Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Chemistry and Operation of Li-S Batteries

verfasst von : Nimra Jabeen, Aneeqa Husnain, Umair Azhar, Muhammad Arif, Muhammad Sagir, Muhammad Tanseer Hussain, Muhammad Bilal Tahir

Erschienen in: Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium-sulfur (Li-S) batteries are promising high-energy-density energy storage systems. It is generally agreed that shuttle of the polysulfides in a functional battery is slowed by intense anchoring of the intermediates. However, there is still a lack of knowledge regarding the chemistry involved. Here, using advanced quantum chemical computations, we examine the Li bond chemistry in Li-S batteries with concept of hydrogen bond. The Li bond, a strong dipole-dipole connection between Li-S cathode materials and Li polysulfides, is facilitated by electron-rich donors like pyridinic nitrogen (pN), and is further strengthened by the conjugative and inductive effect of scaffold materials having π-electrons like graphene. This research elucidates the importance of Li bond chemistry in Li-S cells and provides a comprehensive knowledge, which is helpful for rational choice of cathode materials and implementation of Li-S batteries in the practical applications.
Because of sulfur’s natural insulation, substantial volume expansion, shuttling of the soluble polysulfides, and, most critically, slow conversion of polysulfide intermediates, Li-S battery performance is still far from theoretical prediction. The electrochemical performance of Li-S batteries (e.g., lifespan, rate capability, cyclability, etc.) can be influenced by manipulating the architectures and functions of polymer materials; hence, they play an essential role in solving these problems. In this chapter a brief introduction of Li-S battery followed by its fundamental electrochemistry and challenges has been given. The mechanisms of operation of the Li-S batteries are then considered, with special emphasis on the uses of several polymers in all components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baloch M (2016) Strategies towards performance enhancement in lithium-sulphur batteries. Doctoral dissertation, Universidad del País Vasco-Euskal Herriko Unibertsitatea Baloch M (2016) Strategies towards performance enhancement in lithium-sulphur batteries. Doctoral dissertation, Universidad del País Vasco-Euskal Herriko Unibertsitatea
Zurück zum Zitat Bhargav A, He J, Gupta A, Manthiram A (2020) Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2):285–291CrossRef Bhargav A, He J, Gupta A, Manthiram A (2020) Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2):285–291CrossRef
Zurück zum Zitat Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries—ten critical questions. Chemistry Eur J 22(22):7324–7351CrossRef Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries—ten critical questions. Chemistry Eur J 22(22):7324–7351CrossRef
Zurück zum Zitat Cairns EJ, Hwa Y (2017) Sulfur cathode. In: Li-S batteries: the challenges, chemistry, materials, and future perspectives. World Scientific, London, p 31CrossRef Cairns EJ, Hwa Y (2017) Sulfur cathode. In: Li-S batteries: the challenges, chemistry, materials, and future perspectives. World Scientific, London, p 31CrossRef
Zurück zum Zitat Cao R, Xu W, Lv D, Xiao J, Zhang JG (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5(16):1402273CrossRef Cao R, Xu W, Lv D, Xiao J, Zhang JG (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5(16):1402273CrossRef
Zurück zum Zitat Cao R, Chen J, Han KS, Xu W, Mei D, Bhattacharya P, … Zhang JG (2016) Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv Funct Mater 26(18):3059–3066 Cao R, Chen J, Han KS, Xu W, Mei D, Bhattacharya P, … Zhang JG (2016) Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv Funct Mater 26(18):3059–3066
Zurück zum Zitat Demir-Cakan R (2017) Introduction to rechargeable lithium–sulfur batteries. Li-s batteries: the challenges, chemistry, materials, and future perspectives, 1 Demir-Cakan R (2017) Introduction to rechargeable lithium–sulfur batteries. Li-s batteries: the challenges, chemistry, materials, and future perspectives, 1
Zurück zum Zitat Fotouhi A, Auger DJ, O’Neill L, Cleaver T, Walus S (2017) Lithium-sulfur battery technology readiness and applications—a review. Energies 10(12):1937CrossRef Fotouhi A, Auger DJ, O’Neill L, Cleaver T, Walus S (2017) Lithium-sulfur battery technology readiness and applications—a review. Energies 10(12):1937CrossRef
Zurück zum Zitat Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q (2017) Lithium bond chemistry in lithium–sulfur batteries. Angew Chem 129(28):8290–8294CrossRef Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q (2017) Lithium bond chemistry in lithium–sulfur batteries. Angew Chem 129(28):8290–8294CrossRef
Zurück zum Zitat Johansson P, Demir-Cakan R, Hayashi A, Tatsumisago M (2017) Lithium–sulfur battery electrolytes. In: Li-S batteries: the challenges, chemistry, materials, and future perspectives. World Scientific, London, p 149CrossRef Johansson P, Demir-Cakan R, Hayashi A, Tatsumisago M (2017) Lithium–sulfur battery electrolytes. In: Li-S batteries: the challenges, chemistry, materials, and future perspectives. World Scientific, London, p 149CrossRef
Zurück zum Zitat Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034CrossRefPubMed Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034CrossRefPubMed
