Skip to main content
Erschienen in: Fire Technology 2/2024

30.07.2022

A Review of Fire-Extinguishing Agents and Fire Suppression Strategies for Lithium-Ion Batteries Fire

verfasst von: Lin Zhang, Kaiqiang Jin, Jinhua Sun, Qingsong Wang

Erschienen in: Fire Technology | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The susceptibility of LIBs to fire and explosion under extreme conditions has become a significant challenge for large-scale application of lithium-ion batteries (LIBs). However, the suppression effect of fire-extinguishing agent on LIBs fire is still far from being satisfactory attributed to special combustion characteristics of LIBs fire. This manuscript provides a comprehensive review on the origin and behavior of LIBs fire, and the selection of the typical fire-extinguishing agents for LIBs. Novel fire suppression strategies are also discussed. Several agents such as liquid nitrogen, dodecafluoro-2-methylpentan-3-one (C6F12O) and water-based fire-extinguishing agents possess better fire-extinguishing and cooling capabilities. Unfortunately, there are some shortcomings that restrict their application. The ideal fire-extinguishing agents for LIBs should be both highly thermally conductive, highly electrically insulating, highly efficient in extinguishing LIBs fire, cheap, non-toxic, residue-free and toxic gases-absorbing. Some perspectives and outlooks are given that the combination of ideal fire-extinguishing agent and novel fire-extinguishing strategy can insure a high level of safety for present and future LIB-based technologies.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater 31:195–220CrossRef Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater 31:195–220CrossRef
2.
Zurück zum Zitat Chen JM (2021) Carbon neutrality: toward a sustainable future. The Innovation 2:100127CrossRef Chen JM (2021) Carbon neutrality: toward a sustainable future. The Innovation 2:100127CrossRef
3.
Zurück zum Zitat Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). J Power Sour 260:50–56CrossRef Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). J Power Sour 260:50–56CrossRef
4.
Zurück zum Zitat Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sour 285:80–89CrossRef Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sour 285:80–89CrossRef
5.
Zurück zum Zitat Dubarry M, Devie A (2018) Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging. J Energy Storage 18:185–195CrossRef Dubarry M, Devie A (2018) Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging. J Energy Storage 18:185–195CrossRef
6.
Zurück zum Zitat Chen M, Dongxu O, Liu J, Wang J (2019) Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng 157:113750CrossRef Chen M, Dongxu O, Liu J, Wang J (2019) Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng 157:113750CrossRef
7.
Zurück zum Zitat Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192:99–107 Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192:99–107
8.
Zurück zum Zitat Ren D, Feng X, Lu L, He X, Ouyang M (2019) Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl Energy 250:323–332CrossRef Ren D, Feng X, Lu L, He X, Ouyang M (2019) Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl Energy 250:323–332CrossRef
9.
Zurück zum Zitat Ping P, Kong D, Zhang J, Wen R, Wen J (2018) Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating. J Power Sourc 398:55–66CrossRef Ping P, Kong D, Zhang J, Wen R, Wen J (2018) Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating. J Power Sourc 398:55–66CrossRef
10.
Zurück zum Zitat Zhang L, Zhao C, Liu Y, Xu J, Sun J, Wang Q (2021) Electrochemical performance and thermal stability of lithium ion batteries after immersion. Corros Sci 184:109384CrossRef Zhang L, Zhao C, Liu Y, Xu J, Sun J, Wang Q (2021) Electrochemical performance and thermal stability of lithium ion batteries after immersion. Corros Sci 184:109384CrossRef
11.
Zurück zum Zitat García A, Monsalve-Serrano J, Lago Sari R, Martinez-Boggio S (2021) An optical investigation of thermal runway phenomenon under thermal abuse conditions. Energy Convers Manag 246:114663CrossRef García A, Monsalve-Serrano J, Lago Sari R, Martinez-Boggio S (2021) An optical investigation of thermal runway phenomenon under thermal abuse conditions. Energy Convers Manag 246:114663CrossRef
12.
Zurück zum Zitat Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sourc 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sourc 208:210–224CrossRef
13.
Zurück zum Zitat Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330CrossRef Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330CrossRef
14.
Zurück zum Zitat Jiang K, Liao G, Jiaqiang E, Zhang F, Chen J, Leng E (2020) Thermal management technology of power lithium-ion batteries based on the phase transition of materials: a review. J Energy Storage 32:101816CrossRef Jiang K, Liao G, Jiaqiang E, Zhang F, Chen J, Leng E (2020) Thermal management technology of power lithium-ion batteries based on the phase transition of materials: a review. J Energy Storage 32:101816CrossRef
15.
Zurück zum Zitat Wang M, Teng S, Xi H, Li Y (2021) Cooling performance optimization of air-cooled battery thermal management system. Appl Therm Eng 195:117242CrossRef Wang M, Teng S, Xi H, Li Y (2021) Cooling performance optimization of air-cooled battery thermal management system. Appl Therm Eng 195:117242CrossRef
16.
Zurück zum Zitat Zeng Z, Wu B, Xiao L, Jiang X, Chen Y, Ai X, Yang H, Cao Y (2015) Safer lithium ion batteries based on nonflammable electrolyte. J Power Sourc 279:6–12CrossRef Zeng Z, Wu B, Xiao L, Jiang X, Chen Y, Ai X, Yang H, Cao Y (2015) Safer lithium ion batteries based on nonflammable electrolyte. J Power Sourc 279:6–12CrossRef
17.
Zurück zum Zitat Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114CrossRef Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114CrossRef
18.
Zurück zum Zitat Shi C, Peng Z, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sourc 270:547–553CrossRef Shi C, Peng Z, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sourc 270:547–553CrossRef
19.
Zurück zum Zitat Qin P, Sun J, Yang X, Wang Q (2021) Battery thermal management system based on the forced-air convection: a review. eTransportation 7:100097CrossRef Qin P, Sun J, Yang X, Wang Q (2021) Battery thermal management system based on the forced-air convection: a review. eTransportation 7:100097CrossRef
20.
Zurück zum Zitat Xu B, Lee J, Kwon D, Kong L, Pecht M (2021) Mitigation strategies for Li-ion battery thermal runaway: a review. Renew Sustain Energy Rev 150:111437CrossRef Xu B, Lee J, Kwon D, Kong L, Pecht M (2021) Mitigation strategies for Li-ion battery thermal runaway: a review. Renew Sustain Energy Rev 150:111437CrossRef
21.
Zurück zum Zitat Li H, Duan Q, Zhao C, Huang Z, Wang Q (2019) Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater 375:241–254CrossRef Li H, Duan Q, Zhao C, Huang Z, Wang Q (2019) Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater 375:241–254CrossRef
22.
