Skip to main content

2024 | OriginalPaper | Buchkapitel

Comparative Health Risk Assessment of Black Carbon and Particulate Matter Emissions in East India During the COVID-19 First and Second Waves

verfasst von : Dilip Kumar Mahato, Balram Ambade

Erschienen in: Aerosol Optical Depth and Precipitation

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

“Impact of COVID-19 Lockdowns on Air Quality in East India: A Comparative Analysis of PM2.5 and Black Carbon Emissions during the First and Second Waves of the Pandemic” The COVID-19 pandemic has had a devastating toll on human lives worldwide, leading many countries to implement strict lockdowns and restrictions in an effort to combat the virus. While these measures were crucial for public health, they also had significant implications for the global economy and human well-being. One notable effect of the lockdowns was the reduction in emissions of particulate matter (PM2.5), Black Carbon (BC), aerosols, and other air pollutants in the atmosphere. This decline in human activities during the lockdowns contributed to an improvement in air quality. The pandemic unfolded in two waves: the First Wave (March–June 2020) and the Second Wave (March–June 2021). During both of these periods, we closely monitored the levels of PM2.5, BC, and meteorological parameters in the industrial cities of Sakchi (S1) and Gamharia (S2) in East India. In the First Wave, there was a noticeable drop in PM2.5 mass concentrations at S1 and S2, with levels ranging from 134 to 27 μg m−3 and 127 to 34 μg m−3, respectively. Similarly, BC mass concentrations showed a decrease, ranging from 56 to 10 μg m−3 at S1 and 48.8 to 10 μg m−3 at S2. In the Second Wave of COVID-19, we observed a rise in PM2.5 mass concentrations, with levels ranging from 117 to 164 μg m−3 at S1 and 123 to 159 μg m−3 at S2. The corresponding BC mass concentrations ranged from 23.5 to 66.6 μg m−3 at S1 and 23.2 to 71 μg m−3 at S2. This comparison indicates that PM2.5 and BC mass concentrations increased from the first to the Second Wave of the pandemic. However, it is worth noting that due to partial lockdowns or shutdowns during the Second Wave, the mass concentrations might still have been lower compared to regular days. Furthermore, the analysis of backward trajectories revealed that aerosol movement experienced a more significant reduction during the First Wave compared to the Second Wave, which had a moderate effect. In terms of health risks associated with BC exposure, the Npsc values ranged from 20.8 to 103.7 for CM, LC, LBW, and PLED during the First Wave and 14.4 to 61.6 during the Second Wave. In conclusion, the COVID-19 lockdowns had a discernible impact on air quality in East India, with reduced emissions of PM2.5 and BC during the First Wave and a partial improvement during the Second Wave. However, it is crucial to consider the complex interactions between human activities, air pollution, and public health when interpreting these findings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ambade, B., & Kurwadkar, S. (2021). Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown. Air Quality, Atmosphere & Health, 14, 1081–1095. Ambade, B., & Kurwadkar, S. (2021). Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown. Air Quality, Atmosphere & Health, 14, 1081–1095.
Zurück zum Zitat Andrews, M. A., Areekal, B., Rajesh, K. R., Krishnan, J., Suryakala, R., Krishnan, B., Muraly, C. P., & Santhosh, P. V. (2020). First confirmed case of COVID-19 infection in India: A case report. Indian Journal of Medical Research, 151(5), 490–492.CrossRef Andrews, M. A., Areekal, B., Rajesh, K. R., Krishnan, J., Suryakala, R., Krishnan, B., Muraly, C. P., & Santhosh, P. V. (2020). First confirmed case of COVID-19 infection in India: A case report. Indian Journal of Medical Research, 151(5), 490–492.CrossRef
Zurück zum Zitat Banerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modelling: Indian scenario. Atmospheric Research, 164–165, 167–187. Banerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modelling: Indian scenario. Atmospheric Research, 164–165, 167–187.
Zurück zum Zitat Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552.CrossRef Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552.CrossRef
Zurück zum Zitat Cape, J. N., Coyle, M., & Dumitrean, P. (2012). The atmospheric lifetime of black carbon. Atmospheric Environment, 59, 256–263.CrossRef Cape, J. N., Coyle, M., & Dumitrean, P. (2012). The atmospheric lifetime of black carbon. Atmospheric Environment, 59, 256–263.CrossRef
