we find
$$ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} = J^{p} = I. $$
(25)
If \(J = \infty \), then (23) is valid; if \(J = 0\), then it is impossible that makes (23) valid, namely, \(J > 0\). Assuming that \(0 < J < \infty \), by (17), it follows that
$$\begin{aligned}& J^{p} = I > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum _{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}J^{p - 1},\\& J > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
Hence, (23) is valid, which is equivalent to (17).
This proves the theorem. □
Theorem 5
Assume that \(\lambda _{1} \in (0,2) \cap (0,\lambda )\), \(\lambda _{2} \in (0,2] \cap (0,\lambda )\). If \(\lambda _{1} + \lambda _{2} = \lambda \), then the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (23) is the best possible. On the other hand, if the same constant in (23) is the best possible, then for \(\lambda - \lambda _{1} - \lambda _{2} \in [q(2 - \lambda _{2}),p(2 - \lambda _{1})]\), we have \(\lambda _{1} + \lambda _{2} = \lambda \).
Proof
We show that the constant \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) in (24) is the best possible. Otherwise, by (25) (for \(\lambda _{1} + \lambda _{2} = \lambda \)), we would reach a contradiction that the same constant in (18) is not the best possible.
On the other hand, if the constant in (23) is the best possible, then the same constant in (17) is also the best possible. Otherwise, by (26) (for \(\lambda _{1} + \lambda _{2} = \lambda \)), we would reach a contradiction that the same constant in (24) is not the best possible.
This proves the theorem. □
Remark 1
For \(\lambda \in (0,4)\), \(\lambda _{1} = \lambda _{2} = \frac{\lambda}{2}( < 2)\) in (18) and (24), we have the following equivalent forms with the best value \(\frac{1}{\lambda} B(\frac{\lambda}{ 2},\frac{\lambda}{2})\):
$$\begin{aligned}& \begin{aligned}[b] \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} >{}& \frac{1}{\lambda} B\biggl(\frac{\lambda}{2},\frac{\lambda}{ 2}\biggr) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda /2}m}\biggr)\biggr)\frac{\ln ^{p(1 - \frac{\lambda}{2}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \frac{\lambda}{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(26)
$$\begin{aligned}& \begin{aligned}[b] &\Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{p\lambda}{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}}\\ &\quad > \frac{1}{\lambda} B\biggl(\frac{\lambda}{ 2},\frac{\lambda}{2}\biggr) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda /2}m}\biggr)\biggr)\frac{\ln ^{p(1 - \frac{\lambda}{2}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
(27)
Particularly, for \(\lambda = 1\), we have the following equivalent inequalities with the best value π:
$$\begin{aligned}& \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{2}m} > \pi \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{1/2}m}\biggr)\biggr)\frac{\ln ^{ - \frac{p}{2} - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{q}{2} - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(28)
$$\begin{aligned}& \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{p}{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{2}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} > \pi \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{1/2}m}\biggr)\biggr)\frac{\ln ^{\frac{p}{2} - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(29)

5 Conclusions

In this article, by means of the techniques of analysis, applying the basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given in Theorem 1. The equivalent conditions of the best value related to parameters are obtained in Theorems 2 and 3. As applications, we deduce the equivalent forms in Theorems 4 and 5, and some new inequalities for particular parameters in Remark 1.

Acknowledgements

The authors thank the referees for useful comments which have improved this paper.

