Skip to main content

2023 | OriginalPaper | Buchkapitel

15. Artificial Intelligence for Process Control in Remanufacturing

verfasst von : Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan

Erschienen in: EcoDesign for Sustainable Products, Services and Social Systems I

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence (AI) is a vital technology amongst the emerging technologies. It plays a crucial role in maximising resource efficiency, especially in the production and remanufacturing sectors where they can be deployed in different applications to enhance material utilisation, thereby providing environmental benefits alongside the potential to revolutionise vital remanufacturing processes. Most importantly, the inspection and process control applications use AI-based methods in modelling inspection and process control using deep learning, a hierarchical technique for learning abstract concepts from data. For example, the use of deep learning models in the post-cleaning process control involves collecting case-specific samples of images of components and products and using the samples to train a deep convolutional neural network. The model is used to classify dry parts and parts with water clogs for further processing. Besides, the process control activates another subsystem when wet samples are identified from the live image feed.
The deep learning-based system for inspection and process control was tested on the torque converter (TC) system casings for process control during the post-cleaning inspection process. The data was collected from Mackie Transmission Limited, a torque converter remanufacturing facility in Glasgow United Kingdom and used to test the developed model. An 80–20% train test split for the training and test samples, respectively, alongside the live video feed sample, confirming the generalisability of the model. The model was trained on an NVIDIA RTX2080 SUPER GPU and was effective in recognising the torque converter system components to an accuracy of 99% when tested on the test samples. The process control application also produced a prediction accuracy of 99.9% on the test set used for the model evaluation. These results outline the feasibility of using digital technologies in enhancing production during remanufacturing. This model can improve remanufacturing inspection by automating the post-cleaning inspection process, improving process efficiency and maximising resources used to achieve remanufacturing, thereby minimising environmental impact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gehin A, Zwolinski P, Brissaud D (2008) A tool to implement sustainable end-of-life strategies in the product development phase. J Clean Prod 16(5):566–576CrossRef Gehin A, Zwolinski P, Brissaud D (2008) A tool to implement sustainable end-of-life strategies in the product development phase. J Clean Prod 16(5):566–576CrossRef
2.
Zurück zum Zitat Paterson DAPP, Ijomah WL, Windmill JFCC (2017) End-of-life decision tool with emphasis on remanufacturing. J Clean Prod 148:653–664CrossRef Paterson DAPP, Ijomah WL, Windmill JFCC (2017) End-of-life decision tool with emphasis on remanufacturing. J Clean Prod 148:653–664CrossRef
3.
Zurück zum Zitat Matsumoto M, Ijomah W (2013) Remanufacturing. In: Kauffman J, Lee K-M (eds) Handbook of sustainable engineering. Springer, Dordrecht, pp 389–408CrossRef Matsumoto M, Ijomah W (2013) Remanufacturing. In: Kauffman J, Lee K-M (eds) Handbook of sustainable engineering. Springer, Dordrecht, pp 389–408CrossRef
4.
Zurück zum Zitat Lahrour Y, Brissaud D (2018) A technical assessment of product/component re-manufacturability for additive remanufacturing. Procedia CIRP 69:142–147CrossRef Lahrour Y, Brissaud D (2018) A technical assessment of product/component re-manufacturability for additive remanufacturing. Procedia CIRP 69:142–147CrossRef
5.
Zurück zum Zitat Subramoniam R, Huisingh D, Chinnam RB (2009) Remanufacturing for the automotive aftermarket-strategic factors: literature review and future research needs. J Clean Prod 17(13):1163–1174CrossRef Subramoniam R, Huisingh D, Chinnam RB (2009) Remanufacturing for the automotive aftermarket-strategic factors: literature review and future research needs. J Clean Prod 17(13):1163–1174CrossRef