Zurück zum Zitat Das, M., Das, A., Sarkar, R., Saha, S., & Mandal, A. (2020). Examining the impact of lockdown (due to COVID-19) on ambient aerosols (PM 2.5): A study on Indo-Gangetic Plain (IGP) cities, India. Stochastic Environmental Research and Risk Assessment, 0123456789. https://doi.org/10.1007/s00477-020-01905-x Das, M., Das, A., Sarkar, R., Saha, S., & Mandal, A. (2020). Examining the impact of lockdown (due to COVID-19) on ambient aerosols (PM 2.5): A study on Indo-Gangetic Plain (IGP) cities, India. Stochastic Environmental Research and Risk Assessment, 0123456789. https://​doi.​org/​10.​1007/​s00477-020-01905-x
Zurück zum Zitat Dhaka, S. K., Chetna, K., Panwar, V., Dimri, A. P., Singh, N., Patra, P. K., Matsumi, Y., Takigawa, M., Nakayama, T., Yamaji, K., Kajino, M., Misra, P., & Hayashida, S. (2020). PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Scientifc Reports, 10, 1–8. https://doi.org/10.1038/s41598-020-70179-8CrossRef Dhaka, S. K., Chetna, K., Panwar, V., Dimri, A. P., Singh, N., Patra, P. K., Matsumi, Y., Takigawa, M., Nakayama, T., Yamaji, K., Kajino, M., Misra, P., & Hayashida, S. (2020). PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Scientifc Reports, 10, 1–8. https://​doi.​org/​10.​1038/​s41598-020-70179-8CrossRef
Zurück zum Zitat Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., et al. (2016). Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 43(6), 2873–2879.CrossRef Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., et al. (2016). Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 43(6), 2873–2879.CrossRef
Zurück zum Zitat Domingo, J. L., & Rovira, J. (2020). Effects of air pollutants on the transmission and severity of respiratory viral infections. Environmental Research, 187, 109650.CrossRef Domingo, J. L., & Rovira, J. (2020). Effects of air pollutants on the transmission and severity of respiratory viral infections. Environmental Research, 187, 109650.CrossRef
Zurück zum Zitat Dumka, U. C., Kaskaoutis, D. G., Verma, S., Ningombam, S. S., Kumar, S., & Ghosh, S. (2021). Silver linings in the dark clouds of COVID-19: Improvement of air quality over India and Delhi metropolitan area from measurements and WRF-CHIMERE model simulations. Atmospheric Pollution Research, 12(2), 225–242.CrossRef Dumka, U. C., Kaskaoutis, D. G., Verma, S., Ningombam, S. S., Kumar, S., & Ghosh, S. (2021). Silver linings in the dark clouds of COVID-19: Improvement of air quality over India and Delhi metropolitan area from measurements and WRF-CHIMERE model simulations. Atmospheric Pollution Research, 12(2), 225–242.CrossRef
Zurück zum Zitat Favez, O., El Haddad, I., Piot, C., Boreave, A., Abidi, E., Marchand, N., Jaffrezo, J. L., Besombes, J. L., Personnaz, M. B., Sciare, J., Wortham, H., George, C., & D'Anna, B. (2010). Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10(12), 5295–5314.CrossRef Favez, O., El Haddad, I., Piot, C., Boreave, A., Abidi, E., Marchand, N., Jaffrezo, J. L., Besombes, J. L., Personnaz, M. B., Sciare, J., Wortham, H., George, C., & D'Anna, B. (2010). Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10(12), 5295–5314.CrossRef
Zurück zum Zitat Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., & Shen, Y. (2020). NOx emission changes over China during the COVID-19 epidemic inferred from surface NO2 observations. Geophysical Research Letters, 47(19), 2020GL090080.CrossRef Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., & Shen, Y. (2020). NOx emission changes over China during the COVID-19 epidemic inferred from surface NO2 observations. Geophysical Research Letters, 47(19), 2020GL090080.CrossRef
Zurück zum Zitat Geng, F., Hua, J., Mu, Z., Peng, L., Xu, X., Chen, R., & Kan, H. (2013). Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city. Environmental Research, 120, 27–32.CrossRef Geng, F., Hua, J., Mu, Z., Peng, L., Xu, X., Chen, R., & Kan, H. (2013). Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city. Environmental Research, 120, 27–32.CrossRef
Zurück zum Zitat Health Effects Institute. (2019). State of global air 2019. Special report. Health Effects Institute. (2019). State of global air 2019. Special report.
Zurück zum Zitat Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., & Fu, C. (2020). Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nature Geoscience, 13, 428–434.CrossRef Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., & Fu, C. (2020). Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nature Geoscience, 13, 428–434.CrossRef
Zurück zum Zitat Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D., & Qi, X. (2021). Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8(2), nwaa137.CrossRef Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D., & Qi, X. (2021). Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8(2), nwaa137.CrossRef
