Skip to main content
Erschienen in: Fire Technology 1/2024

08.01.2024

Application of Remote Sensing Technology in Wildfire Research: Bibliometric Perspective

verfasst von: Xiaolian Li, Jie Li, Milad Haghani

Erschienen in: Fire Technology | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Applications of Remote Sensing (RS) has recently attracted increasing attention in wildfire research. In this study, a total of 2842 documents related to remote sensing-based wildfire research (RS-based wildfire research) have been collected from Science Citation Index Expanded database in the Web of Science Core Collection (WOS CC) for analyzing its development and currently popular concerns by using VOSviewer. Results show that the publications exhibit an exponential increase on the whole since 2000. It is identified that the most productive journal is Remote Sensing, with 235 published articles, accounting for 8.27% of the total research publications. The United States is the most prolific country with 1200 documents. NASA, USDA Forest Service and University of Maryland that affiliated to USA are the top three institutions with more than 100 publications. The co-authorship network shows that the application of remote sensing to wildfire attracts a large number of researchers’ attention. The topic analysis demonstrates that the hot topics cover the whole process of wildfire. The reference analysis and co-citation network also confirm this finding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Illera P, Fernandez A, Delgado JA (1996) Temporal evolution of the NDVI as an indicator of forest fire danger. Int J Remote Sens 17:1093–1105CrossRef Illera P, Fernandez A, Delgado JA (1996) Temporal evolution of the NDVI as an indicator of forest fire danger. Int J Remote Sens 17:1093–1105CrossRef
2.
Zurück zum Zitat GonzalezAlonso F, Cuevas JM, Casanova JL, Calle A, Illera P (1997) A forest fire risk assessment using NOAA AVHRR images in the Valencia area, eastern Spain. Int J Remote Sens 18:2201–2207CrossRef GonzalezAlonso F, Cuevas JM, Casanova JL, Calle A, Illera P (1997) A forest fire risk assessment using NOAA AVHRR images in the Valencia area, eastern Spain. Int J Remote Sens 18:2201–2207CrossRef
3.
Zurück zum Zitat Prosper-Laget V, Douguedroit A, Guinot JP (1998) A satellite index of risk of forest fire occurrence in summer in the Mediterranean area. Int J Wildland Fire 8:173–182CrossRef Prosper-Laget V, Douguedroit A, Guinot JP (1998) A satellite index of risk of forest fire occurrence in summer in the Mediterranean area. Int J Wildland Fire 8:173–182CrossRef
4.
Zurück zum Zitat Dennison PE, Roberts DA, Peterson SH, Rechel J (2005) Use of normalized difference water index for monitoring live fuel moisture. Int J Remote Sens 26:1035–1042CrossRef Dennison PE, Roberts DA, Peterson SH, Rechel J (2005) Use of normalized difference water index for monitoring live fuel moisture. Int J Remote Sens 26:1035–1042CrossRef
5.
Zurück zum Zitat Stow D, Niphadkar M, Kaiser J (2005) MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int J Remote Sens 26:3867–3873CrossRef Stow D, Niphadkar M, Kaiser J (2005) MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int J Remote Sens 26:3867–3873CrossRef
6.
Zurück zum Zitat Stow D, Niphadkar M, Kaiser J (2006) Time series of chaparral live fuel moisture maps derived from MODIS satellite data. Int J Wildland Fire 15:347–360CrossRef Stow D, Niphadkar M, Kaiser J (2006) Time series of chaparral live fuel moisture maps derived from MODIS satellite data. Int J Wildland Fire 15:347–360CrossRef
8.
Zurück zum Zitat Peterson SH, Roberts DA, Dennison PE (2008) Mapping live fuel moisture with MODIS data: a multiple regression approach. Remote Sens Environ 112:4272–4284CrossRef Peterson SH, Roberts DA, Dennison PE (2008) Mapping live fuel moisture with MODIS data: a multiple regression approach. Remote Sens Environ 112:4272–4284CrossRef
10.
Zurück zum Zitat Adab H, Kanniah KD, Solaimani K (2013) Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65:1723–1743CrossRef Adab H, Kanniah KD, Solaimani K (2013) Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65:1723–1743CrossRef
11.
Zurück zum Zitat Chowdhury EH, Hassan QK (2013) Use of remote sensing-derived variables in developing a forest fire danger forecasting system. Nat Hazards 67:321–334CrossRef Chowdhury EH, Hassan QK (2013) Use of remote sensing-derived variables in developing a forest fire danger forecasting system. Nat Hazards 67:321–334CrossRef
12.
Zurück zum Zitat Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martin MP et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58CrossRef Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martin MP et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58CrossRef
13.
Zurück zum Zitat Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J et al (2014) Integrating geospatial information into fire risk assessment. Int J Wildland Fire 23:606–619CrossRef Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J et al (2014) Integrating geospatial information into fire risk assessment. Int J Wildland Fire 23:606–619CrossRef
14.
Zurück zum Zitat Ferrare RA, Fraser RS, Kaufman YJ (1990) Satellite measurements of large-scale air-pollution - measurements of forest fire smoke. J Gerontol Ser A Biol Med Sci 95:9911–9925 Ferrare RA, Fraser RS, Kaufman YJ (1990) Satellite measurements of large-scale air-pollution - measurements of forest fire smoke. J Gerontol Ser A Biol Med Sci 95:9911–9925
15.
Zurück zum Zitat Kasischke ES, French NHF (1995) Locating and estimating the areal extent of wildfires in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Remote Sens Environ 51:263–275CrossRef Kasischke ES, French NHF (1995) Locating and estimating the areal extent of wildfires in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Remote Sens Environ 51:263–275CrossRef
16.
Zurück zum Zitat Randriambelo T, Baldy S, Bessafi M (1998) An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar. Int J Remote Sens 19:2623–2638CrossRef Randriambelo T, Baldy S, Bessafi M (1998) An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar. Int J Remote Sens 19:2623–2638CrossRef
17.
Zurück zum Zitat Baum BA, Trepte Q (1999) A grouped threshold approach for scene identification in AVHRR imagery. J Atmos Oceanic Tech 16:793–800CrossRef Baum BA, Trepte Q (1999) A grouped threshold approach for scene identification in AVHRR imagery. J Atmos Oceanic Tech 16:793–800CrossRef
18.
Zurück zum Zitat Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRef Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRef
19.
