Skip to main content

2024 | OriginalPaper | Buchkapitel

A Small World–Privacy Preserving IoT Device-Type Fingerprinting with Small Datasets

verfasst von : Maxwel Bar-on, Bruhadeshwar Bezawada, Indrakshi Ray, Indrajit Ray

Erschienen in: Foundations and Practice of Security

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internet-of-Things (IoT) device-type fingerprinting is the process of identification of the specific type of an IoT device based on its characteristics, such as network behavior. Such fingerprinting can be used to detect anomalous behavior of the device, or even predict its behavior should it get compromised. The typical approach to fingerprint an IoT device-type is by collecting a significant number of short network trace samples from these devices when it performs various activities and use machine learning on these samples to construct the fingerprint. There are several challenges to this approach. The first challenge is identifying the exact set of packets that correspond to the observed device-type behavior when it is performing some activity. The second challenge is that a single organization may not have enough data corresponding to all possible activities of the IoT device. We propose techniques to overcome the above mentioned challenges. First, to enhance device-type fingerprinting from small data sets, we designed a sliding-window based packet analysis behavioral model that provides improved data coverage associated with the activities of the tasks. Second, to get a model of the network behavior for the different activities of IoT devices deployed at various organizations, we use distributed deep-learning model so as to protect the privacy and confidentiality of the data. Finally, we alleviate the issue of data shortage by supplementing the training data with synthetic data generated using an Adversarial Autoencoder (AAE) neural network. We evaluated our approach using three different sets of experiments using a small set of representative devices. We estimate the best sliding window size for modeling device behavior by comparing the distributed learning performance over a range of window sizes. For our distributed approach, we achieve fingerprinting accuracy in the range of 94–99%, which is an improvement over the centralized approach for the same data sets and experiments. We demonstrate accuracy of \(97\%\), on-par with state-of-the-art fingerprinting approaches, when using synthetic training data generated by our AAE. We note that, this is the first such method of fingerprinting device-types in a collaborative privacy preserving manner while alleviating small data sets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krebs, B.: Mirai IoT botnet co-authors plead guilty? Krebs on security, November 2017 Krebs, B.: Mirai IoT botnet co-authors plead guilty? Krebs on security, November 2017
2.
Zurück zum Zitat Acar, A., et al.: Peek-a-boo: i see your smart home activities, even encrypted! In: Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 207–218 (2020) Acar, A., et al.: Peek-a-boo: i see your smart home activities, even encrypted! In: Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 207–218 (2020)
3.
Zurück zum Zitat OConnor, T.J., Mohamed, R., Miettinen, M., Enck, W., Reaves, B., Sadeghi, A.-R.: HomeSnitch: behavior transparency and control for smart home IoT devices. In: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, pp. 128–138 (2019) OConnor, T.J., Mohamed, R., Miettinen, M., Enck, W., Reaves, B., Sadeghi, A.-R.: HomeSnitch: behavior transparency and control for smart home IoT devices. In: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, pp. 128–138 (2019)
4.
Zurück zum Zitat Bai, L., Yao, L., Kanhere, S.S., Wang, X., Yang, Z.: Automatic device classification from network traffic streams of Internet of Things. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pp. 1–9. IEEE (2018) Bai, L., Yao, L., Kanhere, S.S., Wang, X., Yang, Z.: Automatic device classification from network traffic streams of Internet of Things. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pp. 1–9. IEEE (2018)
5.
Zurück zum Zitat Sivanathan, A., et al.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018)CrossRef Sivanathan, A., et al.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018)CrossRef
6.
Zurück zum Zitat Dong, S., Li, Z., Tang, D., Chen, J., Sun, M., Zhang, K.: Your smart home can’t keep a secret: towards automated fingerprinting of IoT traffic. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, pp. 47–59 (2020) Dong, S., Li, Z., Tang, D., Chen, J., Sun, M., Zhang, K.: Your smart home can’t keep a secret: towards automated fingerprinting of IoT traffic. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, pp. 47–59 (2020)
7.