Zurück zum Zitat Yan W, Wang Z, Chen S (2021) Quantitative analysis on the heat transfer modes in the process of thermal runaway propagation in lithium-ion battery pack under codnfined and semi-confined space. Int J Heat Mass Transf 176:121483CrossRef Yan W, Wang Z, Chen S (2021) Quantitative analysis on the heat transfer modes in the process of thermal runaway propagation in lithium-ion battery pack under codnfined and semi-confined space. Int J Heat Mass Transf 176:121483CrossRef
23.
Zurück zum Zitat Huang Z, Liu J, Zhai H, Wang Q (2021) Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233:121103CrossRef Huang Z, Liu J, Zhai H, Wang Q (2021) Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233:121103CrossRef
24.
Zurück zum Zitat Wang Q, Shao G, Duan Q, Chen M, Li Y, Wu K, Liu B, Peng P, Sun J (2015) The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol 52:387–396CrossRef Wang Q, Shao G, Duan Q, Chen M, Li Y, Wu K, Liu B, Peng P, Sun J (2015) The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol 52:387–396CrossRef
25.
Zurück zum Zitat Blum A, Long RT (2015) Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passeng Cars Mech Syst 8:565–572CrossRef Blum A, Long RT (2015) Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passeng Cars Mech Syst 8:565–572CrossRef
26.
Zurück zum Zitat Stec AA (2017) Fire toxicity—the elephant in the room? Fire Saf J 91:79–90CrossRef Stec AA (2017) Fire toxicity—the elephant in the room? Fire Saf J 91:79–90CrossRef
27.
Zurück zum Zitat Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642CrossRef
28.
Zurück zum Zitat Larsson F, Andersson P, Blomqvist P, Mellander BEJSR (2017) Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep 7:1CrossRef Larsson F, Andersson P, Blomqvist P, Mellander BEJSR (2017) Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep 7:1CrossRef
29.
Zurück zum Zitat Huang Z, Zhao C, Li H, Peng W, Zhang Z, Wang Q (2020) Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy 205:117906CrossRef Huang Z, Zhao C, Li H, Peng W, Zhang Z, Wang Q (2020) Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy 205:117906CrossRef
30.
Zurück zum Zitat Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E (2014) Characteristics of lithium-ion batteries during fire tests. J Power Sourc 271:414–420CrossRef Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E (2014) Characteristics of lithium-ion batteries during fire tests. J Power Sourc 271:414–420CrossRef
31.
Zurück zum Zitat Liu Y, Yang K, Zhang M, Li S, Gao F, Duan Q, Sun J, Wang Q (2022) The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. J Energy Chem 65:532–540CrossRef Liu Y, Yang K, Zhang M, Li S, Gao F, Duan Q, Sun J, Wang Q (2022) The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. J Energy Chem 65:532–540CrossRef
32.
Zurück zum Zitat Zhang L, Duan Q, Meng X, Jin K, Xu J, Sun J, Wang Q (2022) Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Convers Manag 252:115091CrossRef Zhang L, Duan Q, Meng X, Jin K, Xu J, Sun J, Wang Q (2022) Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Convers Manag 252:115091CrossRef
33.
Zurück zum Zitat Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131CrossRef Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131CrossRef
34.
Zurück zum Zitat Yuan S, Chang C, Yan S, Zhou P, Qian X, Yuan M, Liu K (2021) A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J Energy Chem 62:262–280CrossRef Yuan S, Chang C, Yan S, Zhou P, Qian X, Yuan M, Liu K (2021) A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J Energy Chem 62:262–280CrossRef
35.
Zurück zum Zitat Sun J, Mao B, Wang Q (2021) Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf J 120:103119CrossRef Sun J, Mao B, Wang Q (2021) Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf J 120:103119CrossRef
36.
Zurück zum Zitat Liu T, Liu Y, Wang X, Kong X, Li G (2019) Cooling control of thermally-induced thermal runaway in 18,650 lithium ion battery with water mist. Energy Convers Manag 199:111969CrossRef Liu T, Liu Y, Wang X, Kong X, Li G (2019) Cooling control of thermally-induced thermal runaway in 18,650 lithium ion battery with water mist. Energy Convers Manag 199:111969CrossRef
37.
Zurück zum Zitat Wang Q, Sun J, Chu G (2005) Lithium ion battery fire and explosion. Fire Saf Sci 8:375–382CrossRef Wang Q, Sun J, Chu G (2005) Lithium ion battery fire and explosion. Fire Saf Sci 8:375–382CrossRef
38.
Zurück zum Zitat Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sourc 155:401–414CrossRef Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sourc 155:401–414CrossRef
39.
Zurück zum Zitat Kong LL, Li C, Jiang J, Pecht MG (2018) Li-ion battery fire hazards and safety strategies. Energies 11:2191CrossRef Kong LL, Li C, Jiang J, Pecht MG (2018) Li-ion battery fire hazards and safety strategies. Energies 11:2191CrossRef
40.
Zurück zum Zitat Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Exp Fuel Energy Abstr 41:2068–2077 Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Exp Fuel Energy Abstr 41:2068–2077
41.
Zurück zum Zitat Venugopal G (2001) Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sourc 101:231–237CrossRef Venugopal G (2001) Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sourc 101:231–237CrossRef
42.
Zurück zum Zitat Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sourc 255:294–301CrossRef Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sourc 255:294–301CrossRef
43.
Zurück zum Zitat Ping P, Wang Q, Huang P, Sun J, Chen C (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273CrossRef Ping P, Wang Q, Huang P, Sun J, Chen C (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273CrossRef
44.
Zurück zum Zitat Mao B, Chen H, Cui Z, Wu T, Wang Q (2018) Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transf 122:1103–1115CrossRef Mao B, Chen H, Cui Z, Wu T, Wang Q (2018) Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transf 122:1103–1115CrossRef
45.
Zurück zum Zitat Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, Prasser SJAE (2015) Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy 154:74–91CrossRef Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, Prasser SJAE (2015) Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy 154:74–91CrossRef
46.
Zurück zum Zitat Wang H, Tang A, Huang K (2011) Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem 29:1583–1588CrossRef Wang H, Tang A, Huang K (2011) Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem 29:1583–1588CrossRef
47.
Zurück zum Zitat Essl C, Golubkov AW, Fuchs AJJOTES (2020) Comparing different thermal runaway triggers for two automotive lithium-ion battery cell types. J Electrochem Soc 167:130542CrossRef Essl C, Golubkov AW, Fuchs AJJOTES (2020) Comparing different thermal runaway triggers for two automotive lithium-ion battery cell types. J Electrochem Soc 167:130542CrossRef
48.
Zurück zum Zitat Röder P, Baba N, Wiemhöfer HD (2014) A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry. J Power Sourc 248:978–987CrossRef Röder P, Baba N, Wiemhöfer HD (2014) A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry. J Power Sourc 248:978–987CrossRef
49.
Zurück zum Zitat MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes. J Electrochem Soc 148:A1205–A1210CrossRef MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes. J Electrochem Soc 148:A1205–A1210CrossRef
50.
