Skip to main content

2024 | OriginalPaper | Buchkapitel

Biosynthesis Application and Modification of Protein Fiber

verfasst von : Fazal-ur-Rehman, Aiman Fatima, Shahid Adeel, Muhammad Abdul Qayyum, Hamid Ali Tanveer

Erschienen in: Biopolymers in the Textile Industry

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wool, silk, and cashmere are natural fibers, proteins which are developed of condensed alpha-amino acids found in animal sources. They possess unique characteristics, including warmth, moisture-wicking ability, and resilience. Wool, a widely used protein fiber, is synthesized from keratin produced by specialized cells in sheep's skin. The wool life cycle involves shearing, cleaning, spinning, and manufacturing into various products like clothing, blankets, and upholstery. The chemical composition of wool includes keratin, which gives it its distinctive properties. Wool finds applications in clothing, home textiles, outdoor gear, filtration, insulation, and various industrial sectors. Protein fibers, such as collagen and silk, have diverse medical applications. They are commonly used in wound dressings, tissue engineering scaffolds, and controlled drug delivery systems. Protein fibers offer unique properties, including biocompatibility, biodegradability, and mechanical strength, making them valuable in the development of artificial organs and surgical materials. Additionally, these fibers have potential applications in bioadhesives for tissue sealing and wound closure. As research continues, exploring the full potential of protein fibers from various sources may lead to innovative advancements in medical technology and therapeutics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdussalam-Mohammed, W., Amar, I. A., AlMaky, M. M., Abdelhameed, A., & Errayes, A. O. (2023). Silver nanoparticles and protein polymer-based nanomedicines. In Protein-Based Biopolymers, 3(1), 239–311. Abdussalam-Mohammed, W., Amar, I. A., AlMaky, M. M., Abdelhameed, A., & Errayes, A. O. (2023). Silver nanoparticles and protein polymer-based nanomedicines. In Protein-Based Biopolymers, 3(1), 239–311.
2.
Zurück zum Zitat Ali, M. A., Gad-Allah, A. A. I., Al-Betar, E. M., & El-Newashy, R. F. (2022). Effect of blending ratio and sewing characteristics on performance properties for barki wool/ polyester fabrics. Journal of Natural Fibers, 19(16), 13864–13875. Ali, M. A., Gad-Allah, A. A. I., Al-Betar, E. M., & El-Newashy, R. F. (2022). Effect of blending ratio and sewing characteristics on performance properties for barki wool/ polyester fabrics. Journal of Natural Fibers, 19(16), 13864–13875.
3.
Zurück zum Zitat Allafi, F. A., Hossain, M. S., Shaah, M., Lalung, J., Ab Kadir, M. O., & Ahmad, M. I. (2022). A review on characterization of sheep wool impurities and existing techniques of cleaning: industrial and environmental challenges. Journal of Natural Fibers, 19(14), 8669–8687.CrossRef Allafi, F. A., Hossain, M. S., Shaah, M., Lalung, J., Ab Kadir, M. O., & Ahmad, M. I. (2022). A review on characterization of sheep wool impurities and existing techniques of cleaning: industrial and environmental challenges. Journal of Natural Fibers, 19(14), 8669–8687.CrossRef
4.
Zurück zum Zitat Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497–512.CrossRef Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497–512.CrossRef
5.
Zurück zum Zitat Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30(2), 101216.CrossRef Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30(2), 101216.CrossRef
6.
Zurück zum Zitat Amin, N., Rehman, F. U., Adeel, S., Ahamd, T., Muneer, M., & Haji, A. (2020). Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 27(4), 6851–6860.PubMedCrossRef Amin, N., Rehman, F. U., Adeel, S., Ahamd, T., Muneer, M., & Haji, A. (2020). Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 27(4), 6851–6860.PubMedCrossRef
7.
Zurück zum Zitat Andonegi, M., Correia, D. M., Costa, C. M., Lanceros-Mendez, S., de la Caba, K., & Guerrero, P. (2022). Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 25(2), 124943.CrossRef Andonegi, M., Correia, D. M., Costa, C. M., Lanceros-Mendez, S., de la Caba, K., & Guerrero, P. (2022). Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 25(2), 124943.CrossRef
8.
Zurück zum Zitat Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713.PubMedPubMedCentralCrossRef Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Asquith, R. S. (2012). Chemistry of natural protein fibers. Springer Science & Business Media. Asquith, R. S. (2012). Chemistry of natural protein fibers. Springer Science & Business Media.