Zurück zum Zitat Perdisci, R., Papastergiou, T., Alrawi, O., Antonakakis, M.: IoTFinder: efficient large-scale identification of IoT devices via passive DNS traffic analysis. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 474–489. IEEE (2020) Perdisci, R., Papastergiou, T., Alrawi, O., Antonakakis, M.: IoTFinder: efficient large-scale identification of IoT devices via passive DNS traffic analysis. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 474–489. IEEE (2020)
8.
Zurück zum Zitat Ahmed, D., Das, A., Zaffar, F.: Analyzing the feasibility and generalizability of fingerprinting Internet of Things devices. Proc. Priv. Enhancing Technol. 2, 2022 (2022) Ahmed, D., Das, A., Zaffar, F.: Analyzing the feasibility and generalizability of fingerprinting Internet of Things devices. Proc. Priv. Enhancing Technol. 2, 2022 (2022)
9.
Zurück zum Zitat Sharma, R.A., Soltanaghaei, E., Rowe, A., Sekar, V.: Lumos: identifying and localizing diverse hidden \(\{\)IoT\(\}\) devices in an unfamiliar environment. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 1095–1112 (2022) Sharma, R.A., Soltanaghaei, E., Rowe, A., Sekar, V.: Lumos: identifying and localizing diverse hidden \(\{\)IoT\(\}\) devices in an unfamiliar environment. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 1095–1112 (2022)
10.
Zurück zum Zitat Franklin, J., McCoy, D.: Passive data link layer 802.11 wireless device driver fingerprinting. In: Proceedings of the 15th USENIX Security Symposium, Vancouver, BC, Canada, 31 July–4 August 2006 Franklin, J., McCoy, D.: Passive data link layer 802.11 wireless device driver fingerprinting. In: Proceedings of the 15th USENIX Security Symposium, Vancouver, BC, Canada, 31 July–4 August 2006
11.
Zurück zum Zitat Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11 user fingerprinting. In: Proceedings of the 13th ACM MOBICOM, pp. 99–110. ACM (2007) Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11 user fingerprinting. In: Proceedings of the 13th ACM MOBICOM, pp. 99–110. ACM (2007)
12.
Zurück zum Zitat François, J., Abdelnur, H.J., State, R., Festor, O.: Automated behavioral fingerprinting. In: Proceedings of the 12th RAID Symposium, pp. 182–201 (2009) François, J., Abdelnur, H.J., State, R., Festor, O.: Automated behavioral fingerprinting. In: Proceedings of the 12th RAID Symposium, pp. 182–201 (2009)
13.
Zurück zum Zitat Arackaparambil, C., Bratus, S., Shubina, A., Kotz, D.: On the reliability of wireless fingerprinting using clock skews. In: Proceedings of the Third ACM WiSec, pp. 169–174, New York, NY, USA. ACM (2010) Arackaparambil, C., Bratus, S., Shubina, A., Kotz, D.: On the reliability of wireless fingerprinting using clock skews. In: Proceedings of the Third ACM WiSec, pp. 169–174, New York, NY, USA. ACM (2010)
14.
Zurück zum Zitat Kurtz, A., Gascon, H., Becker, T., Rieck, K., Freiling, F.: Fingerprinting mobile devices using personalized configurations. Proc. Priv. Enhancing Technol. 1, 4–19 (2016)CrossRef Kurtz, A., Gascon, H., Becker, T., Rieck, K., Freiling, F.: Fingerprinting mobile devices using personalized configurations. Proc. Priv. Enhancing Technol. 1, 4–19 (2016)CrossRef
15.
Zurück zum Zitat Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: The DET curve in assessment of detection task performance. Technical report, National Institute of Standards and Technology Gaithersburg MD (1997) Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: The DET curve in assessment of detection task performance. Technical report, National Institute of Standards and Technology Gaithersburg MD (1997)
16.