Zurück zum Zitat Kaufman YJ, Ichoku C, Giglio L, Korontzi S, Chu DA, Hao WM et al (2003) Fire and smoke observed from the Earth observing system MODIS instrument - products, validation, and operational use. Int J Remote Sens 24:1765–1781CrossRef Kaufman YJ, Ichoku C, Giglio L, Korontzi S, Chu DA, Hao WM et al (2003) Fire and smoke observed from the Earth observing system MODIS instrument - products, validation, and operational use. Int J Remote Sens 24:1765–1781CrossRef
20.
Zurück zum Zitat Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D et al (2002) The MODIS fire products. Remote Sens Environ 83:244–262CrossRef Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D et al (2002) The MODIS fire products. Remote Sens Environ 83:244–262CrossRef
21.
Zurück zum Zitat Ichoku C, Kaufman YJ, Hao WM, Habib S (2004) Application of MODIS-derived active fire radiative energy to fire disaster and smoke pollution monitoring. Igarss 2004: IEEE International Geoscience and Remote Sensing Symposium Proceedings, 1–7: 1113–5 Ichoku C, Kaufman YJ, Hao WM, Habib S (2004) Application of MODIS-derived active fire radiative energy to fire disaster and smoke pollution monitoring. Igarss 2004: IEEE International Geoscience and Remote Sensing Symposium Proceedings, 1–7: 1113–5
22.
Zurück zum Zitat Wang WT, Qu JJ, Hao XJ, Liu YQ, Sommers WT (2007) An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States. Remote Sens Environ 108:163–170CrossRef Wang WT, Qu JJ, Hao XJ, Liu YQ, Sommers WT (2007) An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States. Remote Sens Environ 108:163–170CrossRef
23.
Zurück zum Zitat Wang WT, Qu JJ, Hao XJ, Liu YQ (2009) Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection. J Appl Remote Sens 3(1):031502CrossRef Wang WT, Qu JJ, Hao XJ, Liu YQ (2009) Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection. J Appl Remote Sens 3(1):031502CrossRef
24.
Zurück zum Zitat Wang J, Song W, Wang W, Zhang Y, Liu S (2011) A new algorithm for Forest fire smoke detection based on MODIS data in heilongjiang province. Nanjin, China Wang J, Song W, Wang W, Zhang Y, Liu S (2011) A new algorithm for Forest fire smoke detection based on MODIS data in heilongjiang province. Nanjin, China
25.
Zurück zum Zitat Lin TH, Liu GR, Chen YC (2010) Remote sensing of smoke plumes with moderate resolution imaging spectroradiometer reflectance measurements. J Appl Remote Sens 4(1):041876CrossRef Lin TH, Liu GR, Chen YC (2010) Remote sensing of smoke plumes with moderate resolution imaging spectroradiometer reflectance measurements. J Appl Remote Sens 4(1):041876CrossRef
26.
Zurück zum Zitat Li XL, Wang J, Song WG, Ma J, Telesca L, Zhang YM (2014) Automatic smoke detection in MODIS Satellite data based on K-means clustering and fisher linear discrimination. Photogramm Eng Remote Sens 80:971–982CrossRef Li XL, Wang J, Song WG, Ma J, Telesca L, Zhang YM (2014) Automatic smoke detection in MODIS Satellite data based on K-means clustering and fisher linear discrimination. Photogramm Eng Remote Sens 80:971–982CrossRef
27.
Zurück zum Zitat Li X, Song W, Lian L, Wei X (2015) Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens 7:4473–4498CrossRef Li X, Song W, Lian L, Wei X (2015) Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens 7:4473–4498CrossRef
28.
Zurück zum Zitat Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220CrossRef Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220CrossRef
29.
Zurück zum Zitat Xie Y, Qu JJ, Xiong X, Hao X, Che N, Sommers W (2007) Smoke plume detection in the eastern United States using MODIS. Int J Remote Sens 28:2367–2374CrossRef Xie Y, Qu JJ, Xiong X, Hao X, Che N, Sommers W (2007) Smoke plume detection in the eastern United States using MODIS. Int J Remote Sens 28:2367–2374CrossRef
30.
Zurück zum Zitat Ba R, Chen C, Yuan J, Song W, Lo S (2019) SmokeNet: satellite smoke scene detection using convolutional neural network with spatial and channel-wise attention. Remote Sens 11:1702CrossRef Ba R, Chen C, Yuan J, Song W, Lo S (2019) SmokeNet: satellite smoke scene detection using convolutional neural network with spatial and channel-wise attention. Remote Sens 11:1702CrossRef
31.
Zurück zum Zitat Zhao TXP, Ackerman S, Guo W (2010) Dust and smoke detection for multi-channel imagers. Remote Sens 2:2347–2368CrossRef Zhao TXP, Ackerman S, Guo W (2010) Dust and smoke detection for multi-channel imagers. Remote Sens 2:2347–2368CrossRef
32.
Zurück zum Zitat Chrysoulakis N, Cartalis C (2003) A new algorithm for the detection of plumes caused by industrial accidents, based on NOAA/AVHRR imagery. Int J Remote Sens 24:3353–3367CrossRef Chrysoulakis N, Cartalis C (2003) A new algorithm for the detection of plumes caused by industrial accidents, based on NOAA/AVHRR imagery. Int J Remote Sens 24:3353–3367CrossRef
33.
Zurück zum Zitat Chrysoulakis N, Opie C (2004) Using NOAA and FY imagery to track plumes caused by the 2003 bombing of Baghdad. Int J Remote Sens 25:5247–5254CrossRef Chrysoulakis N, Opie C (2004) Using NOAA and FY imagery to track plumes caused by the 2003 bombing of Baghdad. Int J Remote Sens 25:5247–5254CrossRef
34.
Zurück zum Zitat Chrysoulakis N, Herlin I, Prastacos P, Yahia H, Grazzini J, Cartalis C (2007) An improved algorithm for the detection of plumes caused by natural or technological hazards using AVHRR imagery. Remote Sens Environ 108:393–406CrossRef Chrysoulakis N, Herlin I, Prastacos P, Yahia H, Grazzini J, Cartalis C (2007) An improved algorithm for the detection of plumes caused by natural or technological hazards using AVHRR imagery. Remote Sens Environ 108:393–406CrossRef
35.
Zurück zum Zitat Fraser RH, Abuelgasim A, Latifovic R (2005) A method for detecting large-scale forest cover change using coarse spatial resolution imagery. Remote Sens Environ 95:414–427CrossRef Fraser RH, Abuelgasim A, Latifovic R (2005) A method for detecting large-scale forest cover change using coarse spatial resolution imagery. Remote Sens Environ 95:414–427CrossRef
36.