10.
Zurück zum Zitat Aznar-Cervantes, S. D., Monteagudo Santesteban, B., & Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12), 1059.PubMedPubMedCentralCrossRef Aznar-Cervantes, S. D., Monteagudo Santesteban, B., & Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12), 1059.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Buccitelli, C., & Selbach, M. (2020). mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics, 21(10), 630–644PubMedCrossRef Buccitelli, C., & Selbach, M. (2020). mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics21(10), 630–644PubMedCrossRef
12.
Zurück zum Zitat Dandolo, V. (2019). The Art of Rearing Silk-Worms. Cambridge University Press. Dandolo, V. (2019). The Art of Rearing Silk-Worms. Cambridge University Press.
13.
Zurück zum Zitat Deng, C., Yang, J., He, H., Ma, Z., Wang, W., Zhang, Y., & Wang, J. (2021). 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomaterials Science, 9(14), 4891–4903.PubMedCrossRef Deng, C., Yang, J., He, H., Ma, Z., Wang, W., Zhang, Y., & Wang, J. (2021). 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomaterials Science, 9(14), 4891–4903.PubMedCrossRef
14.
Zurück zum Zitat Doblhofer, E., Heidebrecht, A., & Scheibel, T. (2015). To spin or not to spin: spider silk fibers and more. Applied microbiology and biotechnology, 99, 9361–9380.PubMedCrossRef Doblhofer, E., Heidebrecht, A., & Scheibel, T. (2015). To spin or not to spin: spider silk fibers and more. Applied microbiology and biotechnology, 99, 9361–9380.PubMedCrossRef
15.
Zurück zum Zitat Donato, R. K., & Mija, A. (2019). Keratin associations with synthetic, biosynthetic and natural polymers: an extensive review. Polymers, 12(1), 32.PubMedPubMedCentralCrossRef Donato, R. K., & Mija, A. (2019). Keratin associations with synthetic, biosynthetic and natural polymers: an extensive review. Polymers, 12(1), 32.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat El-Ghorab, A., El-Massry, K. F., & Shibamoto, T. (2007). Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry, 55(22), 9124–9127. El-Ghorab, A., El-Massry, K. F., & Shibamoto, T. (2007). Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry, 55(22), 9124–9127.
17.
Zurück zum Zitat EL-Sayed, H., & El-Hawary, N. (2022). The use of modified Fenton chemistry for reducing energy consumption during dyeing of wool and nylon 6 fabrics with acid dyes. Journal of Natural Fibers, 19(13), 6865–6877. EL-Sayed, H., & El-Hawary, N. (2022). The use of modified Fenton chemistry for reducing energy consumption during dyeing of wool and nylon 6 fabrics with acid dyes. Journal of Natural Fibers, 19(13), 6865–6877.
18.
Zurück zum Zitat Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829–12848.CrossRef Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829–12848.CrossRef
19.
Zurück zum Zitat Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14(2), 1558925019872200. Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14(2), 1558925019872200.
20.
Zurück zum Zitat Frank, E. N., Hick, M. V. H., & Castillo, M. F. (2022). Determination of the efficiency of the AM2 dehairing technology process with Llama fiber of different types of fleeces and Alpaca Huacaya fiber. Journal of Textile Engineering & Fashion Technology, 8(1), 6–8.CrossRef Frank, E. N., Hick, M. V. H., & Castillo, M. F. (2022). Determination of the efficiency of the AM2 dehairing technology process with Llama fiber of different types of fleeces and Alpaca Huacaya fiber. Journal of Textile Engineering & Fashion Technology, 8(1), 6–8.CrossRef
21.
Zurück zum Zitat Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.PubMedCrossRef Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.PubMedCrossRef
22.
Zurück zum Zitat Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.PubMedPubMedCentralCrossRef Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gopu, P., Murali, N., Saravanan, R., Balasundaram, B., & Malarmathi, M. (2021). Study on wool quality and traditional pattern of wool weaving from tiruchy black sheep in Tamil Nadu. Indian Journal of Small Ruminants, 27(2), 271–274.CrossRef Gopu, P., Murali, N., Saravanan, R., Balasundaram, B., & Malarmathi, M. (2021). Study on wool quality and traditional pattern of wool weaving from tiruchy black sheep in Tamil Nadu. Indian Journal of Small Ruminants, 27(2), 271–274.CrossRef
24.