6.
Zurück zum Zitat Tolio T et al (2017) Design, management and control of demanufacturing and remanufacturing systems. CIRP Ann Manuf Technol 66(2):585–609CrossRef Tolio T et al (2017) Design, management and control of demanufacturing and remanufacturing systems. CIRP Ann Manuf Technol 66(2):585–609CrossRef
7.
Zurück zum Zitat Feroz AK, Zo H, Chiravuri A (2021) Digital transformation and environmental sustainability: a review and research agenda. Sustainability 13(3):1–20CrossRef Feroz AK, Zo H, Chiravuri A (2021) Digital transformation and environmental sustainability: a review and research agenda. Sustainability 13(3):1–20CrossRef
8.
Zurück zum Zitat Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43(1):51–60CrossRef Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43(1):51–60CrossRef
9.
Zurück zum Zitat Yin S, Li X, Gao H, Kaynak O (2015) Data-based techniques focused on modern industry: an overview. IEEE Trans Ind Electron 62(1):657–667CrossRef Yin S, Li X, Gao H, Kaynak O (2015) Data-based techniques focused on modern industry: an overview. IEEE Trans Ind Electron 62(1):657–667CrossRef
10.
Zurück zum Zitat Gu J et al (2017) Recent advances in convolutional neural networks. Pattern Recognit Gu J et al (2017) Recent advances in convolutional neural networks. Pattern Recognit
11.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
12.
Zurück zum Zitat Peraković D, Periša M, Zorić P (2020) Challenges and issues of ICT in industry 4.0. In: Lecture notes in mechanical engineering. Pleiades Publishing, pp 259–269 Peraković D, Periša M, Zorić P (2020) Challenges and issues of ICT in industry 4.0. In: Lecture notes in mechanical engineering. Pleiades Publishing, pp 259–269
13.
Zurück zum Zitat Shang C, Yang F, Huang D, Lyu W (2014) Data-driven soft sensor development based on deep learning technique. J Process Control 24(3):223–233CrossRef Shang C, Yang F, Huang D, Lyu W (2014) Data-driven soft sensor development based on deep learning technique. J Process Control 24(3):223–233CrossRef
14.
Zurück zum Zitat Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814CrossRef Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814CrossRef
15.
Zurück zum Zitat Dong D, McAvoy TJ (1996) Nonlinear principal component analysis—based on principal curves and neural networks. Comput Chem Eng 20(1):65–78CrossRef Dong D, McAvoy TJ (1996) Nonlinear principal component analysis—based on principal curves and neural networks. Comput Chem Eng 20(1):65–78CrossRef
16.
Zurück zum Zitat Butzer S, Kemp D, Steinhilper R, Schötz S (2017) Identification of approaches for remanufacturing 4.0. In: 2016 IEEE European technology and engineering management summit, E-TEMS 2016, pp 1–6 Butzer S, Kemp D, Steinhilper R, Schötz S (2017) Identification of approaches for remanufacturing 4.0. In: 2016 IEEE European technology and engineering management summit, E-TEMS 2016, pp 1–6
17.
Zurück zum Zitat Gopakumar V, Tiwari S, Rahman I (2018) A deep learning based data driven soft sensor for bioprocesses. Biochem Eng J 136:28–39CrossRef Gopakumar V, Tiwari S, Rahman I (2018) A deep learning based data driven soft sensor for bioprocesses. Biochem Eng J 136:28–39CrossRef
18.
Zurück zum Zitat Hu XD, Kong FZ, Yao JH (2011) Development of monitoring and control system for laser remanufacturing. Appl Mech Mater 44–47:81–85 Hu XD, Kong FZ, Yao JH (2011) Development of monitoring and control system for laser remanufacturing. Appl Mech Mater 44–47:81–85
19.
Zurück zum Zitat M. Mishraa, J. Nayakb, B. Naikc, and A. Abraham, "Deep learning in electrical utility industry: a comprehensive review of a decade of research." 2020. M. Mishraa, J. Nayakb, B. Naikc, and A. Abraham, "Deep learning in electrical utility industry: a comprehensive review of a decade of research." 2020.
20.
Zurück zum Zitat Neal RM (1992) Connectionist learning of belief networks. Artif Intell 56(1):71–113CrossRef Neal RM (1992) Connectionist learning of belief networks. Artif Intell 56(1):71–113CrossRef
21.
22.
Zurück zum Zitat Weng R, Lu J, Tan Y-P, Zhou J (2016) Learning cascaded deep auto-encoder networks for face alignment. IEEE Trans Multimed 18(10):2066–2078CrossRef Weng R, Lu J, Tan Y-P, Zhou J (2016) Learning cascaded deep auto-encoder networks for face alignment. IEEE Trans Multimed 18(10):2066–2078CrossRef