Zurück zum Zitat Giglio L, Csiszar I, Restas A, Morisette JT, Schroeder W, Morton D et al (2008) Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 112:3055–3063CrossRef Giglio L, Csiszar I, Restas A, Morisette JT, Schroeder W, Morton D et al (2008) Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 112:3055–3063CrossRef
37.
Zurück zum Zitat Li ZQ, Khananian A, Fraser RH, Cihlar J (2001) Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans Geosci Remote Sens 39:1859–1870CrossRef Li ZQ, Khananian A, Fraser RH, Cihlar J (2001) Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans Geosci Remote Sens 39:1859–1870CrossRef
38.
Zurück zum Zitat Lin ZY, Chen F, Li B, Yu B, Shirazi Z, Wu QC et al (2017) FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and Initial Assessment Using MODIS and Landsat Data. IEEE Trans Geosci Remote Sens 55:6420–6430CrossRef Lin ZY, Chen F, Li B, Yu B, Shirazi Z, Wu QC et al (2017) FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and Initial Assessment Using MODIS and Landsat Data. IEEE Trans Geosci Remote Sens 55:6420–6430CrossRef
39.
Zurück zum Zitat Xie Z, Song W, Ba R, Li X, Xia L (2018) A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sens 10:1992CrossRef Xie Z, Song W, Ba R, Li X, Xia L (2018) A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sens 10:1992CrossRef
40.
Zurück zum Zitat Koutsias N, Karteris M (1998) Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. Int J Remote Sens 19:3499–3514CrossRef Koutsias N, Karteris M (1998) Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. Int J Remote Sens 19:3499–3514CrossRef
41.
Zurück zum Zitat Fraser RH, Li Z, Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sens Environ 74:362–376CrossRef Fraser RH, Li Z, Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sens Environ 74:362–376CrossRef
42.
Zurück zum Zitat Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974CrossRef Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974CrossRef
43.
Zurück zum Zitat Jain AK (2007) Global estimation of CO emissions using three sets of satellite data for burned area. Atmos Environ 41:6931–6940CrossRef Jain AK (2007) Global estimation of CO emissions using three sets of satellite data for burned area. Atmos Environ 41:6931–6940CrossRef
44.
Zurück zum Zitat Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans Geosci Remote Sens 37:217–226CrossRef Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans Geosci Remote Sens 37:217–226CrossRef
45.
Zurück zum Zitat Stroppiana D, Tansey K, Gregoire J, Pereira JMC (2003) An algorithm for mapping burnt areas in australia using SPOT-VEGETATION data. IEEE Trans Geosci Remote Sens 41:907–909CrossRef Stroppiana D, Tansey K, Gregoire J, Pereira JMC (2003) An algorithm for mapping burnt areas in australia using SPOT-VEGETATION data. IEEE Trans Geosci Remote Sens 41:907–909CrossRef
46.
Zurück zum Zitat Li RR, Kaufman YJ, Hao WM, Salmon JM, Gao BC (2004) A technique for detecting burn scars using MODIS data. IEEE Trans Geosci Remote Sens 42:1300–1308CrossRef Li RR, Kaufman YJ, Hao WM, Salmon JM, Gao BC (2004) A technique for detecting burn scars using MODIS data. IEEE Trans Geosci Remote Sens 42:1300–1308CrossRef
47.
Zurück zum Zitat Bastarrika A, Chuvieco E, Martín MP (2011) Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens Environ 115:1003–1012CrossRef Bastarrika A, Chuvieco E, Martín MP (2011) Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens Environ 115:1003–1012CrossRef
48.
Zurück zum Zitat Fernández-Manso A, Quintano C (2020) A synergetic approach to burned area mapping using maximum entropy modeling trained with hyperspectral data and VIIRS hotspots. Remote Sens 12:858CrossRef Fernández-Manso A, Quintano C (2020) A synergetic approach to burned area mapping using maximum entropy modeling trained with hyperspectral data and VIIRS hotspots. Remote Sens 12:858CrossRef
49.
Zurück zum Zitat Fernandez A, Illera P, Casanova JL (1997) Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sens Environ 60:153–162CrossRef Fernandez A, Illera P, Casanova JL (1997) Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sens Environ 60:153–162CrossRef
50.
Zurück zum Zitat Barbosa PM, Gregoire JM, Pereira JMC (1999) An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens Environ 69:253–263CrossRef Barbosa PM, Gregoire JM, Pereira JMC (1999) An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens Environ 69:253–263CrossRef
51.
Zurück zum Zitat Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data - a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286CrossRef Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data - a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286CrossRef
52.
Zurück zum Zitat Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113:408–420CrossRef Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113:408–420CrossRef
53.
Zurück zum Zitat Lanorte A, Danese M, Lasaponara R, Murgante B (2013) Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int J Appl Earth Obs Geoinf 20:42–51 Lanorte A, Danese M, Lasaponara R, Murgante B (2013) Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int J Appl Earth Obs Geoinf 20:42–51
54.
Zurück zum Zitat Brovkina O, Stojanović M, Milanović S, Latypov I, Marković N, Cienciala E (2020) Monitoring of post-fire forest scars in Serbia based on satellite Sentinel-2 data. Geomat Nat Haz Risk 11:2315–2339CrossRef Brovkina O, Stojanović M, Milanović S, Latypov I, Marković N, Cienciala E (2020) Monitoring of post-fire forest scars in Serbia based on satellite Sentinel-2 data. Geomat Nat Haz Risk 11:2315–2339CrossRef
55.
Zurück zum Zitat Loboda T, O’Neal KJ, Csiszar I (2007) Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens Environ 109:429–442CrossRef Loboda T, O’Neal KJ, Csiszar I (2007) Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens Environ 109:429–442CrossRef
56.
Zurück zum Zitat Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R (2010) The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. Remote Sens Environ 114:2548–2563CrossRef Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R (2010) The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. Remote Sens Environ 114:2548–2563CrossRef
57.
Zurück zum Zitat Chuvieco E, Martín MP, Palacios A (2010) Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int J Remote Sens 23:5103–5110CrossRef Chuvieco E, Martín MP, Palacios A (2010) Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int J Remote Sens 23:5103–5110CrossRef
58.