Zurück zum Zitat Guo, C. (2021). Insect and animal-originated fibres: silk and wool. In Fundamentals of Natural Fibres and Textiles, 11(2), 153–178). Guo, C. (2021). Insect and animal-originated fibres: silk and wool. In Fundamentals of Natural Fibres and Textiles, 11(2), 153–178).
25.
Zurück zum Zitat Haji, A., Ashraf, S., Nasiriboroumand, M., & Lievens, C. (2020). Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polymers, 21(3), 743–750.CrossRef Haji, A., Ashraf, S., Nasiriboroumand, M., & Lievens, C. (2020). Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polymers, 21(3), 743–750.CrossRef
26.
Zurück zum Zitat Hao, W., Xu, J., Li, R., Zhao, X., Qiu, L., & Yang, W. (2019). Developing superhydrophobic rock wool for high-viscosity oil/ water separation. Chemical Engineering Journal, 36(8), 837–846.CrossRef Hao, W., Xu, J., Li, R., Zhao, X., Qiu, L., & Yang, W. (2019). Developing superhydrophobic rock wool for high-viscosity oil/ water separation. Chemical Engineering Journal, 36(8), 837–846.CrossRef
27.
Zurück zum Zitat Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.PubMedPubMedCentralCrossRef Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Hearle, J. W. S. (2002). Physical properties of wool. Wool: Science and Technology, 34(5), 80–129. Hearle, J. W. S. (2002). Physical properties of wool. Wool: Science and Technology, 34(5), 80–129.
29.
Zurück zum Zitat Holland, C., Numata, K., Rnjak‐Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 8(1), 1800465.CrossRef Holland, C., Numata, K., Rnjak‐Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 8(1), 1800465.CrossRef
30.
Zurück zum Zitat Hsing, W. H., Lin, J. H., & Kao, K. T. (2007). The investigation of fiber carding performance with the application of static electricity to carded nonwoven fabric process. Journal of Materials Processing Technology, 192(4), 543–548.CrossRef Hsing, W. H., Lin, J. H., & Kao, K. T. (2007). The investigation of fiber carding performance with the application of static electricity to carded nonwoven fabric process. Journal of Materials Processing Technology, 192(4), 543–548.CrossRef
31.
Zurück zum Zitat Hu, J., Xiong, Z., Liu, Y., & Lin, J. (2022). A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. International Journal of Biological Macromolecules, 204, 419–428.PubMedCrossRef Hu, J., Xiong, Z., Liu, Y., & Lin, J. (2022). A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. International Journal of Biological Macromolecules, 204, 419–428.PubMedCrossRef
32.
Zurück zum Zitat Huson, M. G. (2018). Properties of wool. In Handbook of properties of textile and technical fibres, 11(2), 59–103.CrossRef Huson, M. G. (2018). Properties of wool. In Handbook of properties of textile and technical fibres, 11(2), 59–103.CrossRef
33.
Zurück zum Zitat Ismail, S. A., Abou Taleb, M., Emran, M. A., Mowafi, S., Hashem, A. M., & El-Sayed, H. (2022). Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers, 19(10), 3697–3709.CrossRef Ismail, S. A., Abou Taleb, M., Emran, M. A., Mowafi, S., Hashem, A. M., & El-Sayed, H. (2022). Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers, 19(10), 3697–3709.CrossRef
34.
Zurück zum Zitat Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., & Liu, Z. (2019). Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Advanced Functional Materials, 29(18), 1808241.CrossRef Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., & Liu, Z. (2019). Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Advanced Functional Materials, 29(18), 1808241.CrossRef
35.
Zurück zum Zitat Johari, N., Moroni, L., & Samadikuchaksaraei, A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 134(2), 109–842. Johari, N., Moroni, L., & Samadikuchaksaraei, A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 134(2), 109–842.
36.
Zurück zum Zitat Jóźwiak-Niedźwiedzka, D., & Fantilli, A. P. (2020). Wool-reinforced cement based composites. Materials, 13(16), 3590.PubMed Jóźwiak-Niedźwiedzka, D., & Fantilli, A. P. (2020). Wool-reinforced cement based composites. Materials, 13(16), 3590.PubMed
37.