Zurück zum Zitat Qin P, Sun J, Wang Q (2021) A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway. J Power Sourc 486:229357CrossRef Qin P, Sun J, Wang Q (2021) A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway. J Power Sourc 486:229357CrossRef
51.
Zurück zum Zitat Liu T, Tao C, Wang X (2020) Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl Energy 267:115087CrossRef Liu T, Tao C, Wang X (2020) Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl Energy 267:115087CrossRef
52.
Zurück zum Zitat Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, Seifert H (2017) Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter. Batteries 3:14CrossRef Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, Seifert H (2017) Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter. Batteries 3:14CrossRef
53.
Zurück zum Zitat Zhong G, Mao B, Chao W, Lin J, Xu K, Sun J et al (2019) Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim 135:2879–2889CrossRef Zhong G, Mao B, Chao W, Lin J, Xu K, Sun J et al (2019) Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim 135:2879–2889CrossRef
54.
Zurück zum Zitat Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q (2021) Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng 192:116949CrossRef Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q (2021) Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng 192:116949CrossRef
55.
Zurück zum Zitat Russo P, Di Barib C, Mazzaroc M, De Rosac A, Morriellod I (2018) Effective fire extinguishing systems for lithium-ion battery, chemical. Eng Trans 67:727–732 Russo P, Di Barib C, Mazzaroc M, De Rosac A, Morriellod I (2018) Effective fire extinguishing systems for lithium-ion battery, chemical. Eng Trans 67:727–732
56.
Zurück zum Zitat Huang P, Wang Q, Li K, Ping P, Sun J (2015) The combustion behavior of large scale lithium titanate battery. Sci Rep 5:1–12 Huang P, Wang Q, Li K, Ping P, Sun J (2015) The combustion behavior of large scale lithium titanate battery. Sci Rep 5:1–12
58.
Zurück zum Zitat Babrauskas V, Peacock RD (1992) Heat release rate: The single most important variable in fire hazard. Fire Saf J 18:255–272CrossRef Babrauskas V, Peacock RD (1992) Heat release rate: The single most important variable in fire hazard. Fire Saf J 18:255–272CrossRef
59.
Zurück zum Zitat Mao B, Liu C, Yang K, Li S, Liu P, Zhang M, Meng X, Gao F, Duan Q, Wang Q, Sun J (2021) Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode. Renew Sustain Energy Rev 139:110717CrossRef Mao B, Liu C, Yang K, Li S, Liu P, Zhang M, Meng X, Gao F, Duan Q, Wang Q, Sun J (2021) Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode. Renew Sustain Energy Rev 139:110717CrossRef
60.
Zurück zum Zitat Zhang L, Li Y, Duan Q, Chen M, Xu J, Zhao C, Sun J, Wang Q (2020) Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J Energy Storage 32:101801CrossRef Zhang L, Li Y, Duan Q, Chen M, Xu J, Zhao C, Sun J, Wang Q (2020) Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J Energy Storage 32:101801CrossRef
61.
Zurück zum Zitat Peng Y, Yang L, Ju X, Liao B, Ye K, Li L, Cao B, Ni Y (2020) A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater 381:120916CrossRef Peng Y, Yang L, Ju X, Liao B, Ye K, Li L, Cao B, Ni Y (2020) A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater 381:120916CrossRef
62.
Zurück zum Zitat Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5:5271–5280CrossRef Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5:5271–5280CrossRef
63.
Zurück zum Zitat Al-Hallaj S, Selman JR (2002) Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sourc 110:341–348CrossRef Al-Hallaj S, Selman JR (2002) Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sourc 110:341–348CrossRef
64.
Zurück zum Zitat Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sourc 275:261–273CrossRef Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sourc 275:261–273CrossRef
65.
Zurück zum Zitat Larsson F, Bertilsson S, Furlani M, Albinsson I, Mellander BEJJOPS (2018) Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sourc 373:220–231CrossRef Larsson F, Bertilsson S, Furlani M, Albinsson I, Mellander BEJJOPS (2018) Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sourc 373:220–231CrossRef
66.
Zurück zum Zitat Larsson F, Mellander BE (2017) Lithium-ion batteries used in electrified vehicles—general risk assessment and construction guidelines from a fire and gas release perspective. RISE Research Institutes of Sweden, p. 41. Larsson F, Mellander BE (2017) Lithium-ion batteries used in electrified vehicles—general risk assessment and construction guidelines from a fire and gas release perspective. RISE Research Institutes of Sweden, p. 41.
67.
Zurück zum Zitat Zhang Q, Niu J, Zhao Z, Wang Q (2022) Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage 45:103759CrossRef Zhang Q, Niu J, Zhao Z, Wang Q (2022) Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage 45:103759CrossRef
69.
Zurück zum Zitat Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319CrossRef Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319CrossRef
70.
Zurück zum Zitat Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G (2016) Scenario-based prediction of Li-ion batteries fire-induced toxicity. J Power Sourc 316:197–206CrossRef Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G (2016) Scenario-based prediction of Li-ion batteries fire-induced toxicity. J Power Sourc 316:197–206CrossRef
71.
Zurück zum Zitat Kuligowski ED (2009) Compilation of data on the sublethal effects of fire effluent. NIST Tech Note 1644:18 Kuligowski ED (2009) Compilation of data on the sublethal effects of fire effluent. NIST Tech Note 1644:18
72.
Zurück zum Zitat Kawamura T, Okada S, Yamaki J-I (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sourc 156:547–554CrossRef Kawamura T, Okada S, Yamaki J-I (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sourc 156:547–554CrossRef
73.
Zurück zum Zitat Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sourc 161:573–579CrossRef Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sourc 161:573–579CrossRef
74.
Zurück zum Zitat ISO 13571 (2012) Life-threatening components of fire-Guidelines for the estimation of time to compromised tenability in fires, IX-ISO, 2–23. ISO 13571 (2012) Life-threatening components of fire-Guidelines for the estimation of time to compromised tenability in fires, IX-ISO, 2–23.
75.
Zurück zum Zitat Zhang L, Duan Q, Liu Y, Xu J, Sun J, Xiao H, Wang Q (2021) Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf J 120:103117CrossRef Zhang L, Duan Q, Liu Y, Xu J, Sun J, Xiao H, Wang Q (2021) Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf J 120:103117CrossRef
76.
Zurück zum Zitat Wang Q, Li K, Wang Y, Chen H, Duan Q, Sun J (2018) The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire. J Electrochem Energy Convers Storage 15:041001CrossRef Wang Q, Li K, Wang Y, Chen H, Duan Q, Sun J (2018) The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire. J Electrochem Energy Convers Storage 15:041001CrossRef
77.
Zurück zum Zitat Liu Y, Duan Q, Li K, Chen H, Wang Q (2018) Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents. Energy Storage Sci Technol 7:1105–1112 Liu Y, Duan Q, Li K, Chen H, Wang Q (2018) Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents. Energy Storage Sci Technol 7:1105–1112
78.