Zurück zum Zitat Stroppiana D, Bordogna G, Carrara P, Boschetti M, Boschetti L, Brivio PA (2012) A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J Photogramm Remote Sens 69:88–102CrossRef Stroppiana D, Bordogna G, Carrara P, Boschetti M, Boschetti L, Brivio PA (2012) A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J Photogramm Remote Sens 69:88–102CrossRef
59.
Zurück zum Zitat Cao X, Chen J, Matsushita B, Imura H, Wang L (2009) An automatic method for burn scar mapping using support vector machines. Int J Remote Sens 30:577–594CrossRef Cao X, Chen J, Matsushita B, Imura H, Wang L (2009) An automatic method for burn scar mapping using support vector machines. Int J Remote Sens 30:577–594CrossRef
60.
Zurück zum Zitat Syifa M, Panahi M, Lee C-W (2020) Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sens 12:623CrossRef Syifa M, Panahi M, Lee C-W (2020) Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sens 12:623CrossRef
61.
Zurück zum Zitat Stroppiana D, Grégoire JM, Pereira JMC (2010) The use of spot vegetation data in a classification tree approach for burnt area mapping in Australian savanna. Int J Remote Sens 24:2131–2151CrossRef Stroppiana D, Grégoire JM, Pereira JMC (2010) The use of spot vegetation data in a classification tree approach for burnt area mapping in Australian savanna. Int J Remote Sens 24:2131–2151CrossRef
62.
Zurück zum Zitat Malambo L, Heatwole CD (2020) Automated training sample definition for seasonal burned area mapping. ISPRS J Photogramm Remote Sens 160:107–123CrossRef Malambo L, Heatwole CD (2020) Automated training sample definition for seasonal burned area mapping. ISPRS J Photogramm Remote Sens 160:107–123CrossRef
63.
Zurück zum Zitat Ba R, Song WG, Li XL, Xie ZX, Lo SM (2019) Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS data. Remote Sens 11(3):326CrossRef Ba R, Song WG, Li XL, Xie ZX, Lo SM (2019) Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS data. Remote Sens 11(3):326CrossRef
64.
Zurück zum Zitat Gouveia C, DaCamara CC, Trigo RM (2010) Post-fire vegetation recovery in Portugal based\newline on spot/vegetation data. Nat Hazard 10:673–684CrossRef Gouveia C, DaCamara CC, Trigo RM (2010) Post-fire vegetation recovery in Portugal based\newline on spot/vegetation data. Nat Hazard 10:673–684CrossRef
65.
Zurück zum Zitat White JD, Ryan KC, Key CC, Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. Int J Wildland Fire 6:125–136CrossRef White JD, Ryan KC, Key CC, Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. Int J Wildland Fire 6:125–136CrossRef
66.
Zurück zum Zitat Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indexes in crop assessments. Remote Sens Environ 35:105–119CrossRef Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indexes in crop assessments. Remote Sens Environ 35:105–119CrossRef
67.
Zurück zum Zitat Henry MC, Hope AS (1998) Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data. Int J Remote Sens 19:3097–3107CrossRef Henry MC, Hope AS (1998) Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data. Int J Remote Sens 19:3097–3107CrossRef
68.
Zurück zum Zitat Veraverbeke S, Gitas I, Katagis T, Polychronaki A, Somers B, Goossens R (2012) Assessing post-fire vegetation recovery using red-near infrared vegetation indices: accounting for background and vegetation variability. ISPRS J Photogramm Remote Sens 68:28–39CrossRef Veraverbeke S, Gitas I, Katagis T, Polychronaki A, Somers B, Goossens R (2012) Assessing post-fire vegetation recovery using red-near infrared vegetation indices: accounting for background and vegetation variability. ISPRS J Photogramm Remote Sens 68:28–39CrossRef
69.
Zurück zum Zitat Lee RJ, Chow TE (2015) Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. Giscience & Remote Sens 52:609–626CrossRef Lee RJ, Chow TE (2015) Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. Giscience & Remote Sens 52:609–626CrossRef
70.
Zurück zum Zitat Chu T, Guo XL, Takeda K (2016) Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest. Ecol Ind 62:32–46CrossRef Chu T, Guo XL, Takeda K (2016) Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest. Ecol Ind 62:32–46CrossRef
71.
Zurück zum Zitat Stueve KM, Cerney DL, Rochefort RM, Kurth LL (2009) Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA. J Veg Sci 20:107–120CrossRef Stueve KM, Cerney DL, Rochefort RM, Kurth LL (2009) Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA. J Veg Sci 20:107–120CrossRef
72.
Zurück zum Zitat Salvia M, Ceballos D, Grings F, Karszenbaum H, Kandus P (2012) Post-fire effects in wetland environments: landscape assessment of plant coverage and soil recovery in the Parana River Delta Marshes Argentina. Fire Ecol 8:17–37CrossRef Salvia M, Ceballos D, Grings F, Karszenbaum H, Kandus P (2012) Post-fire effects in wetland environments: landscape assessment of plant coverage and soil recovery in the Parana River Delta Marshes Argentina. Fire Ecol 8:17–37CrossRef
73.
Zurück zum Zitat Polychronaki A, Gitas IZ, Minchella A (2014) Monitoring post-fire vegetation recovery in the Mediterranean using SPOT and ERS imagery. Int J Wildland Fire 23:631–642CrossRef Polychronaki A, Gitas IZ, Minchella A (2014) Monitoring post-fire vegetation recovery in the Mediterranean using SPOT and ERS imagery. Int J Wildland Fire 23:631–642CrossRef
74.
Zurück zum Zitat Sankey TT, Moffet C, Weber K (2008) Postfire recovery of sagebrush communities: assessment using SPOT-5 and very large-scale aerial imagery. Rangel Ecol Manage 61:598–604CrossRef Sankey TT, Moffet C, Weber K (2008) Postfire recovery of sagebrush communities: assessment using SPOT-5 and very large-scale aerial imagery. Rangel Ecol Manage 61:598–604CrossRef
75.
Zurück zum Zitat Veraverbeke S, Somers B, Gitas I, Katagis T, Polychronaki A, Goossens R (2012) Spectral mixture analysis to assess post-fire vegetation regeneration using landsat thematic mapper imagery: accounting for soil brightness variation. Int J Appl Earth Obs Geoinf 14:1–11 Veraverbeke S, Somers B, Gitas I, Katagis T, Polychronaki A, Goossens R (2012) Spectral mixture analysis to assess post-fire vegetation regeneration using landsat thematic mapper imagery: accounting for soil brightness variation. Int J Appl Earth Obs Geoinf 14:1–11
76.