Declarations

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
2.
Zurück zum Zitat Krnić, M., Pečarić, J.: Extension of Hilbert’s inequality. J. Math. Anal. Appl. 324(1), 150–160 (2006) MathSciNetCrossRef Krnić, M., Pečarić, J.: Extension of Hilbert’s inequality. J. Math. Anal. Appl. 324(1), 150–160 (2006) MathSciNetCrossRef
3.
Zurück zum Zitat Yang, B.C.: On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145–152 (2001) MathSciNet Yang, B.C.: On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145–152 (2001) MathSciNet
4.
Zurück zum Zitat Adiyasuren, V., Batbold, T., Azar, L.E.: A new discrete Hilbert-type inequality involving partial sums. J. Inequal. Appl. 2019, 127 (2019) MathSciNetCrossRef Adiyasuren, V., Batbold, T., Azar, L.E.: A new discrete Hilbert-type inequality involving partial sums. J. Inequal. Appl. 2019, 127 (2019) MathSciNetCrossRef
5.
Zurück zum Zitat Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) CrossRef Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) CrossRef
6.
Zurück zum Zitat Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNet Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNet
7.
Zurück zum Zitat Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRef Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRef
8.
9.
Zurück zum Zitat He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 889–902 (2015) MathSciNetCrossRef He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 889–902 (2015) MathSciNetCrossRef
10.
Zurück zum Zitat Xu, J.S.: Hardy–Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007) MathSciNet Xu, J.S.: Hardy–Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007) MathSciNet
11.
Zurück zum Zitat Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree-2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013) MathSciNet Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree-2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013) MathSciNet
12.
Zurück zum Zitat Zeng, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014) Zeng, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)
13.
Zurück zum Zitat Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010) MathSciNet Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010) MathSciNet
14.
15.
Zurück zum Zitat Adiyasuren, V., Batbold, T., Krnić, M.: Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18, 111–124 (2015) MathSciNet Adiyasuren, V., Batbold, T., Krnić, M.: Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18, 111–124 (2015) MathSciNet
16.
Zurück zum Zitat Gu, Z.H., Yang, B.C.: An extended Hardy–Hilbert’s inequality with parameters and applications. J. Math. Inequal. 15(4), 1375–1389 (2021) MathSciNetCrossRef Gu, Z.H., Yang, B.C.: An extended Hardy–Hilbert’s inequality with parameters and applications. J. Math. Inequal. 15(4), 1375–1389 (2021) MathSciNetCrossRef
17.
Zurück zum Zitat Hong, Y., Wen, Y.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 37A(3), 329–336 (2016) MathSciNet Hong, Y., Wen, Y.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 37A(3), 329–336 (2016) MathSciNet
18.
Zurück zum Zitat Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017) Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017)
19.
Zurück zum Zitat Xin, D.M., Yang, B.C., Wang, A.Z.: Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, 2691816 (2018) MathSciNet Xin, D.M., Yang, B.C., Wang, A.Z.: Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, 2691816 (2018) MathSciNet
20.
Zurück zum Zitat He, B., Hong, Y., Li, Z.: Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous. J. Inequal. Appl. 2021, 64 (2021) CrossRef He, B., Hong, Y., Li, Z.: Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous. J. Inequal. Appl. 2021, 64 (2021) CrossRef
21.
Zurück zum Zitat Chen, Q., He, B., Hong, Y., Li, Z.: Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 7414861 (2020) MathSciNet Chen, Q., He, B., Hong, Y., Li, Z.: Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 7414861 (2020) MathSciNet
22.
Zurück zum Zitat He, B., Hong, Y., Chen, Q.: The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 19, 400–411 (2021) MathSciNetCrossRef He, B., Hong, Y., Chen, Q.: The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 19, 400–411 (2021) MathSciNetCrossRef
24.
Zurück zum Zitat Hong, Y.: Progress in the Study of Hilbert-Type Integral Inequalities from Homogeneous Kernels to Nonhomogeneous Kernels. J. Guangdong Univ. Educ. (2020) Hong, Y.: Progress in the Study of Hilbert-Type Integral Inequalities from Homogeneous Kernels to Nonhomogeneous Kernels. J. Guangdong Univ. Educ. (2020)
25.
Zurück zum Zitat Hong, Y., Chen, Q.: Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non-homogeneous kernels. J. South China Normal Univ. Natur. Sci. Ed. 52(5), 124–128 (2020) Hong, Y., Chen, Q.: Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non-homogeneous kernels. J. South China Normal Univ. Natur. Sci. Ed. 52(5), 124–128 (2020)
26.
Zurück zum Zitat Liao, J.Q., Wu, S.H., Yang, B.C.: A multi parameter Hardy–Hilbert-type inequality containing partial sums as the terms of series. J. Math. 2021, 5264623 (2021) CrossRef Liao, J.Q., Wu, S.H., Yang, B.C.: A multi parameter Hardy–Hilbert-type inequality containing partial sums as the terms of series. J. Math. 2021, 5264623 (2021) CrossRef
27.
Zurück zum Zitat You, M.H.: More accurate and strengthened forms of half-discrete Hilbert inequality. J. Math. Anal. Appl. 512(2), 126–141 (2022) MathSciNetCrossRef You, M.H.: More accurate and strengthened forms of half-discrete Hilbert inequality. J. Math. Anal. Appl. 512(2), 126–141 (2022) MathSciNetCrossRef
28.
Zurück zum Zitat You, M.H., Sun, X., Fan, X.S.: On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions. Open Math. 20(1), 544–559 (2022) MathSciNetCrossRef You, M.H., Sun, X., Fan, X.S.: On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions. Open Math. 20(1), 544–559 (2022) MathSciNetCrossRef
29.
Zurück zum Zitat Rassias, M.Th., Yang, B.C., Raigorodskii, A.: An equivalent form related to a Hilbert-type integral inequality. Axioms 12, 677 (2023) CrossRef Rassias, M.Th., Yang, B.C., Raigorodskii, A.: An equivalent form related to a Hilbert-type integral inequality. Axioms 12, 677 (2023) CrossRef
30.
Zurück zum Zitat Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2021) Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2021)
Metadaten
Titel
A new reverse Mulholland’s inequality with one partial sum in the kernel
verfasst von
Xianyong Huang
Ricai Luo
Bicheng Yang
Xingshou Huang
Publikationsdatum
01.12.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2024
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-024-03080-x

Weitere Artikel der Ausgabe 1/2024

Journal of Inequalities and Applications 1/2024 Zur Ausgabe

Premium Partner