Zurück zum Zitat Xu J, Guo P, Duan Q, Yu X, Zhang L, Liu Y, Wang Q (2020) Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires. Appl Therm Eng 171:115076CrossRef Xu J, Guo P, Duan Q, Yu X, Zhang L, Liu Y, Wang Q (2020) Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires. Appl Therm Eng 171:115076CrossRef
79.
Zurück zum Zitat Said AO, Stoliarov SI (2021) Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent. Fire Saf J 121:103296CrossRef Said AO, Stoliarov SI (2021) Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent. Fire Saf J 121:103296CrossRef
80.
Zurück zum Zitat Liu Y, Duan Q, Xu J, Chen H, Lu W, Wang Q (2018) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. RSC Adv 8:42223–42232CrossRef Liu Y, Duan Q, Xu J, Chen H, Lu W, Wang Q (2018) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. RSC Adv 8:42223–42232CrossRef
81.
Zurück zum Zitat Huang Z, Liu P, Duan Q, Zhao C, Wang Q (2021) Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J Power Sourc 495:229795CrossRef Huang Z, Liu P, Duan Q, Zhao C, Wang Q (2021) Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J Power Sourc 495:229795CrossRef
82.
Zurück zum Zitat Zhang X, Zhang KJ, Wang HJ et al (2021) Research on fire protection system technology for lithium battery based on liquid nitrogen fire extinguishing. Distrib Utilization 38:32–39MathSciNet Zhang X, Zhang KJ, Wang HJ et al (2021) Research on fire protection system technology for lithium battery based on liquid nitrogen fire extinguishing. Distrib Utilization 38:32–39MathSciNet
83.
Zurück zum Zitat Edison C (2017) Considerations for ESS fire safety. DNV GL, Oslo, Norway Edison C (2017) Considerations for ESS fire safety. DNV GL, Oslo, Norway
84.
Zurück zum Zitat Rao H, Lou X-F, Liu An, Wang Z-H et al (2021) Study on comparative fire extinguishing tests between ternary lithium battery cabin and lithium iron phosphate battery cabin of electric ships. Fire Sci Technol 40:433–437 Rao H, Lou X-F, Liu An, Wang Z-H et al (2021) Study on comparative fire extinguishing tests between ternary lithium battery cabin and lithium iron phosphate battery cabin of electric ships. Fire Sci Technol 40:433–437
85.
Zurück zum Zitat Saito N, Ogawa Y, Saso Y, Liao C, Sakei R (1996) Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2 and their mixtures for hydrocarbon fuels. Fire Saf J 27:185–200CrossRef Saito N, Ogawa Y, Saso Y, Liao C, Sakei R (1996) Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2 and their mixtures for hydrocarbon fuels. Fire Saf J 27:185–200CrossRef
86.
Zurück zum Zitat Li Y, Yu D, Zhang S, Hu Q, Liu X, Wang J (2015) On the fire extinguishing tests of typical lithium ion battery. J Saf Environ 15:120–125 Li Y, Yu D, Zhang S, Hu Q, Liu X, Wang J (2015) On the fire extinguishing tests of typical lithium ion battery. J Saf Environ 15:120–125
87.
Zurück zum Zitat Robin ML (1998) Suppression of class a fires with HFC-227ea. Process Saf Prog 17:209–212CrossRef Robin ML (1998) Suppression of class a fires with HFC-227ea. Process Saf Prog 17:209–212CrossRef
88.
Zurück zum Zitat Hynes RG, Mackie JC, Masri AR (1999) Sample probe measurements on a hydrogen-ethane-air-2-H-heptafluoropropane flame. Energy Fuels 13:485–492CrossRef Hynes RG, Mackie JC, Masri AR (1999) Sample probe measurements on a hydrogen-ethane-air-2-H-heptafluoropropane flame. Energy Fuels 13:485–492CrossRef
89.
Zurück zum Zitat Hynes RG, Mackie JC, Masri AR (1998) Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane. Combust Flame 113:554–565CrossRef Hynes RG, Mackie JC, Masri AR (1998) Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane. Combust Flame 113:554–565CrossRef
90.
Zurück zum Zitat Si RJ, Liu DQ, Xue SQ (2018) Experimental study on fire and explosion suppression of self-ignition of lithium ion battery. Procedia Eng 211:629–634CrossRef Si RJ, Liu DQ, Xue SQ (2018) Experimental study on fire and explosion suppression of self-ignition of lithium ion battery. Procedia Eng 211:629–634CrossRef
91.
Zurück zum Zitat Pagliaro JL, Linteris GT (2017) Hydrocarbon flame inhibition by C6F12O (Novec 1230): unstretched burning velocity measurements and predictions. Fire Saf J 87:10–17CrossRef Pagliaro JL, Linteris GT (2017) Hydrocarbon flame inhibition by C6F12O (Novec 1230): unstretched burning velocity measurements and predictions. Fire Saf J 87:10–17CrossRef
92.
Zurück zum Zitat Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34:289–304CrossRef Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34:289–304CrossRef
93.
Zurück zum Zitat Liu Y, Duan Q, Xu J, Li H, Sun J, Wang Q (2020) Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J Energy Storage 28:101185CrossRef Liu Y, Duan Q, Xu J, Li H, Sun J, Wang Q (2020) Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J Energy Storage 28:101185CrossRef
94.
Zurück zum Zitat L. Zhang, Yongqi Li, Qingsong Wang et al. (2022) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing large-scale battery module fire. Fire Technol. under review. L. Zhang, Yongqi Li, Qingsong Wang et al. (2022) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing large-scale battery module fire. Fire Technol. under review.
95.
Zurück zum Zitat Huang Q, Tao FB, Liu Y et al (2020) Study on performance of gas-liquid extinguishing agent for lithium iron phosphate battery modules. China Saf Sci J 30:53–59 Huang Q, Tao FB, Liu Y et al (2020) Study on performance of gas-liquid extinguishing agent for lithium iron phosphate battery modules. China Saf Sci J 30:53–59
96.
Zurück zum Zitat He YS, JJ. S, HB. Wang, (2019) Study on extinguishing 21700 lithium battery fire with different new clean gas extinguishing agents under low pressure. J Saf Sci Technol 15:53–58 He YS, JJ. S, HB. Wang, (2019) Study on extinguishing 21700 lithium battery fire with different new clean gas extinguishing agents under low pressure. J Saf Sci Technol 15:53–58
97.
Zurück zum Zitat Sehmbey MS, Chow LC, Hahn OJ, Pais MR, Transfer H (1995) Effect of spray characteristics on spray cooling with liquid nitrogen. J Thermophys Heat Transfer 9:757–765CrossRef Sehmbey MS, Chow LC, Hahn OJ, Pais MR, Transfer H (1995) Effect of spray characteristics on spray cooling with liquid nitrogen. J Thermophys Heat Transfer 9:757–765CrossRef
98.