Zurück zum Zitat Riano D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D et al (2002) Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sens Environ 79:60–71CrossRef Riano D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D et al (2002) Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sens Environ 79:60–71CrossRef
77.
Zurück zum Zitat Liu X, Zhan FB, Hong S, Niu B, Liu Y (2013) Replies to comments on “a bibliometric study of earthquake research: 1900–2010.” Scientometrics 96:933–936CrossRef Liu X, Zhan FB, Hong S, Niu B, Liu Y (2013) Replies to comments on “a bibliometric study of earthquake research: 1900–2010.” Scientometrics 96:933–936CrossRef
78.
Zurück zum Zitat Small H (1973) Co-citation in scientific literature: a new measure of relationship between two documents. J Am Soc Inf Sci 24:265–269CrossRef Small H (1973) Co-citation in scientific literature: a new measure of relationship between two documents. J Am Soc Inf Sci 24:265–269CrossRef
79.
Zurück zum Zitat van Eck NJ, Waltman L (2009) VOSviewer: A computer program for bibliometric mapping. In: Larsen B, Leta J, editors. In: Proceedings of ISSI 2009 - 12th International Conference of the International Society for Scientometrics and Informetrics, 22009: 886–97 van Eck NJ, Waltman L (2009) VOSviewer: A computer program for bibliometric mapping. In: Larsen B, Leta J, editors. In: Proceedings of ISSI 2009 - 12th International Conference of the International Society for Scientometrics and Informetrics, 22009: 886–97
80.
Zurück zum Zitat van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538CrossRef van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538CrossRef
81.
Zurück zum Zitat Waltman L, van Eck NJ, Noyons ECM (2010) A unified approach to mapping and clustering of bibliometric networks. J Informet 4:629–635CrossRef Waltman L, van Eck NJ, Noyons ECM (2010) A unified approach to mapping and clustering of bibliometric networks. J Informet 4:629–635CrossRef
82.
Zurück zum Zitat Malingreau JP, Stephens G, Fellows L (1985) Remote-sensing of forest fires: Kalimantan and North-Borneo in 1982–83. Ambio 14:314–321 Malingreau JP, Stephens G, Fellows L (1985) Remote-sensing of forest fires: Kalimantan and North-Borneo in 1982–83. Ambio 14:314–321
83.
Zurück zum Zitat Hirsch SN (1963) Applications of remote sensing to forest fire detection and suppression. In: Second Symposium on Remote Sensing of the Environment. p. 295–308 Hirsch SN (1963) Applications of remote sensing to forest fire detection and suppression. In: Second Symposium on Remote Sensing of the Environment. p. 295–308
84.
Zurück zum Zitat Aleixandre-Benavent R, Aleixandre-Tudo JL, Castello-Cogollos L, Aleixandre JL (2018) Trends in global research in deforestation A bibliometric analysis. Land Use Policy 72:293–302CrossRef Aleixandre-Benavent R, Aleixandre-Tudo JL, Castello-Cogollos L, Aleixandre JL (2018) Trends in global research in deforestation A bibliometric analysis. Land Use Policy 72:293–302CrossRef
85.
Zurück zum Zitat FAO (2020) The state of the world's forests: forests, biodiversity and people. Rome: Food and Agriculture Organization of the United States FAO (2020) The state of the world's forests: forests, biodiversity and people. Rome: Food and Agriculture Organization of the United States
86.
Zurück zum Zitat Dzikowski P (2018) A bibliometric analysis of born global firms. J Bus Res 85:281–294CrossRef Dzikowski P (2018) A bibliometric analysis of born global firms. J Bus Res 85:281–294CrossRef
87.
Zurück zum Zitat Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159CrossRef Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159CrossRef
88.
Zurück zum Zitat Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanase M, Koutsias N et al (2019) Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens Environ 225:45–64CrossRef Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanase M, Koutsias N et al (2019) Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens Environ 225:45–64CrossRef
89.
Zurück zum Zitat Yebra M, Dennison PE, Chuvieco E, Riano D, Zylstra P, Hunt ER et al (2013) A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sens Environ 136:455–468CrossRef Yebra M, Dennison PE, Chuvieco E, Riano D, Zylstra P, Hunt ER et al (2013) A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sens Environ 136:455–468CrossRef
90.
Zurück zum Zitat San-Miguel-Ayanz J, Ravail N, Kelha V, Ollero A (2005) Active fire detection for fire emergency management: Potential and limitations for the operational use of remote sensing. Nat Hazards 35:361–376CrossRef San-Miguel-Ayanz J, Ravail N, Kelha V, Ollero A (2005) Active fire detection for fire emergency management: Potential and limitations for the operational use of remote sensing. Nat Hazards 35:361–376CrossRef
91.
Zurück zum Zitat Pereira JMC (2003) Remote sensing of burned areas in tropical savannas. Int J Wildland Fire 12:259–270CrossRef Pereira JMC (2003) Remote sensing of burned areas in tropical savannas. Int J Wildland Fire 12:259–270CrossRef
92.
Zurück zum Zitat Thyagharajan KK, Vignesh T (2019) Soft computing techniques for land use and land cover monitoring with multispectral remote sensing images: a review. Arch Comput Methods Eng 26:275–301CrossRef Thyagharajan KK, Vignesh T (2019) Soft computing techniques for land use and land cover monitoring with multispectral remote sensing images: a review. Arch Comput Methods Eng 26:275–301CrossRef
93.
Zurück zum Zitat Norman LM, Middleton BR, Wilson NR (2018) Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area. J Appl Remote Sens 12:19CrossRef Norman LM, Middleton BR, Wilson NR (2018) Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area. J Appl Remote Sens 12:19CrossRef
94.
Zurück zum Zitat Running SW, Justice CO, Salomonson V, Hall D, Barker J, Kaufmann YJ et al (1994) Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int J Remote Sens 15:3587–3620CrossRef Running SW, Justice CO, Salomonson V, Hall D, Barker J, Kaufmann YJ et al (1994) Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int J Remote Sens 15:3587–3620CrossRef
95.
Zurück zum Zitat Hao XJ, Qu JJ (2007) Retrieval of real-time live fuel moisture content using MODIS measurements. Remote Sens Environ 108:130–137CrossRef Hao XJ, Qu JJ (2007) Retrieval of real-time live fuel moisture content using MODIS measurements. Remote Sens Environ 108:130–137CrossRef
96.