Zurück zum Zitat Lippmann, R., Fried, D., Piwowarski, K., Streilein, W.: Passive operating system identification from TCP/IP packet headers. In: Workshop on Data Mining for Computer Security, p. 40 (2003) Lippmann, R., Fried, D., Piwowarski, K., Streilein, W.: Passive operating system identification from TCP/IP packet headers. In: Workshop on Data Mining for Computer Security, p. 40 (2003)
17.
Zurück zum Zitat Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE Trans. Dependable Secure Comput. 2(2), 93–108 (2005)CrossRef Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE Trans. Dependable Secure Comput. 2(2), 93–108 (2005)CrossRef
18.
Zurück zum Zitat Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM MOBICOM, pp. 116–127. ACM (2008) Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM MOBICOM, pp. 116–127. ACM (2008)
19.
Zurück zum Zitat Jana, S., Kasera, S.K.: On fast and accurate detection of unauthorized wireless access points using clock skews. IEEE Trans. Mobile Comput. 9(3), 449–462 (2010)CrossRef Jana, S., Kasera, S.K.: On fast and accurate detection of unauthorized wireless access points using clock skews. IEEE Trans. Mobile Comput. 9(3), 449–462 (2010)CrossRef
20.
Zurück zum Zitat Radhakrishnan, S.V., Uluagac, A.S., Beyah, R.A.: GTID: a technique for physical device and device type fingerprinting. IEEE Trans. Dependable Secure Comput. 12(5), 519–532 (2015)CrossRef Radhakrishnan, S.V., Uluagac, A.S., Beyah, R.A.: GTID: a technique for physical device and device type fingerprinting. IEEE Trans. Dependable Secure Comput. 12(5), 519–532 (2015)CrossRef
21.
Zurück zum Zitat Formby, D., Srinivasan, P., Leonard, A., Rogers, J., Beyah, R.A.: Who’s in control of your control system? Device fingerprinting for cyber-physical systems. In: 23rd Annual ISOC NDSS (2016) Formby, D., Srinivasan, P., Leonard, A., Rogers, J., Beyah, R.A.: Who’s in control of your control system? Device fingerprinting for cyber-physical systems. In: 23rd Annual ISOC NDSS (2016)
22.
23.
Zurück zum Zitat François, J., Abdelnur, H.J., State, R., Festor, O.: Machine learning techniques for passive network inventory. IEEE Trans. Netw. Serv. Manage. 7(4), 244–257 (2010)CrossRef François, J., Abdelnur, H.J., State, R., Festor, O.: Machine learning techniques for passive network inventory. IEEE Trans. Netw. Serv. Manage. 7(4), 244–257 (2010)CrossRef
24.
Zurück zum Zitat Gao, K., Corbett, C., Beyah, R.: A passive approach to wireless device fingerprinting. In: Proceedings of IEEE/IFIP DSN, pp. 383–392. IEEE (2010) Gao, K., Corbett, C., Beyah, R.: A passive approach to wireless device fingerprinting. In: Proceedings of IEEE/IFIP DSN, pp. 383–392. IEEE (2010)
25.
Zurück zum Zitat Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.-R., Tarkoma, S.: IoT SENTINEL: automated device-type identification for security enforcement in IoT. In: Proceedings of 37th IEEE ICDCS, pp. 2177–2184 (2017) Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.-R., Tarkoma, S.: IoT SENTINEL: automated device-type identification for security enforcement in IoT. In: Proceedings of 37th IEEE ICDCS, pp. 2177–2184 (2017)
26.
Zurück zum Zitat Siby, S., Maiti, R.R., Tippenhauer, N.: IoTScanner: detecting and classifying privacy threats in IoT neighborhoods. arXiv preprint arXiv:1701.05007 (2017) Siby, S., Maiti, R.R., Tippenhauer, N.: IoTScanner: detecting and classifying privacy threats in IoT neighborhoods. arXiv preprint arXiv:​1701.​05007 (2017)
27.