Zurück zum Zitat Kumari C, Kumar A, Sarangi SK, Thirugnanam AJ (2018) An experimental and numerical study on liquid nitrogen spray cooling for cryotherapy. Cryobiology 80:179CrossRef Kumari C, Kumar A, Sarangi SK, Thirugnanam AJ (2018) An experimental and numerical study on liquid nitrogen spray cooling for cryotherapy. Cryobiology 80:179CrossRef
99.
Zurück zum Zitat Huaxiang L, Guowei Z, Boyan J, Guoqing Z, Dong G, Peng Z (2020) Research on extinguishing characteristics of liquid nitrogen in urban underground utility tunnel. China Saf Sci J 30:143 Huaxiang L, Guowei Z, Boyan J, Guoqing Z, Dong G, Peng Z (2020) Research on extinguishing characteristics of liquid nitrogen in urban underground utility tunnel. China Saf Sci J 30:143
100.
Zurück zum Zitat Shi GQ, Ding PX, Guo Z, Wang YM (2019) Modeling temperature distribution upon liquid-nitrogen injection into a self-heating coal mine goaf. Process Saf Environ Prot 126:278–286CrossRef Shi GQ, Ding PX, Guo Z, Wang YM (2019) Modeling temperature distribution upon liquid-nitrogen injection into a self-heating coal mine goaf. Process Saf Environ Prot 126:278–286CrossRef
101.
Zurück zum Zitat Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812CrossRef Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812CrossRef
102.
Zurück zum Zitat Zhu CG, Lü C, Wang J (2012) Evaluation of aerosol fire extinguishing agent using a simple diffusion model. Math Probl Eng 2012:587–612CrossRef Zhu CG, Lü C, Wang J (2012) Evaluation of aerosol fire extinguishing agent using a simple diffusion model. Math Probl Eng 2012:587–612CrossRef
103.
Zurück zum Zitat Yan Y, Han Z, Du Z, Zhao L, Cong X (2017) New type pyrotechnically generated aerosol extinguishing agents containing phosphorus. J Clean Prod 154:151–158CrossRef Yan Y, Han Z, Du Z, Zhao L, Cong X (2017) New type pyrotechnically generated aerosol extinguishing agents containing phosphorus. J Clean Prod 154:151–158CrossRef
104.
Zurück zum Zitat Senecal JA (1992) Halon replacement: the law and the options. Plant/Operations Prog 11:182–186CrossRef Senecal JA (1992) Halon replacement: the law and the options. Plant/Operations Prog 11:182–186CrossRef
105.
Zurück zum Zitat Egelhaaf M, Kress D, Wolpert D, Lange T, Justen R, Wilstermann H (2013) Fire fighting of Li-ion traction batteries. SAE Int J Altern Powertrains 2:37–48CrossRef Egelhaaf M, Kress D, Wolpert D, Lange T, Justen R, Wilstermann H (2013) Fire fighting of Li-ion traction batteries. SAE Int J Altern Powertrains 2:37–48CrossRef
106.
Zurück zum Zitat Andersson P, Arvidson M, Evegren F, Jandali M, Larsson F, Rosengren M (2018) Lion fire: extinguishment and mitigation of fires in Li-ion batteries at sea, RISE Report 77. Andersson P, Arvidson M, Evegren F, Jandali M, Larsson F, Rosengren M (2018) Lion fire: extinguishment and mitigation of fires in Li-ion batteries at sea, RISE Report 77.
107.
Zurück zum Zitat Ditch B, De Vries J (2013) Flammability characterization of lithium-ion batteries in bulk storage, FM Global, London, England. Ditch B, De Vries J (2013) Flammability characterization of lithium-ion batteries in bulk storage, FM Global, London, England.
109.
Zurück zum Zitat Zhou Y, Wang Z, Gao H, Wan X, Qiu H, Zhang J, Di J (2021) Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithium-ion batteries. J Therm Anal Calorim 147(3):2171–2185CrossRef Zhou Y, Wang Z, Gao H, Wan X, Qiu H, Zhang J, Di J (2021) Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithium-ion batteries. J Therm Anal Calorim 147(3):2171–2185CrossRef
110.
Zurück zum Zitat Luo W-T, Zhu S-B, Gong J-H, Zhou Z (2018) Research and development of fire extinguishing technology for power lithium batteries. Procedia Eng 211:531–537CrossRef Luo W-T, Zhu S-B, Gong J-H, Zhou Z (2018) Research and development of fire extinguishing technology for power lithium batteries. Procedia Eng 211:531–537CrossRef
112.
Zurück zum Zitat Xu C, Ouyang M, Lu L et al (2017) Preliminary study on the mechanism of lithium ion battery pack under water immersion. ECS Trans 77:209CrossRef Xu C, Ouyang M, Lu L et al (2017) Preliminary study on the mechanism of lithium ion battery pack under water immersion. ECS Trans 77:209CrossRef
113.
Zurück zum Zitat Bisschop R, Willstrand O, Rosengren M (2020) Handling lithium-ion batteries in electric vehicles: preventing and recovering from hazardous events. Fire Technol 56:2671–2694CrossRef Bisschop R, Willstrand O, Rosengren M (2020) Handling lithium-ion batteries in electric vehicles: preventing and recovering from hazardous events. Fire Technol 56:2671–2694CrossRef
114.
Zurück zum Zitat Cablé A, Chetehouna K, Gascoin N, Settar A, Van Herpe K, Kadoche M (2019) Experimental and numerical study of sprinkler fire protection systems: effect of initial pressure on system performance. J Loss Prev Process Ind 60:76–86CrossRef Cablé A, Chetehouna K, Gascoin N, Settar A, Van Herpe K, Kadoche M (2019) Experimental and numerical study of sprinkler fire protection systems: effect of initial pressure on system performance. J Loss Prev Process Ind 60:76–86CrossRef
115.
Zurück zum Zitat NFPA 750 N (2003) Standard on water mist fire protection systems. National Fire Protection Association, Edition. NFPA 750 N (2003) Standard on water mist fire protection systems. National Fire Protection Association, Edition.
116.
Zurück zum Zitat Mawhinney JR, Richardson JK (1997) A review of water mist fire suppression research and development. Fire Technol 1996(33):54–90CrossRef Mawhinney JR, Richardson JK (1997) A review of water mist fire suppression research and development. Fire Technol 1996(33):54–90CrossRef
117.
Zurück zum Zitat Santangelo PE (2010) Characterization of high-pressure water-mist sprays: experimental analysis of droplet size and dispersion. Exp Therm Fluid Sci 34:1353–1366CrossRef Santangelo PE (2010) Characterization of high-pressure water-mist sprays: experimental analysis of droplet size and dispersion. Exp Therm Fluid Sci 34:1353–1366CrossRef
118.