Zurück zum Zitat Uyeda KA, Stow DA, Riggan PJ (2015) Tracking MODIS NDVI time series to estimate fuel accumulation. Remote Sens Lett 6:587–596CrossRef Uyeda KA, Stow DA, Riggan PJ (2015) Tracking MODIS NDVI time series to estimate fuel accumulation. Remote Sens Lett 6:587–596CrossRef
97.
Zurück zum Zitat Wang LL, Qu JJ, Hao XJ (2008) Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agric For Meteorol 148:1767–1776CrossRef Wang LL, Qu JJ, Hao XJ (2008) Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agric For Meteorol 148:1767–1776CrossRef
98.
Zurück zum Zitat Lanorte A, Lasaponara R (2008) Fuel type characterization based on coarse resolution MODIS satellite data. Iforest-Biogeosci Forest 1:60–64CrossRef Lanorte A, Lasaponara R (2008) Fuel type characterization based on coarse resolution MODIS satellite data. Iforest-Biogeosci Forest 1:60–64CrossRef
99.
Zurück zum Zitat Zheng ZY, Nunohiro E, Yamasaki K, Mackin KJ, Matsushita K, Park JG (2010) Using MODIS data to evaluate forest fire risk in East Asia area. Inf Int Interdiscip J 13:1055–1058 Zheng ZY, Nunohiro E, Yamasaki K, Mackin KJ, Matsushita K, Park JG (2010) Using MODIS data to evaluate forest fire risk in East Asia area. Inf Int Interdiscip J 13:1055–1058
100.
Zurück zum Zitat Biswajeet P, Hamid A (2010) Forest fire detection and monitoring using high temporal MODIS and NOAA AVHRR satellite images in Peninsular Malaysia. Disaster Adv 3:18–23 Biswajeet P, Hamid A (2010) Forest fire detection and monitoring using high temporal MODIS and NOAA AVHRR satellite images in Peninsular Malaysia. Disaster Adv 3:18–23
101.
Zurück zum Zitat Justice CO, Roman MO, Csiszar I, Vermote EF, Wolfe RE, Hook SJ et al (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. J Gerontol Ser A Biol Med Sci 118:9753–9765 Justice CO, Roman MO, Csiszar I, Vermote EF, Wolfe RE, Hook SJ et al (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. J Gerontol Ser A Biol Med Sci 118:9753–9765
102.
Zurück zum Zitat Coen JL, Schroeder W (2013) Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations. Geophys Res Lett 40:5536–5541CrossRef Coen JL, Schroeder W (2013) Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations. Geophys Res Lett 40:5536–5541CrossRef
103.
Zurück zum Zitat Santos FLM, Libonati R, Peres LF, Pereira AA, Narcizo LC, Rodrigues JA et al (2020) Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int J Remote Sens 41:8300–8327CrossRef Santos FLM, Libonati R, Peres LF, Pereira AA, Narcizo LC, Rodrigues JA et al (2020) Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int J Remote Sens 41:8300–8327CrossRef
104.
Zurück zum Zitat Zherebtsov G, Kokourov VD, Koshelev VV, Minko NP (1996) Use of NOAA AVHRR data to detect forest fires. Earth Observ Remote Sens 13:783–787 Zherebtsov G, Kokourov VD, Koshelev VV, Minko NP (1996) Use of NOAA AVHRR data to detect forest fires. Earth Observ Remote Sens 13:783–787
105.
Zurück zum Zitat Ruiz JAM, Riano D, Arbelo M, French NHF, Ustin SL, Whiting ML (2012) Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sens Environ 117:407–414CrossRef Ruiz JAM, Riano D, Arbelo M, French NHF, Ustin SL, Whiting ML (2012) Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sens Environ 117:407–414CrossRef
106.
Zurück zum Zitat Soverel NO, Perrakis DDB, Coops NC (2010) Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens Environ 114:1896–1909CrossRef Soverel NO, Perrakis DDB, Coops NC (2010) Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens Environ 114:1896–1909CrossRef
107.
Zurück zum Zitat Akay AE, Oguz H, Karas IR, Aruga K (2009) Using LiDAR technology in forestry activities. Environ Monit Assess 151:117–125CrossRef Akay AE, Oguz H, Karas IR, Aruga K (2009) Using LiDAR technology in forestry activities. Environ Monit Assess 151:117–125CrossRef
108.
Zurück zum Zitat Mallinis G, Mitsopoulos I, Chrysafi I (2018) Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. Gisci Remote Sens 55:1–18CrossRef Mallinis G, Mitsopoulos I, Chrysafi I (2018) Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. Gisci Remote Sens 55:1–18CrossRef
109.
Zurück zum Zitat Kim Y, Hong S (2019) Deep learning-generated nighttime reflectance and daytime radiance of the midwave infrared band of a geostationary satellite. Remote Sens 11:14CrossRef Kim Y, Hong S (2019) Deep learning-generated nighttime reflectance and daytime radiance of the midwave infrared band of a geostationary satellite. Remote Sens 11:14CrossRef
110.
Zurück zum Zitat Larsen A, Hanigan I, Reich BJ, Qin Y, Cope M, Morgan G et al (2021) A deep learning approach to identify smoke plumes in satellite imagery in near-real time for health risk communication. J Eposure Sci Environ Epidemiol 31:170–176CrossRef Larsen A, Hanigan I, Reich BJ, Qin Y, Cope M, Morgan G et al (2021) A deep learning approach to identify smoke plumes in satellite imagery in near-real time for health risk communication. J Eposure Sci Environ Epidemiol 31:170–176CrossRef
111.
Zurück zum Zitat Hu XK, Ban YF, Nascetti A (2021) Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens 13:29 Hu XK, Ban YF, Nascetti A (2021) Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens 13:29
112.
Zurück zum Zitat Lasaponara R, Tucci B (2019) Identification of burned areas and severity using SAR Sentinel-1. IEEE Geosci Remote Sens Lett 16:917–921CrossRef Lasaponara R, Tucci B (2019) Identification of burned areas and severity using SAR Sentinel-1. IEEE Geosci Remote Sens Lett 16:917–921CrossRef
114.
Zurück zum Zitat Lasko K (2021) Incorporating Sentinel-1 SAR imagery with the MODIS MCD64A1 burned area product to improve burn date estimates and reduce burn date uncertainty in wildland fire mapping. Geocarto Int 36:340–360CrossRef Lasko K (2021) Incorporating Sentinel-1 SAR imagery with the MODIS MCD64A1 burned area product to improve burn date estimates and reduce burn date uncertainty in wildland fire mapping. Geocarto Int 36:340–360CrossRef
115.