Zurück zum Zitat Karahan, H. A., Özdogğan, E., Demir, A., Koçum, I. C., Öktem, T., & Ayhan, H. (2009). Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers. Textile Research Journal, 79(14), 1260–1265.CrossRef Karahan, H. A., Özdogğan, E., Demir, A., Koçum, I. C., Öktem, T., & Ayhan, H. (2009). Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers. Textile Research Journal, 79(14), 1260–1265.CrossRef
38.
Zurück zum Zitat Katashima, T., Malay, A. D., & Numata, K. (2019). Chemical modification and biosynthesis of silk-like polymers. Current Opinion in Chemical Engineering, 24(6), 61–68.CrossRef Katashima, T., Malay, A. D., & Numata, K. (2019). Chemical modification and biosynthesis of silk-like polymers. Current Opinion in Chemical Engineering, 24(6), 61–68.CrossRef
39.
Zurück zum Zitat Kazakov, F., Sattarova, N., Rajabov, A., & Nodirova, M. (2021). A study of the study of the basic physico-mechanical and technological properties of camel wool fiber. Maтpицa нayчнoгo пoзнaния, (6–2), 31–40. Kazakov, F., Sattarova, N., Rajabov, A., & Nodirova, M. (2021). A study of the study of the basic physico-mechanical and technological properties of camel wool fiber. Maтpицa нayчнoгo пoзнaния, (6–2), 31–40.
40.
Zurück zum Zitat Khusanbaev, A. M., Madaminov, J. Z., & Oxunjonov, Z. N. (2020). Effect of radiation on physical-mechanical properties of silk threads. Theoretical & Applied Science, 17(5), 209–212.CrossRef Khusanbaev, A. M., Madaminov, J. Z., & Oxunjonov, Z. N. (2020). Effect of radiation on physical-mechanical properties of silk threads. Theoretical & Applied Science, 17(5), 209–212.CrossRef
41.
Zurück zum Zitat Kim, D. W., Lee, O. J., Kim, S. W., Ki, C. S., Chao, J. R., Yoo, H., & Park, C. H. (2015). Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 70, 48–56.PubMedCrossRef Kim, D. W., Lee, O. J., Kim, S. W., Ki, C. S., Chao, J. R., Yoo, H., & Park, C. H. (2015). Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 70, 48–56.PubMedCrossRef
42.
Zurück zum Zitat Knuuttila, K. (2022). Biosynthesis of wool. 18(6),78–95. Knuuttila, K. (2022). Biosynthesis of wool. 18(6),78–95.
43.
Zurück zum Zitat Kumar, A., Sawal, R. K., Narula, H. K., Kumar, S., & Kumar, R. (2019). Subjective and objective/ machine evaluation of wool luster in magra sheep vis-a-vis wool grading and animal selection. Journal of Natural Fibers, 16(5), 644–651.CrossRef Kumar, A., Sawal, R. K., Narula, H. K., Kumar, S., & Kumar, R. (2019). Subjective and objective/ machine evaluation of wool luster in magra sheep vis-a-vis wool grading and animal selection. Journal of Natural Fibers, 16(5), 644–651.CrossRef
44.
Zurück zum Zitat Kumar, V., Dureja, H., & Garg, V. (2023). Traditional Use, Phytochemistry and pharmacology of ananas comosus (L.) Merr.(Family Bromeliaceae): An update. Current Nutrition & Food Science, 19(4), 428–441. Kumar, V., Dureja, H., & Garg, V. (2023). Traditional Use, Phytochemistry and pharmacology of ananas comosus (L.) Merr.(Family Bromeliaceae): An update. Current Nutrition & Food Science, 19(4), 428–441.
45.
Zurück zum Zitat Li, W., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85(3), 102416.PubMedCrossRef Li, W., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85(3), 102416.PubMedCrossRef
46.
Zurück zum Zitat Li, X., Zong, L., Wu, X., You, J., Li, M., & Li, C. (2018). Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 6(13), 3212–3219.CrossRef Li, X., Zong, L., Wu, X., You, J., Li, M., & Li, C. (2018). Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 6(13), 3212–3219.CrossRef
47.
Zurück zum Zitat Liang, Y., Pakdel, E., Zhang, M., Sun, L., & Wang, X. (2019). Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160, 80–88.CrossRef Liang, Y., Pakdel, E., Zhang, M., Sun, L., & Wang, X. (2019). Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160, 80–88.CrossRef
48.