Zurück zum Zitat Kim H, Wu F, Lee JT, Nitta N, Lin HT, Oschatz M, … Yushin G (2015) In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater 5(6):1401792 Kim H, Wu F, Lee JT, Nitta N, Lin HT, Oschatz M, … Yushin G (2015) In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater 5(6):1401792
Zurück zum Zitat Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, … Proietti Zaccaria R (2019). A comprehensive understanding of lithium–sulfur battery technology. Adv Funct Mater 29(32):1901730 Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, … Proietti Zaccaria R (2019). A comprehensive understanding of lithium–sulfur battery technology. Adv Funct Mater 29(32):1901730
Zurück zum Zitat Liu Y, Peng B, Wang X, Xie Y, Schaefer HF (2019) The nature of lithium bonding in C2H2Li2, C6Li6, and lithium halide dimers. Organometallics 38:4708–4716CrossRef Liu Y, Peng B, Wang X, Xie Y, Schaefer HF (2019) The nature of lithium bonding in C2H2Li2, C6Li6, and lithium halide dimers. Organometallics 38:4708–4716CrossRef
Zurück zum Zitat Lopez CV, Maladeniya CP, Smith RC (2020) Lithium-sulfur batteries: advances and trends. Electrochem 1(3):226–259CrossRef Lopez CV, Maladeniya CP, Smith RC (2020) Lithium-sulfur batteries: advances and trends. Electrochem 1(3):226–259CrossRef
Zurück zum Zitat McCreary C, An Y, Kim SU, Hwa Y (2021) A perspective on Li/S battery design: modeling and development approaches. Batteries 7(4):82CrossRef McCreary C, An Y, Kim SU, Hwa Y (2021) A perspective on Li/S battery design: modeling and development approaches. Batteries 7(4):82CrossRef
Zurück zum Zitat Piątek J, Afyon S, Budnyak TM, Budnyk S, Sipponen MH, Slabon A (2021) Sustainable Li-ion batteries: chemistry and recycling. Adv Energy Mater 11(43):2003456CrossRef Piątek J, Afyon S, Budnyak TM, Budnyk S, Sipponen MH, Slabon A (2021) Sustainable Li-ion batteries: chemistry and recycling. Adv Energy Mater 11(43):2003456CrossRef
Zurück zum Zitat a) Qiu Y, Rong G, Yang J, Li G, Ma S, Wang X, … Zhang Y (2015) Highly nitridated graphene–Li2S cathodes with stable modulated cycles. Adv Energy Mater 5(23):1501369. b) Sun D, Hwa Y, Shen Y, Huang Y, Cairns EJ (2016) Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells. Nano Energy 26:524–532 a) Qiu Y, Rong G, Yang J, Li G, Ma S, Wang X, … Zhang Y (2015) Highly nitridated graphene–Li2S cathodes with stable modulated cycles. Adv Energy Mater 5(23):1501369. b) Sun D, Hwa Y, Shen Y, Huang Y, Cairns EJ (2016) Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells. Nano Energy 26:524–532
Zurück zum Zitat Rana M, Ahad SA, Li M, Luo B, Wang L, Gentle I, Knibbe R (2019) Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater 18:289–310CrossRef Rana M, Ahad SA, Li M, Luo B, Wang L, Gentle I, Knibbe R (2019) Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater 18:289–310CrossRef
Zurück zum Zitat Son Y, Lee JS, Son Y, Jang JH, Cho J (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater 5(16):1500110CrossRef Son Y, Lee JS, Son Y, Jang JH, Cho J (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater 5(16):1500110CrossRef
Zurück zum Zitat Su YS, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3(1):1–6CrossRef Su YS, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3(1):1–6CrossRef
Zurück zum Zitat Walus S (2015) Lithium/sulfur batteries: development and understanding of the working mechanisms. Doctoral dissertation, Université Grenoble Alpes Walus S (2015) Lithium/sulfur batteries: development and understanding of the working mechanisms. Doctoral dissertation, Université Grenoble Alpes
Zurück zum Zitat Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8(12):3477–3494CrossRef Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8(12):3477–3494CrossRef
Zurück zum Zitat Yang C, Li P, Yu J, Zhao LD, Kong L (2020) Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201:117718CrossRef Yang C, Li P, Yu J, Zhao LD, Kong L (2020) Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201:117718CrossRef
Zurück zum Zitat Yermukhambetova A (2017) Development of lithium sulphur battery and insights into its failure mechanism. Doctoral dissertation, UCL (University College London) Yermukhambetova A (2017) Development of lithium sulphur battery and insights into its failure mechanism. Doctoral dissertation, UCL (University College London)
Zurück zum Zitat Yu S, Cai W, Chen L, Song L, Song Y (2021) Recent advances of metal phosphides for Li–S chemistry. J Energy Chem 55:533–548CrossRef Yu S, Cai W, Chen L, Song L, Song Y (2021) Recent advances of metal phosphides for Li–S chemistry. J Energy Chem 55:533–548CrossRef
Zurück zum Zitat Yuan H, Peng HJ, Huang JQ, Zhang Q (2019) Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective. Adv Mater Interfaces 6(4):1802046CrossRef Yuan H, Peng HJ, Huang JQ, Zhang Q (2019) Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective. Adv Mater Interfaces 6(4):1802046CrossRef
Zurück zum Zitat Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRef Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRef
Metadaten
Titel
Chemistry and Operation of Li-S Batteries
verfasst von
Nimra Jabeen
Aneeqa Husnain
Umair Azhar
Muhammad Arif
Muhammad Sagir
Muhammad Tanseer Hussain
Muhammad Bilal Tahir
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2796-8_3