Zurück zum Zitat Zhang Q, Cao W, Bai W (2017) Experimental study on inhibition of water mist on thermal runaway of lithium ion battery. Fire Saf Sci 26:239–243 Zhang Q, Cao W, Bai W (2017) Experimental study on inhibition of water mist on thermal runaway of lithium ion battery. Fire Saf Sci 26:239–243
119.
Zurück zum Zitat Xu J, Duan Q, Zhang L, Liu Y, Zhao C, Wang Q (2022) Experimental study of the cooling effect of water mist on 18650 lithium-ion battery at different initial temperatures. Process Saf Environ Prot 157:156–166CrossRef Xu J, Duan Q, Zhang L, Liu Y, Zhao C, Wang Q (2022) Experimental study of the cooling effect of water mist on 18650 lithium-ion battery at different initial temperatures. Process Saf Environ Prot 157:156–166CrossRef
120.
Zurück zum Zitat Li G, Wu JY, Zheng H, Wang TH, Lu HF, Jin Y (2021) Fire extinguishing effect of water mist with different pressures on LFP battery module. High Voltage Eng 47:1002–1011 Li G, Wu JY, Zheng H, Wang TH, Lu HF, Jin Y (2021) Fire extinguishing effect of water mist with different pressures on LFP battery module. High Voltage Eng 47:1002–1011
121.
Zurück zum Zitat Zhao LT, Jin Y, Zhao ZX, Sun L, Guo DL, Liu Y (2021) Thermal runaway characteristics of lithium iron phosphate battery modules under overcharge and water mist fire extinguishing effect. Electric Power Eng Technol 40:195–207 Zhao LT, Jin Y, Zhao ZX, Sun L, Guo DL, Liu Y (2021) Thermal runaway characteristics of lithium iron phosphate battery modules under overcharge and water mist fire extinguishing effect. Electric Power Eng Technol 40:195–207
122.
Zurück zum Zitat Cui Y, Liu J (2021) Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf Environ Prot 149:559–574CrossRef Cui Y, Liu J (2021) Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf Environ Prot 149:559–574CrossRef
123.
Zurück zum Zitat Zhang Y, Zhu S, Zhuang W (2021) Test and research on suppressing fire of lithium-ion battery with water mist containing additive. J Phys: Conf Ser 1827:012042 Zhang Y, Zhu S, Zhuang W (2021) Test and research on suppressing fire of lithium-ion battery with water mist containing additive. J Phys: Conf Ser 1827:012042
124.
Zurück zum Zitat Zhu M-X, Zhu S-B, Gong J-H, Zhou Z (2018) Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist. Procedia Eng 211:1083–1090CrossRef Zhu M-X, Zhu S-B, Gong J-H, Zhou Z (2018) Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist. Procedia Eng 211:1083–1090CrossRef
125.
Zurück zum Zitat Zhu MX, Zhu SB, Luo WT (2018) Study on fire suppression of lithium batteries with surfactant water mist. Fire Sci Technol 37:799–803 Zhu MX, Zhu SB, Luo WT (2018) Study on fire suppression of lithium batteries with surfactant water mist. Fire Sci Technol 37:799–803
126.
Zurück zum Zitat Zhang QS, Cheng XJ, Bai W (2018) Analysis on fire suppression performance of water mist with compound additive on lithium battery fire. Fire Sci Technol 37: 1211–1214 Zhang QS, Cheng XJ, Bai W (2018) Analysis on fire suppression performance of water mist with compound additive on lithium battery fire. Fire Sci Technol 37: 1211–1214
127.
Zurück zum Zitat Zhang T, Han Z, Du Z, Zhang Z, Liu K (2016) Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int J Hydrog Energy 41:15078–15088CrossRef Zhang T, Han Z, Du Z, Zhang Z, Liu K (2016) Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int J Hydrog Energy 41:15078–15088CrossRef
128.
Zurück zum Zitat Koshiba Y, Okazaki S, Ohtani H (2016) Experimental investigation of the fire extinguishing capability of ferrocene-containing water mist. Fire Saf J 83:90–98CrossRef Koshiba Y, Okazaki S, Ohtani H (2016) Experimental investigation of the fire extinguishing capability of ferrocene-containing water mist. Fire Saf J 83:90–98CrossRef
129.
Zurück zum Zitat Man C, Shunbing Z, Litao JIA, Xiaoli WU (2014) Surfactant-containing water mist suppression pool fire experimental analysis. Procedia Eng 84:558–564CrossRef Man C, Shunbing Z, Litao JIA, Xiaoli WU (2014) Surfactant-containing water mist suppression pool fire experimental analysis. Procedia Eng 84:558–564CrossRef
130.
Zurück zum Zitat Joseph P, Nichols E, Novozhilov V (2013) A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf J 58:221–225CrossRef Joseph P, Nichols E, Novozhilov V (2013) A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf J 58:221–225CrossRef
131.
Zurück zum Zitat Bin-bin W, Guang-xuan L (2013) Comparison tests determine the ratio between in the constituent the compound additive and experimental study on fire extinguishing of water mist with this multi-component additive. Procedia Eng 52:428–434CrossRef Bin-bin W, Guang-xuan L (2013) Comparison tests determine the ratio between in the constituent the compound additive and experimental study on fire extinguishing of water mist with this multi-component additive. Procedia Eng 52:428–434CrossRef
132.
Zurück zum Zitat Lv D, Tan W, Zhu G, Liu L (2019) Gasoline fire extinguishing by 07 MPa water mist with multicomponent additives driven by CO2. Process Saf Environ Prot 129:168–175CrossRef Lv D, Tan W, Zhu G, Liu L (2019) Gasoline fire extinguishing by 07 MPa water mist with multicomponent additives driven by CO2. Process Saf Environ Prot 129:168–175CrossRef
133.
Zurück zum Zitat Hazard Control Technologies Inc. (2018) Material safety data sheet F-500 multi-purpose encapsulator agent. Hazard Control Technologies Inc. (2018) Material safety data sheet F-500 multi-purpose encapsulator agent.
134.
Zurück zum Zitat Chris L (2001) Fire cause & fire debris analysis (a review: 1998 to 2001), In: Proceedings of the 13th INTERPOL Forensic Science Symposium. Chris L (2001) Fire cause & fire debris analysis (a review: 1998 to 2001), In: Proceedings of the 13th INTERPOL Forensic Science Symposium.
135.
Zurück zum Zitat Pane L, Mariottini GL, Giacco E (2015) Ecotoxicological assessment of the micelle encapsulator F-500. Ecotoxicol Environ Saf 118:167–176CrossRef Pane L, Mariottini GL, Giacco E (2015) Ecotoxicological assessment of the micelle encapsulator F-500. Ecotoxicol Environ Saf 118:167–176CrossRef
136.