Zurück zum Zitat Lin, Z., Huang, W., Zhang, J., Fan, J. S., & Yang, D. (2009). Solution structure of eggcase silk protein and its implications for silk fiber formation. Proceedings of the National Academy of Sciences, 106(22), 8906–8911.CrossRef Lin, Z., Huang, W., Zhang, J., Fan, J. S., & Yang, D. (2009). Solution structure of eggcase silk protein and its implications for silk fiber formation. Proceedings of the National Academy of Sciences, 106(22), 8906–8911.CrossRef
49.
Zurück zum Zitat Ma, S. Y., Smagghe, G., & Xia, Q. Y. (2019). Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Science, 26(6), 964–972.PubMedCrossRef Ma, S. Y., Smagghe, G., & Xia, Q. Y. (2019). Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Science, 26(6), 964–972.PubMedCrossRef
50.
Zurück zum Zitat Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223(21), 115023.PubMedCrossRef Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223(21), 115023.PubMedCrossRef
51.
Zurück zum Zitat Murmu, S. B., Debnath, S., & Bhutia, C. N. (2023). Evaluation of the german angora rabbit fiber produced in the northeast region of india. Journal of Natural Fibers, 20(2), 2210323.CrossRef Murmu, S. B., Debnath, S., & Bhutia, C. N. (2023). Evaluation of the german angora rabbit fiber produced in the northeast region of india. Journal of Natural Fibers, 20(2), 2210323.CrossRef
52.
Zurück zum Zitat Nawaz, N., Bakar, N. K. A., Mahmud, H. N. M. E., & Jamaludin, N. S. (2021). Molecularly imprinted polymers-based DNA biosensors. Analytical Biochemistry, 630(4), 114–328. Nawaz, N., Bakar, N. K. A., Mahmud, H. N. M. E., & Jamaludin, N. S. (2021). Molecularly imprinted polymers-based DNA biosensors. Analytical Biochemistry, 630(4), 114–328.
53.
Zurück zum Zitat Nerger, B. A., Brun, P. T., & Nelson, C. M. (2019). Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft matter, 15(28), 5728–5738.PubMedPubMedCentralCrossRef Nerger, B. A., Brun, P. T., & Nelson, C. M. (2019). Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft matter, 15(28), 5728–5738.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). Use of mineral wool and its products in the construction of buildings and structures. Scientific Progress, 2(6), 1880–1882. Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). Use of mineral wool and its products in the construction of buildings and structures. Scientific Progress, 2(6), 1880–1882.
56.
Zurück zum Zitat Patrucco, A., Visai, L., Fassina, L., Magenes, G., & Tonin, C. (2019). Keratin-based matrices from wool fibers and human hair. In Materials for Biomedical Engineering, 11(2), 375–403). Patrucco, A., Visai, L., Fassina, L., Magenes, G., & Tonin, C. (2019). Keratin-based matrices from wool fibers and human hair. In Materials for Biomedical Engineering, 11(2), 375–403).
57.
Zurück zum Zitat Prajapati, C. D., Smith, E., Kane, F., & Shen, J. (2019). Selective enzymatic modification of wool/ polyester blended fabrics for surface patterning. Journal of Cleaner Production, 211(4), 909–921.CrossRef Prajapati, C. D., Smith, E., Kane, F., & Shen, J. (2019). Selective enzymatic modification of wool/ polyester blended fabrics for surface patterning. Journal of Cleaner Production, 211(4), 909–921.CrossRef
58.
Zurück zum Zitat Qaxxorovich, N. Q., Juraevich, Y. N., Nozimjonovna, O. I., & Baxtiyorovna, N. B. (2021). The perspective directions for the development of sericulture. The American Journal of Engineering and Technology, 3(09), 24–27. Qaxxorovich, N. Q., Juraevich, Y. N., Nozimjonovna, O. I., & Baxtiyorovna, N. B. (2021). The perspective directions for the development of sericulture. The American Journal of Engineering and Technology, 3(09), 24–27.
59.
Zurück zum Zitat Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91–106. Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91–106.
60.
Zurück zum Zitat Raza, Z. A., & Khatoon, R. (2023). Lipolysis of poly (hydroxybutyrate)‐based films for the tailored release of hydrophilic proteins. Chemistry Select, 8(1), 202203417. Raza, Z. A., & Khatoon, R. (2023). Lipolysis of poly (hydroxybutyrate)‐based films for the tailored release of hydrophilic proteins. Chemistry Select, 8(1), 202203417.
61.