Zurück zum Zitat Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., Ray, I.: Behavioral fingerprinting of IoT devices. In: Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, ASHES CCS 2018, Toronto, ON, Canada, 19 October 2018, pp. 41–50. ACM (2018) Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., Ray, I.: Behavioral fingerprinting of IoT devices. In: Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, ASHES CCS 2018, Toronto, ON, Canada, 19 October 2018, pp. 41–50. ACM (2018)
28.
Zurück zum Zitat Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 909–910 (2015) Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 909–910 (2015)
29.
Zurück zum Zitat McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20–22 April 2017, Fort Lauderdale, FL, USA, vol. 54, pp. 1273–1282. PMLR (2017) McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20–22 April 2017, Fort Lauderdale, FL, USA, vol. 54, pp. 1273–1282. PMLR (2017)
30.
Zurück zum Zitat Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)CrossRef Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)CrossRef
31.
Zurück zum Zitat Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. CoRR, abs/1612.00542 (2016) Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. CoRR, abs/1612.00542 (2016)
32.
Zurück zum Zitat Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: distributed deep learning without sharing raw patient data. CoRR, abs/1812.00564 (2018) Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: distributed deep learning without sharing raw patient data. CoRR, abs/1812.00564 (2018)
33.
Zurück zum Zitat Vepakomma, P., Raskar, R.: Split learning: a resource efficient model and data parallel approach for distributed deep learning. In: Ludwig, H., Baracaldo, N. (eds.) Federated Learning - A Comprehensive Overview of Methods and Applications, pp. 439–451. Springer, Cham (2022) Vepakomma, P., Raskar, R.: Split learning: a resource efficient model and data parallel approach for distributed deep learning. In: Ludwig, H., Baracaldo, N. (eds.) Federated Learning - A Comprehensive Overview of Methods and Applications, pp. 439–451. Springer, Cham (2022)
34.
Zurück zum Zitat Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based DDoS detection system in software-defined networking (SDN). EAI Endorsed Trans. Secur. Saf. 4(12), 12 (2017) Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based DDoS detection system in software-defined networking (SDN). EAI Endorsed Trans. Secur. Saf. 4(12), 12 (2017)
35.
Zurück zum Zitat Deval, S.K., Tripathi, M., Bezawada, B., Ray, I.: “X-Phish: Days of Future Past”: adaptive & privacy preserving phishing detection. In: 2021 IEEE Conference on Communications and Network Security (CNS), pp. 227–235 (2021) Deval, S.K., Tripathi, M., Bezawada, B., Ray, I.: “X-Phish: Days of Future Past”: adaptive & privacy preserving phishing detection. In: 2021 IEEE Conference on Communications and Network Security (CNS), pp. 227–235 (2021)
36.
Zurück zum Zitat Phong, L.T., Phuong, T.T.: Privacy-preserving deep learning via weight transmission. IEEE Trans. Inf. Forensics Secur. 14(11), 3003–3015 (2019)CrossRef Phong, L.T., Phuong, T.T.: Privacy-preserving deep learning via weight transmission. IEEE Trans. Inf. Forensics Secur. 14(11), 3003–3015 (2019)CrossRef
37.
Zurück zum Zitat Wang, H., Eklund, D., Oprea, A., Raza, S.: FL4IoT: IoT device fingerprinting and identification using federated learning. ACM Trans. Internet Things 4, 1–24 (2023)CrossRef Wang, H., Eklund, D., Oprea, A., Raza, S.: FL4IoT: IoT device fingerprinting and identification using federated learning. ACM Trans. Internet Things 4, 1–24 (2023)CrossRef
38.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
39.
Metadaten
Titel
A Small World–Privacy Preserving IoT Device-Type Fingerprinting with Small Datasets
verfasst von
Maxwel Bar-on
Bruhadeshwar Bezawada
Indrakshi Ray
Indrajit Ray
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57537-2_7

Premium Partner