Zurück zum Zitat Brovkina O, Stojanovic M, Milanovic S, Latypov I, Markovic N, Cienciala E (2020) Monitoring of post-fire forest scars in Serbia based on satellite Sentinel-2 data. Geomat Nat Haz Risk 11:2315–2339CrossRef Brovkina O, Stojanovic M, Milanovic S, Latypov I, Markovic N, Cienciala E (2020) Monitoring of post-fire forest scars in Serbia based on satellite Sentinel-2 data. Geomat Nat Haz Risk 11:2315–2339CrossRef
116.
Zurück zum Zitat Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702CrossRef Gibson R, Danaher T, Hehir W, Collins L (2020) A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens Environ 240:111702CrossRef
117.
Zurück zum Zitat Lasaponara R, Proto AM, Aromando A, Cardettini G, Varela V, Danese M (2020) On the mapping of burned areas and burn severity using self organizing map and Sentinel-2 Data. IEEE Geosci Remote Sens Lett 17:854–858CrossRef Lasaponara R, Proto AM, Aromando A, Cardettini G, Varela V, Danese M (2020) On the mapping of burned areas and burn severity using self organizing map and Sentinel-2 Data. IEEE Geosci Remote Sens Lett 17:854–858CrossRef
118.
Zurück zum Zitat Delcourt CJF, Combee A, Izbicki B, Mack MC, Maximov T, Petrov R et al (2021) Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forests. Remote Sens 13(12):2311CrossRef Delcourt CJF, Combee A, Izbicki B, Mack MC, Maximov T, Petrov R et al (2021) Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forests. Remote Sens 13(12):2311CrossRef
119.
Zurück zum Zitat Seydi ST, Akhoondzadeh M, Amani M, Mahdavi S (2021) Wildfire damage assessment over Australia using Sentinel-2 imagery and MODIS land cover product within the Google Earth Engine Cloud Platform. Remote Sens 13(2):2020CrossRef Seydi ST, Akhoondzadeh M, Amani M, Mahdavi S (2021) Wildfire damage assessment over Australia using Sentinel-2 imagery and MODIS land cover product within the Google Earth Engine Cloud Platform. Remote Sens 13(2):2020CrossRef
120.
Zurück zum Zitat Wang S, Baig MHA, Liu S, Wan H, Wu T, Yang Y (2018) Estimating the area burned by agricultural fires from landsat 8 data using the vegetation difference index and burn scar index. Int J Wildland Fire 27:217–227CrossRef Wang S, Baig MHA, Liu S, Wan H, Wu T, Yang Y (2018) Estimating the area burned by agricultural fires from landsat 8 data using the vegetation difference index and burn scar index. Int J Wildland Fire 27:217–227CrossRef
121.
Zurück zum Zitat Yankovich KS, Yankovich EP, Baranovskiy NV (2019) Classification of vegetation to estimate forest fire danger using landsat 8 images: case study. Math Prob Eng. 2019:1–14CrossRef Yankovich KS, Yankovich EP, Baranovskiy NV (2019) Classification of vegetation to estimate forest fire danger using landsat 8 images: case study. Math Prob Eng. 2019:1–14CrossRef
122.
Zurück zum Zitat Karpachevskiy A, Lednev S, Semenkov I, Sharapova A, Nagiyev S, Koroleva T (2021) Delineation of burned arid landscapes using Landsat 8 OLI data: a case study of Karaganda region in Kazakhstan. Arid Land Res Manag 35:292–310CrossRef Karpachevskiy A, Lednev S, Semenkov I, Sharapova A, Nagiyev S, Koroleva T (2021) Delineation of burned arid landscapes using Landsat 8 OLI data: a case study of Karaganda region in Kazakhstan. Arid Land Res Manag 35:292–310CrossRef
123.
Zurück zum Zitat Pacheco AdP, Junior JAdS, Ruiz-Armenteros AM, Henriques RFF (2021) Assessment of k-nearest neighbor and random forest classifiers for mapping forest fire areas in Central Portugal using Landsat-8, Sentinel-2, and Terra imagery. Remote Sens 13(7):1345CrossRef Pacheco AdP, Junior JAdS, Ruiz-Armenteros AM, Henriques RFF (2021) Assessment of k-nearest neighbor and random forest classifiers for mapping forest fire areas in Central Portugal using Landsat-8, Sentinel-2, and Terra imagery. Remote Sens 13(7):1345CrossRef
124.
Zurück zum Zitat Knopp L, Wieland M, Raettich M, Martinis S (2012) A deep learning approach for burned area segmentation with Sentinel-2 data. Remote Sens 12(15):2422CrossRef Knopp L, Wieland M, Raettich M, Martinis S (2012) A deep learning approach for burned area segmentation with Sentinel-2 data. Remote Sens 12(15):2422CrossRef
125.
Zurück zum Zitat Pinto MM, Libonati R, Trigo RM, Trigo IF, DaCamara CC (2020) A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J Photogramm Remote Sens 160:260–274CrossRef Pinto MM, Libonati R, Trigo RM, Trigo IF, DaCamara CC (2020) A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J Photogramm Remote Sens 160:260–274CrossRef
126.
Zurück zum Zitat Hu X, Ban Y, Nascetti A (2021) Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens 13(8):1509CrossRef Hu X, Ban Y, Nascetti A (2021) Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens 13(8):1509CrossRef
127.
Zurück zum Zitat Sharma A, Kumar H, Mittal K, Kauhsal S, Kaushal M, Gupta D et al (2021) IoT and deep learning-inspired multi-model framework for monitoring active fire locations in agricultural activities. Comput Electr Eng 93:107216CrossRef Sharma A, Kumar H, Mittal K, Kauhsal S, Kaushal M, Gupta D et al (2021) IoT and deep learning-inspired multi-model framework for monitoring active fire locations in agricultural activities. Comput Electr Eng 93:107216CrossRef
128.
Zurück zum Zitat Zhang Q, Ge L, Zhang R, Metternicht GI, Liu C, Du Z (2021) Towards a deep-learning-based framework of Sentinel-2 imagery for automated active fire detection. Remote Sens 13(23):4790CrossRef Zhang Q, Ge L, Zhang R, Metternicht GI, Liu C, Du Z (2021) Towards a deep-learning-based framework of Sentinel-2 imagery for automated active fire detection. Remote Sens 13(23):4790CrossRef
129.