Zurück zum Zitat Reddy, N., & Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology, 29(10), 490–498.PubMedCrossRef Reddy, N., & Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology29(10), 490–498.PubMedCrossRef
62.
Zurück zum Zitat Rippon, J. A. (2013). The structure of wool. The Coloration of Wool and Other Keratin Fibres, 2(1),1–42. Rippon, J. A. (2013). The structure of wool. The Coloration of Wool and Other Keratin Fibres, 2(1),1–42.
63.
Zurück zum Zitat Rosenman, G., Beker, P., Koren, I., Yevnin, M., Bank‐Srour, B., Mishina, E., & Semin, S. (2011). Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Journal of Peptide Science, 17(2), 75–87.PubMedCrossRef Rosenman, G., Beker, P., Koren, I., Yevnin, M., Bank‐Srour, B., Mishina, E., & Semin, S. (2011). Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Journal of Peptide Science, 17(2), 75–87.PubMedCrossRef
64.
Zurück zum Zitat Sacchero, D., Roger, J. Q., Romero, S., Maurino, J., & Gonzalez, E. B. (2022). Community-based vicuña (Vicugna vicugna) shearing in the arid Puna of Argentina: Body weight and fiber traits obtained during the chakus. Small Ruminant Research, 216, 106829.CrossRef Sacchero, D., Roger, J. Q., Romero, S., Maurino, J., & Gonzalez, E. B. (2022). Community-based vicuña (Vicugna vicugna) shearing in the arid Puna of Argentina: Body weight and fiber traits obtained during the chakus. Small Ruminant Research, 216, 106829.CrossRef
65.
Zurück zum Zitat Safer, A. M. (2017). A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. Journal of Nanomedicine and Nanotechnology, 8(2), 111–116. Safer, A. M. (2017). A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. Journal of Nanomedicine and Nanotechnology, 8(2), 111–116.
66.
Zurück zum Zitat Saha, S., Kumar, P., Raj, S., & Sentisuba, B. M. (2022). Sericulture: management and practices of mulberry silkworm. International Journal of Pharmaceutical Research and Applications, 7(2), 35–46. Saha, S., Kumar, P., Raj, S., & Sentisuba, B. M. (2022). Sericulture: management and practices of mulberry silkworm. International Journal of Pharmaceutical Research and Applications, 7(2), 35–46.
67.
Zurück zum Zitat Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 16(4), 427–433.PubMedCrossRef Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 16(4), 427–433.PubMedCrossRef
68.
Zurück zum Zitat Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/ cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate Polymers, 86(2), 462–468.CrossRef Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/ cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate Polymers, 86(2), 462–468.CrossRef
69.
Zurück zum Zitat Sheraliyevna, A. T. (2023). To study the chemical composition of woolen fabric. American Journal of Interdisciplinary Research and Development, 16(5), 21–24. Sheraliyevna, A. T. (2023). To study the chemical composition of woolen fabric. American Journal of Interdisciplinary Research and Development, 16(5), 21–24.
70.
Zurück zum Zitat Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/ silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275.PubMedCrossRef Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/ silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275.PubMedCrossRef
71.
Zurück zum Zitat Sun, J., Chen, J., Liu, K., & Zeng, H. (2021). Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7(5), 615–623.CrossRef Sun, J., Chen, J., Liu, K., & Zeng, H. (2021). Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7(5), 615–623.CrossRef
72.
Zurück zum Zitat Sun, J., Li, B., Wang, F., Feng, J., Ma, C., Liu, K., & Zhang, H. (2021). Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. Chinese Chemical Society Chemistry, 3(6), 1669–1677. Sun, J., Li, B., Wang, F., Feng, J., Ma, C., Liu, K., & Zhang, H. (2021). Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. Chinese Chemical Society Chemistry, 3(6), 1669–1677.
73.
Zurück zum Zitat Sun, J., Su, J., Ma, C., Göstl, R., Herrmann, A., Liu, K., & Zhang, H. (2020). Fabrication and mechanical properties of engineered protein‐based adhesives and fibers. Advanced Materials, 32(6), 1906360.CrossRef Sun, J., Su, J., Ma, C., Göstl, R., Herrmann, A., Liu, K., & Zhang, H. (2020). Fabrication and mechanical properties of engineered protein‐based adhesives and fibers. Advanced Materials, 32(6), 1906360.CrossRef
74.