Zurück zum Zitat Bisschop R, Andersson P, Forsberg C, Hynynen J (2021) Lion fire II-extinguishment and mitigation of fires in lithium-ion batteries at sea. Bisschop R, Andersson P, Forsberg C, Hynynen J (2021) Lion fire II-extinguishment and mitigation of fires in lithium-ion batteries at sea.
137.
Zurück zum Zitat Stern J, Routley JG (1997) Class A foam for structural firefighting. Federal Emergency Management Agency, US Fire Administration, USA Stern J, Routley JG (1997) Class A foam for structural firefighting. Federal Emergency Management Agency, US Fire Administration, USA
138.
Zurück zum Zitat Wang K, Fang J, Shah HR, Mu S, Lang X, Wang J, Zhang Y (2020) A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness. Process Saf Environ Prot 138:117–129CrossRef Wang K, Fang J, Shah HR, Mu S, Lang X, Wang J, Zhang Y (2020) A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness. Process Saf Environ Prot 138:117–129CrossRef
139.
Zurück zum Zitat Tsai TP, Yang HC, Liao PH (2011) The application of concurrent engineering in the installation of foam fire extinguishing piping system. Procedia Eng 14:1920–1928CrossRef Tsai TP, Yang HC, Liao PH (2011) The application of concurrent engineering in the installation of foam fire extinguishing piping system. Procedia Eng 14:1920–1928CrossRef
140.
Zurück zum Zitat Yang F, Sun H, Mao Z, Tao Y, Zhang J (2021) Facile fabrication of EVA cellular material with hydrophobic surface, high solar reflectance and low thermal conductivity via chemical foaming. Microporous Mesoporous Mater 328:111460CrossRef Yang F, Sun H, Mao Z, Tao Y, Zhang J (2021) Facile fabrication of EVA cellular material with hydrophobic surface, high solar reflectance and low thermal conductivity via chemical foaming. Microporous Mesoporous Mater 328:111460CrossRef
141.
Zurück zum Zitat Chen T, Fu X-C, Bao Z-M, Xia J-J, Wang R-J (2018) Experimental study on the extinguishing efficiency of compressed air foam sprinkler system on oil pool fire. Procedia Eng 211:94–103CrossRef Chen T, Fu X-C, Bao Z-M, Xia J-J, Wang R-J (2018) Experimental study on the extinguishing efficiency of compressed air foam sprinkler system on oil pool fire. Procedia Eng 211:94–103CrossRef
142.
Zurück zum Zitat Xu Z, Guo X, Yan L, Kang W (2020) Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Stud Therm Eng 17:100578CrossRef Xu Z, Guo X, Yan L, Kang W (2020) Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Stud Therm Eng 17:100578CrossRef
143.
Zurück zum Zitat Cui Y, Liu J, Han X, Sun S, Cong B (2022) Full-scale experimental study on suppressing lithium-ion battery pack fires from electric vehicles. Fire Saf J 129:103562CrossRef Cui Y, Liu J, Han X, Sun S, Cong B (2022) Full-scale experimental study on suppressing lithium-ion battery pack fires from electric vehicles. Fire Saf J 129:103562CrossRef
144.
Zurück zum Zitat Chen ZM, Wang XJ (2021) Experimental study on fire fighting of lithium battery in confined space. Fire Prot Today 6:4–8 Chen ZM, Wang XJ (2021) Experimental study on fire fighting of lithium battery in confined space. Fire Prot Today 6:4–8
145.
Zurück zum Zitat He YH, Sun Q, Xing H et al (2019) Cationic–anionic fluorinated surfactant mixtures based on short fluorocarbon chains as potential aqueous film-forming foam. J Dispers Sci Technol 40:319–331CrossRef He YH, Sun Q, Xing H et al (2019) Cationic–anionic fluorinated surfactant mixtures based on short fluorocarbon chains as potential aqueous film-forming foam. J Dispers Sci Technol 40:319–331CrossRef
146.
Zurück zum Zitat Zhang Y, Zou G, Gao Y et al (2012) Experimental research on deflagration flame propagation suppression by ABC powder. J Harbin Eng Univ 33:449–453 Zhang Y, Zou G, Gao Y et al (2012) Experimental research on deflagration flame propagation suppression by ABC powder. J Harbin Eng Univ 33:449–453
147.
Zurück zum Zitat Zhao Q, Chen X, Yang M, Zhang H, Huang C, Dai H, Li Y, Liu J, Zhu H (2021) Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration. Fuel 298:120831CrossRef Zhao Q, Chen X, Yang M, Zhang H, Huang C, Dai H, Li Y, Liu J, Zhu H (2021) Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration. Fuel 298:120831CrossRef
148.
Zurück zum Zitat Luo Z, Wang T, Tian Z, Cheng F, Deng J, Zhang Y (2014) Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder. J Loss Prev Process Ind 30:17–23CrossRef Luo Z, Wang T, Tian Z, Cheng F, Deng J, Zhang Y (2014) Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder. J Loss Prev Process Ind 30:17–23CrossRef
149.
Zurück zum Zitat Su C-H, Chen C-C, Liaw H-J, Wang S-C (2014) The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng 84:485–490CrossRef Su C-H, Chen C-C, Liaw H-J, Wang S-C (2014) The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng 84:485–490CrossRef
150.
Zurück zum Zitat Huang L, Jiang H, Zhang T, Shang S, Gao W (2021) Effect of superfine KHCO3 and ABC powder on ignition sensitivity of PMMA dust layer. J Loss Prev Process Ind 72:104567CrossRef Huang L, Jiang H, Zhang T, Shang S, Gao W (2021) Effect of superfine KHCO3 and ABC powder on ignition sensitivity of PMMA dust layer. J Loss Prev Process Ind 72:104567CrossRef
151.
Zurück zum Zitat Zhao J, Fu Y, Yin Z, Xing H, Lu S, Zhang H (2020) Preparation of hydrophobic and oleophobic fine sodium bicarbonate by gel-sol-gel method and enhanced fire extinguishing performance. Mater Des 186:108331CrossRef Zhao J, Fu Y, Yin Z, Xing H, Lu S, Zhang H (2020) Preparation of hydrophobic and oleophobic fine sodium bicarbonate by gel-sol-gel method and enhanced fire extinguishing performance. Mater Des 186:108331CrossRef
152.
Zurück zum Zitat Zhang ZW (2013) Application of D-class dry powder fire extinguishing system for aluminum alkyls chemical related fire protection. Ind Water Wastewater 44:85–88 Zhang ZW (2013) Application of D-class dry powder fire extinguishing system for aluminum alkyls chemical related fire protection. Ind Water Wastewater 44:85–88
153.