Zurück zum Zitat Oulad Sayad Y, Mousannif H, Al MH (2019) Predictive modeling of wildfires: a new dataset and machine learning approach. Fire Saf J 104:130–146CrossRef Oulad Sayad Y, Mousannif H, Al MH (2019) Predictive modeling of wildfires: a new dataset and machine learning approach. Fire Saf J 104:130–146CrossRef
130.
Zurück zum Zitat Janiec P, Gadal S (2020) A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sens 12(24):4157CrossRef Janiec P, Gadal S (2020) A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sens 12(24):4157CrossRef
131.
Zurück zum Zitat Kalantar B, Ueda N, Idrees MO, Janizadeh S, Ahmadi K, Shabani F (2020) Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens 12(22):3682CrossRef Kalantar B, Ueda N, Idrees MO, Janizadeh S, Ahmadi K, Shabani F (2020) Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens 12(22):3682CrossRef
132.
Zurück zum Zitat Quintano C, Fernandez-Manso A, Roberts DA (2020) Enhanced burn severity estimation using fine resolution ET and MESMA fraction images with machine learning algorithm. Remote Sens Environ 244:111815CrossRef Quintano C, Fernandez-Manso A, Roberts DA (2020) Enhanced burn severity estimation using fine resolution ET and MESMA fraction images with machine learning algorithm. Remote Sens Environ 244:111815CrossRef
133.
Zurück zum Zitat Qiu J, Wang H, Shen W, Zhang Y, Su H, Li M (2021) Quantifying forest fire and post-fire vegetation recovery in the Daxin’anling Area of Northeastern China using Landsat time-series data and machine learning. Remote Sens 13(4):792CrossRef Qiu J, Wang H, Shen W, Zhang Y, Su H, Li M (2021) Quantifying forest fire and post-fire vegetation recovery in the Daxin’anling Area of Northeastern China using Landsat time-series data and machine learning. Remote Sens 13(4):792CrossRef
134.
Zurück zum Zitat Stroppiana D, Bordogna G, Sali M, Boschetti M, Sona G, Brivio PA (2021) A fully automatic, interpretable and adaptive machine learning approach to map burned area from remote sensing. ISPRS Int J Geo-Inf 10(8):546CrossRef Stroppiana D, Bordogna G, Sali M, Boschetti M, Sona G, Brivio PA (2021) A fully automatic, interpretable and adaptive machine learning approach to map burned area from remote sensing. ISPRS Int J Geo-Inf 10(8):546CrossRef
135.
Zurück zum Zitat Iban MC, Sekertekin A (2022) Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: a case study of Adana and Mersin provinces Turkey. Ecol Inf 69:101647CrossRef Iban MC, Sekertekin A (2022) Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: a case study of Adana and Mersin provinces Turkey. Ecol Inf 69:101647CrossRef
136.
Zurück zum Zitat van Leeuwen TN, Visser MS, Moed HF, Nederhof TJ, van Raan AFJ (2003) Holy Grail of science policy: Exploring and combining bibliometric tools in search of scientific excellence. Scientometrics 57:257–280CrossRef van Leeuwen TN, Visser MS, Moed HF, Nederhof TJ, van Raan AFJ (2003) Holy Grail of science policy: Exploring and combining bibliometric tools in search of scientific excellence. Scientometrics 57:257–280CrossRef
137.
Zurück zum Zitat Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T et al (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072CrossRef Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T et al (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072CrossRef
138.
Zurück zum Zitat Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825CrossRef Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825CrossRef
139.
Zurück zum Zitat Ackerman SA, Strabala KI, Menzel WP, Frey RA, Moeller CC, Gumley LE (1998) Discriminating clear sky from clouds with MODIS. J Gerontol Ser A Biol Med Sci 103:32141–32157 Ackerman SA, Strabala KI, Menzel WP, Frey RA, Moeller CC, Gumley LE (1998) Discriminating clear sky from clouds with MODIS. J Gerontol Ser A Biol Med Sci 103:32141–32157
140.
Zurück zum Zitat Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstatter-Weissenmayer A, Richter A et al (1999) The global ozone monitoring experiment (GOME): mission concept and first scientific results. J Atmos Sci 56:151–175CrossRef Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstatter-Weissenmayer A, Richter A et al (1999) The global ozone monitoring experiment (GOME): mission concept and first scientific results. J Atmos Sci 56:151–175CrossRef
141.
Zurück zum Zitat Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22:3719–3746CrossRef Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22:3719–3746CrossRef
142.
Zurück zum Zitat Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443CrossRef Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443CrossRef
143.
Zurück zum Zitat Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933CrossRef Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933CrossRef
144.
Zurück zum Zitat Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P et al (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15:319–345CrossRef Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P et al (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15:319–345CrossRef
145.
Zurück zum Zitat Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci USA 107:8650–8655CrossRef Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci USA 107:8650–8655CrossRef
146.
Zurück zum Zitat Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102:13521–13525CrossRef Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102:13521–13525CrossRef
147.
Zurück zum Zitat Breiman L (2001) Random forests. Mach Learn 45(5):32 Breiman L (2001) Random forests. Mach Learn 45(5):32
148.
Zurück zum Zitat Piao Y, Lee D, Park S, Kim HG, Jin YH (2022) Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea. Geomat Nat Haz Risk 13:432–450CrossRef Piao Y, Lee D, Park S, Kim HG, Jin YH (2022) Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea. Geomat Nat Haz Risk 13:432–450CrossRef
149.
Zurück zum Zitat Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA et al (2009) Fire in the Earth system. Science 324:481–484CrossRef Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA et al (2009) Fire in the Earth system. Science 324:481–484CrossRef
150.
Zurück zum Zitat Haghani M (2023) What makes an informative and publication-worthy scientometric analysis of literature: a guide for authors, reviewers and editors. Transp Res Interdiscip Perspect 22:100956 Haghani M (2023) What makes an informative and publication-worthy scientometric analysis of literature: a guide for authors, reviewers and editors. Transp Res Interdiscip Perspect 22:100956
Metadaten
Titel
Application of Remote Sensing Technology in Wildfire Research: Bibliometric Perspective
verfasst von
Xiaolian Li
Jie Li
Milad Haghani
Publikationsdatum
08.01.2024
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01531-3

Weitere Artikel der Ausgabe 1/2024

Fire Technology 1/2024 Zur Ausgabe