Zurück zum Zitat Tang, X., Liu, H., Shi, Z., Chen, Q., Kang, X., Wang, Y., & Zhao, P. (2020). Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1‐L in the posterior silk gland. Insect Molecular Biology, 29(5), 452–465.PubMedCrossRef Tang, X., Liu, H., Shi, Z., Chen, Q., Kang, X., Wang, Y., & Zhao, P. (2020). Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1‐L in the posterior silk gland. Insect Molecular Biology, 29(5), 452–465.PubMedCrossRef
75.
Zurück zum Zitat Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: colored and luminescent. Advanced Materials, 24(11), 1388–1397.PubMedCrossRef Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: colored and luminescent. Advanced Materials, 24(11), 1388–1397.PubMedCrossRef
76.
Zurück zum Zitat Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2019). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2019). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef
77.
Zurück zum Zitat Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.CrossRef
78.
Zurück zum Zitat Thomas, S., & Thomas, J. (2021). A review on existing methods and classification algorithms used for sex determination of silkworm in sericulture. In Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), 567–579. Thomas, S., & Thomas, J. (2021). A review on existing methods and classification algorithms used for sex determination of silkworm in sericulture. In Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), 567–579.
79.
Zurück zum Zitat Wan, S., Cheng, W., Li, J., Wang, F., Xing, X., Sun, J., & Liu, K. (2022). Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 15(10), 9192–9198.CrossRef Wan, S., Cheng, W., Li, J., Wang, F., Xing, X., Sun, J., & Liu, K. (2022). Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 15(10), 9192–9198.CrossRef
80.
Zurück zum Zitat Wang, C. Y., Jiao, K., Yan, J. F., Wan, M. C., Wan, Q. Q., Breschi, L., & Niu, L. N. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 116(14), 100–712. Wang, C. Y., Jiao, K., Yan, J. F., Wan, M. C., Wan, Q. Q., Breschi, L., & Niu, L. N. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 116(14), 100–712.
81.
Zurück zum Zitat Wang, X., Li, Y., & Zhong, C. (2015). Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 3(25), 4953–4958.PubMedCrossRef Wang, X., Li, Y., & Zhong, C. (2015). Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 3(25), 4953–4958.PubMedCrossRef
82.
Zurück zum Zitat Wang, X., Li, Y., Liu, Q., Tan, X., Xie, X., Xia, Q., & Zhao, P. (2019). GC/ MS-based metabolomics analysis reveals active fatty acids biosynthesis in the filippi's gland of the silkworm, bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 105(11), 1–9.PubMed Wang, X., Li, Y., Liu, Q., Tan, X., Xie, X., Xia, Q., & Zhao, P. (2019). GC/ MS-based metabolomics analysis reveals active fatty acids biosynthesis in the filippi's gland of the silkworm, bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 105(11), 1–9.PubMed
83.
Zurück zum Zitat Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., ... & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157. Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., ... & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157.
84.
Zurück zum Zitat Wang, Y., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., & Wang, F. (2019). Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials science, 7(11), 4536–4546.PubMedCrossRef Wang, Y., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., & Wang, F. (2019). Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials science, 7(11), 4536–4546.PubMedCrossRef
85.
Zurück zum Zitat Xu, L., Zhang, N., Wang, Q., Yuan, J., Yu, Y., Wang, P., & Fan, X. (2019). Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers and Polymers, 20, 261–270.CrossRef Xu, L., Zhang, N., Wang, Q., Yuan, J., Yu, Y., Wang, P., & Fan, X. (2019). Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers and Polymers, 20, 261–270.CrossRef
86.
Zurück zum Zitat Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148(9), 1084–1097.PubMedCrossRef Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148(9), 1084–1097.PubMedCrossRef
87.
Zurück zum Zitat Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2, 1–15.CrossRef Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2, 1–15.CrossRef
88.
Zurück zum Zitat Zhang, L., Piipponen, M., Liu, Z., Li, D., Bian, X., Niu, G., & Xu Landén, N. (2023). Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death & Differentiation, 4(1),1–15. Zhang, L., Piipponen, M., Liu, Z., Li, D., Bian, X., Niu, G., & Xu Landén, N. (2023). Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death & Differentiation, 4(1),1–15.
89.
Zurück zum Zitat Zhang, P., Li, J., Sun, J., Li, Y., Liu, K., Wang, F., & Su, J. (2022). Bioengineered protein fibers with anti‐freezing mechanical behaviors. Advanced Functional Materials, 32(48), 2209006.CrossRef Zhang, P., Li, J., Sun, J., Li, Y., Liu, K., Wang, F., & Su, J. (2022). Bioengineered protein fibers with anti‐freezing mechanical behaviors. Advanced Functional Materials, 32(48), 2209006.CrossRef
90.