Zurück zum Zitat Krasnyansky M (2006) Remote extinguishing of large fires with powder aerosols. Fire Mater: Int J 30:371–382CrossRef Krasnyansky M (2006) Remote extinguishing of large fires with powder aerosols. Fire Mater: Int J 30:371–382CrossRef
154.
Zurück zum Zitat Meng X, Yang K, Zhang M, Gao F, Liu Y, Duan Q, Wang Q (2020) Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery. J Energy Storage 30:101532CrossRef Meng X, Yang K, Zhang M, Gao F, Liu Y, Duan Q, Wang Q (2020) Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery. J Energy Storage 30:101532CrossRef
155.
Zurück zum Zitat Zhao J, Xue F, Fu Y, Cheng Y, Yang H, Lu S (2021) A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents. iScience 24:102854CrossRef Zhao J, Xue F, Fu Y, Cheng Y, Yang H, Lu S (2021) A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents. iScience 24:102854CrossRef
156.
Zurück zum Zitat Long RT, Misera AM (2019) Sprinkler protection guidance for lithium-ion based energy storage systems. Fire Protection Research Foundation, MD Long RT, Misera AM (2019) Sprinkler protection guidance for lithium-ion based energy storage systems. Fire Protection Research Foundation, MD
157.
Zurück zum Zitat Taniguchi K, Iwasaki M, Kouga Y (2018) Fire detection tube used for automatic fire extinguishing device and the automatic fire extinguishing device: U.S. Patent 9,962,568, 5–8. Taniguchi K, Iwasaki M, Kouga Y (2018) Fire detection tube used for automatic fire extinguishing device and the automatic fire extinguishing device: U.S. Patent 9,962,568, 5–8.
158.
Zurück zum Zitat Li YL, Duan XP (2018) Application of automatic detecting and fire extinguishing system with fire trace tube in port engineering. Constr Design Eng 3:96–99 Li YL, Duan XP (2018) Application of automatic detecting and fire extinguishing system with fire trace tube in port engineering. Constr Design Eng 3:96–99
159.
Zurück zum Zitat Li K, Wang Q, Sun J (2018) Research on fire extinguishing technology of lithium ion battery based on fire detection tube. Fire Saf Sci 27:9 Li K, Wang Q, Sun J (2018) Research on fire extinguishing technology of lithium ion battery based on fire detection tube. Fire Saf Sci 27:9
160.
Zurück zum Zitat Panão MRO, Guerreiro JPPV, Moreira ALN (2012) Microprocessor cooling based on an intermittent multijet spray system. Int J Heat Mass Transf 55:2854–2863CrossRef Panão MRO, Guerreiro JPPV, Moreira ALN (2012) Microprocessor cooling based on an intermittent multijet spray system. Int J Heat Mass Transf 55:2854–2863CrossRef
161.
Zurück zum Zitat Panão MRO, Correia AM, Moreira ALN (2012) High-power electronics thermal management with intermittent multijet sprays. Appl Therm Eng 37:293–301CrossRef Panão MRO, Correia AM, Moreira ALN (2012) High-power electronics thermal management with intermittent multijet sprays. Appl Therm Eng 37:293–301CrossRef
162.
Zurück zum Zitat Panão MRO, Moreira ALN (2009) Intermittent spray cooling: a new technology for controlling surface temperature. Int J Heat Fluid Flow 30:117–130CrossRef Panão MRO, Moreira ALN (2009) Intermittent spray cooling: a new technology for controlling surface temperature. Int J Heat Fluid Flow 30:117–130CrossRef
163.
Zurück zum Zitat Liu Y, Gao Q, Wang G, Zhang T, Zhang Y (2021) Experimental study on active control of refrigerant emergency spray cooling of thermal abnormal power battery. Appl Therm Eng 182:116172CrossRef Liu Y, Gao Q, Wang G, Zhang T, Zhang Y (2021) Experimental study on active control of refrigerant emergency spray cooling of thermal abnormal power battery. Appl Therm Eng 182:116172CrossRef
164.
Zurück zum Zitat Meng X, Li S, Fu W, Chen Y, Duan Q, Wang Q (2022) Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires. eTransportation 11:100142CrossRef Meng X, Li S, Fu W, Chen Y, Duan Q, Wang Q (2022) Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires. eTransportation 11:100142CrossRef
165.
Zurück zum Zitat An S, Lee MW, Yarin AL et al (2018) A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem Eng J 344:206–220CrossRef An S, Lee MW, Yarin AL et al (2018) A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem Eng J 344:206–220CrossRef
166.
Zurück zum Zitat Bai F, Chen M, Song W, Yu Q, Li Y, Feng Z, Ding Y (2019) Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy 167:561–574CrossRef Bai F, Chen M, Song W, Yu Q, Li Y, Feng Z, Ding Y (2019) Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy 167:561–574CrossRef
167.
Zurück zum Zitat Zhang W, Wu L, Du J, Tian J, Li Y, Zhao Y, Wu H, Zhong Y, Cao Y-C, Cheng S (2021) Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Mater Adv 2:4634–4642CrossRef Zhang W, Wu L, Du J, Tian J, Li Y, Zhao Y, Wu H, Zhong Y, Cao Y-C, Cheng S (2021) Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Mater Adv 2:4634–4642CrossRef
168.
Zurück zum Zitat Yim T, Park MS, Woo SG, Kwon HK, Yoo JK, Jung YS, Kim KJ, Yu JS, Kim YJ (2015) Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett 15:5059–5067CrossRef Yim T, Park MS, Woo SG, Kwon HK, Yoo JK, Jung YS, Kim KJ, Yu JS, Kim YJ (2015) Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett 15:5059–5067CrossRef
169.
Zurück zum Zitat Huang P-H, Chang S-J, Li C-C, Chen C-A (2017) Boehmite-based microcapsules as flame-retardants for lithium-ion batteries. Electrochim Acta 228:597–603CrossRef Huang P-H, Chang S-J, Li C-C, Chen C-A (2017) Boehmite-based microcapsules as flame-retardants for lithium-ion batteries. Electrochim Acta 228:597–603CrossRef
170.
Zurück zum Zitat Chen C-A, Li C-C (2018) Microencapsulating inorganic and organic flame retardants for the safety improvement of lithium-ion batteries. Solid State Ionics 323:56–63CrossRef Chen C-A, Li C-C (2018) Microencapsulating inorganic and organic flame retardants for the safety improvement of lithium-ion batteries. Solid State Ionics 323:56–63CrossRef
Metadaten
Titel
A Review of Fire-Extinguishing Agents and Fire Suppression Strategies for Lithium-Ion Batteries Fire
verfasst von
Lin Zhang
Kaiqiang Jin
Jinhua Sun
Qingsong Wang
Publikationsdatum
30.07.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01278-3

Weitere Artikel der Ausgabe 2/2024

Fire Technology 2/2024 Zur Ausgabe