23.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT Press, Cambridge, MA Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT Press, Cambridge, MA
24.
Zurück zum Zitat Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554CrossRef Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554CrossRef
25.
Zurück zum Zitat Sun M, Zhang X, Van Hamme H, Zheng TF (2016) Unseen noise estimation using separable deep auto encoder for speech enhancement. IEEE/ACM Trans Audio Speech Lang Process 24(1):93–104CrossRef Sun M, Zhang X, Van Hamme H, Zheng TF (2016) Unseen noise estimation using separable deep auto encoder for speech enhancement. IEEE/ACM Trans Audio Speech Lang Process 24(1):93–104CrossRef
26.
Zurück zum Zitat Ponce J, Forsyth D (2012) Computer vision—a modern approach, 2nd edn. Pearson Higher Education Ponce J, Forsyth D (2012) Computer vision—a modern approach, 2nd edn. Pearson Higher Education
27.
Zurück zum Zitat Nwankpa CE, Ijomah W, Gachagan A, Marshall S (2020) Activation functions: comparison of trends in practice and research for deep learning. In: 2nd International conference on computational sciences and technologies (INCCST 20), pp 124–133 Nwankpa CE, Ijomah W, Gachagan A, Marshall S (2020) Activation functions: comparison of trends in practice and research for deep learning. In: 2nd International conference on computational sciences and technologies (INCCST 20), pp 124–133
28.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25
29.
Zurück zum Zitat Zeiler MD, Fergus R (2014) Visualising and understanding convolutional networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8689 LNCS, no. PART 1, pp 818–833 Zeiler MD, Fergus R (2014) Visualising and understanding convolutional networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8689 LNCS, no. PART 1, pp 818–833
30.
Zurück zum Zitat Le Cun Y et al (1989) Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun Mag 27(11):41–46CrossRef Le Cun Y et al (1989) Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun Mag 27(11):41–46CrossRef
31.
Zurück zum Zitat Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9 Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9
32.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE international conference on computer vision (ICCV), pp 1026–1034CrossRef He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE international conference on computer vision (ICCV), pp 1026–1034CrossRef
33.
Zurück zum Zitat Nwankpa CE (2020) Advances in optimisation algorithms and techniques for deep learning. Adv Sci Technol Eng Syst J 5(5):563–577CrossRef Nwankpa CE (2020) Advances in optimisation algorithms and techniques for deep learning. Adv Sci Technol Eng Syst J 5(5):563–577CrossRef
34.
Zurück zum Zitat Nwankpa C, Eze S, Ijomah W, Gachagan A, Marshall S (2020) Achieving remanufacturing inspection using deep learning. J Remanuf Nwankpa C, Eze S, Ijomah W, Gachagan A, Marshall S (2020) Achieving remanufacturing inspection using deep learning. J Remanuf
35.
Zurück zum Zitat Nwankpa C, Eze S, Ijomah WL (2020) Deep learning based visual automated sorting system for remanufacturing. In: 2020 IEEE green technologies conference (GreenTech), pp 196–198CrossRef Nwankpa C, Eze S, Ijomah WL (2020) Deep learning based visual automated sorting system for remanufacturing. In: 2020 IEEE green technologies conference (GreenTech), pp 196–198CrossRef
36.
Zurück zum Zitat Schlüter M, Niebuhr C, Lehr J, Krüger J (2018) Vision-based identification service for remanufacturing sorting. Procedia Manuf 21:384–391CrossRef Schlüter M, Niebuhr C, Lehr J, Krüger J (2018) Vision-based identification service for remanufacturing sorting. Procedia Manuf 21:384–391CrossRef
37.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ICLR
38.
Zurück zum Zitat Rosebrock A (2018) Deep learning for computer vision with python, 2nd edn. PyImageSearch Rosebrock A (2018) Deep learning for computer vision with python, 2nd edn. PyImageSearch
Metadaten
Titel
Artificial Intelligence for Process Control in Remanufacturing
verfasst von
Chigozie Enyinna Nwankpa
Winifred Ijomah
Anthony Gachagan
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3818-6_15