Zurück zum Zitat Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. American Chemical Society Chemical Biology. Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. American Chemical Society Chemical Biology.
91.
Zurück zum Zitat Zhang, P., Wang, Q., Shen, J., Wang, P., Yuan, J., & Fan, X. (2019). Enzymatic Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, Assembly, and Biomedical thiol–ene click reaction: an eco-friendly approach for MPEGMA-grafted modification of wool fibers. American Chemical Society Sustainable Chemistry & Engineering, 7(15), 13446–13455. Zhang, P., Wang, Q., Shen, J., Wang, P., Yuan, J., & Fan, X. (2019). Enzymatic Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, Assembly, and Biomedical thiol–ene click reaction: an eco-friendly approach for MPEGMA-grafted modification of wool fibers. American Chemical Society Sustainable Chemistry & Engineering, 7(15), 13446–13455.
92.
Zurück zum Zitat Zhang, W., & Fan, Y. (2021). Structure of keratin. Fibrous Proteins: Design, Synthesis, and Assembly, 11(2),41–53.CrossRef Zhang, W., & Fan, Y. (2021). Structure of keratin. Fibrous Proteins: Design, Synthesis, and Assembly, 11(2),41–53.CrossRef
93.
Zurück zum Zitat Zhang, Y., Lu, L., Chen, Y., Wang, J., Chen, Y., Mao, C., & Yang, M. (2019). Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 7(12), 5232–5237.PubMedCrossRef Zhang, Y., Lu, L., Chen, Y., Wang, J., Chen, Y., Mao, C., & Yang, M. (2019). Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 7(12), 5232–5237.PubMedCrossRef
94.
Zurück zum Zitat Zhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., & Hickford, J. G. (2021). Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes, 12(5), 625.PubMedPubMedCentralCrossRef Zhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., & Hickford, J. G. (2021). Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes, 12(5), 625.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Zhou, Q., Wang, W., Zhang, Y., Hurren, C. J., & Li, Q. (2020). Analyzing the thermal and hygral behavior of wool and its impact on fabric dimensional stability for wool processing and garment manufacturing. Textile Research Journal, 90(19–20), 2175–2183.CrossRef Zhou, Q., Wang, W., Zhang, Y., Hurren, C. J., & Li, Q. (2020). Analyzing the thermal and hygral behavior of wool and its impact on fabric dimensional stability for wool processing and garment manufacturing. Textile Research Journal, 90(19–20), 2175–2183.CrossRef
96.
Zurück zum Zitat Zhou, Q., Wu, W., Zhou, S., Xing, T., Sun, G., & Chen, G. (2020). Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 382(14), 122988.CrossRef Zhou, Q., Wu, W., Zhou, S., Xing, T., Sun, G., & Chen, G. (2020). Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 382(14), 122988.CrossRef
97.
Zurück zum Zitat Zhu, P., Li, D., Yang, Q., Su, P., Wang, H., Heimann, K., & Zhang, W. (2021). Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal. Research, 56, 102319.CrossRef Zhu, P., Li, D., Yang, Q., Su, P., Wang, H., Heimann, K., & Zhang, W. (2021). Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal. Research, 56, 102319.CrossRef
98.
Zurück zum Zitat Zuber, M., Adeel, S., Rehman, F. U., Anjum, F., Muneer, M., Abdullah, M., & Zia, K. M. (2020). Influence of microwave radiation on dyeing of bio-mordanted silk fabric using neem bark (Azadirachta indica)-based tannin natural dye. Journal of Natural Fibers, 17(10), 1410–1422.CrossRef Zuber, M., Adeel, S., Rehman, F. U., Anjum, F., Muneer, M., Abdullah, M., & Zia, K. M. (2020). Influence of microwave radiation on dyeing of bio-mordanted silk fabric using neem bark (Azadirachta indica)-based tannin natural dye. Journal of Natural Fibers, 17(10), 1410–1422.CrossRef
Metadaten
Titel
Biosynthesis Application and Modification of Protein Fiber
verfasst von
Fazal-ur-Rehman
Aiman Fatima
Shahid Adeel
Muhammad Abdul Qayyum
Hamid Ali Tanveer
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.