Zurück zum Zitat Jain, S., & Sharma, T. (2020). Social and travel lockdown impact considering Coronavirus disease (COVID-19) on air quality in megacities of India: Present benefits, future challenges and way forward. 2020. Aerosol and Air Quality Research, 20, 1222–1236.CrossRef Jain, S., & Sharma, T. (2020). Social and travel lockdown impact considering Coronavirus disease (COVID-19) on air quality in megacities of India: Present benefits, future challenges and way forward. 2020. Aerosol and Air Quality Research, 20, 1222–1236.CrossRef
Zurück zum Zitat Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37, 631–649.CrossRef Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37, 631–649.CrossRef
Zurück zum Zitat Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.CrossRef Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.CrossRef
Zurück zum Zitat Kondo, Y., Komazaki, Y., Miyazaki, Y., Moteki, N., Takegawa, N., Kodama, D., Deguchi, S., Nogami, M., Fukuda, M., & Miyakawa, T. (2006). Temporal variations of elemental carbon in Tokyo. Journal of Geophysical Research: Atmospheres, 111, D12205.CrossRef Kondo, Y., Komazaki, Y., Miyazaki, Y., Moteki, N., Takegawa, N., Kodama, D., Deguchi, S., Nogami, M., Fukuda, M., & Miyakawa, T. (2006). Temporal variations of elemental carbon in Tokyo. Journal of Geophysical Research: Atmospheres, 111, D12205.CrossRef
Zurück zum Zitat Kumar, A., Ambade, B., Sankar, T. K., Sethi, S. S., & Kurwadkar, S. (2019). Source identification and health risk assessment of atmospheric PM2.5- bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities and Society. Kumar, A., Ambade, B., Sankar, T. K., Sethi, S. S., & Kurwadkar, S. (2019). Source identification and health risk assessment of atmospheric PM2.5- bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities and Society.
Zurück zum Zitat Lal, D. M., Ghude, S. D., Patil, S. D., Kulkarni, S. H., Jena, C., Tiwari, S., & Srivastava, M. K. (2012). Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmospheric Research, 116, 82–92.CrossRef Lal, D. M., Ghude, S. D., Patil, S. D., Kulkarni, S. H., Jena, C., Tiwari, S., & Srivastava, M. K. (2012). Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmospheric Research, 116, 82–92.CrossRef
Zurück zum Zitat Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. C., Berck, P., Flint, A. L., Flint, L. E., & Dolfi, E. (2016). Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California. PLoS One, 11(4), 0153589. https://doi.org/10.1371/journal.pone.0153589CrossRef Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. C., Berck, P., Flint, A. L., Flint, L. E., & Dolfi, E. (2016). Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California. PLoS One, 11(4), 0153589. https://​doi.​org/​10.​1371/​journal.​pone.​0153589CrossRef
Zurück zum Zitat Muller, R. A., & Muller, E. A. (2013). Air pollution and cigarette equivalence (p. 47). Berkeley Earth. Muller, R. A., & Muller, E. A. (2013). Air pollution and cigarette equivalence (p. 47). Berkeley Earth.
Zurück zum Zitat NAAQS (National Ambient Air Quality Standards). (2019). Ministry of Forest and Environment. Government of India, New Delhi. NAAQS (National Ambient Air Quality Standards). (2019). Ministry of Forest and Environment. Government of India, New Delhi.
Zurück zum Zitat Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N., Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K. V. S., & Reddy, R. R. (2007). Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. Journal of Geophysical Research, 112, d13205. https://doi.org/10.1029/2006jd008099CrossRef Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N., Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K. V. S., & Reddy, R. R. (2007). Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. Journal of Geophysical Research, 112, d13205. https://​doi.​org/​10.​1029/​2006jd008099CrossRef
Zurück zum Zitat Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. T., & Thepnuan, D. (2019). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871.CrossRef Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. T., & Thepnuan, D. (2019). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871.CrossRef
Zurück zum Zitat Panicker, A. S., Aditi, R., Beig, G., Ali, K., & Solmon, F. (2018). Radiative forcing of carbonaceous aerosols over two urban environments in Northern India. Aerosol and Air Quality Research, 18, 884–894.CrossRef Panicker, A. S., Aditi, R., Beig, G., Ali, K., & Solmon, F. (2018). Radiative forcing of carbonaceous aerosols over two urban environments in Northern India. Aerosol and Air Quality Research, 18, 884–894.CrossRef
Zurück zum Zitat Pathakoti, M., Muppalla, A., Hazra, S., Dangeti, M., Shekhar, R., Jella, S., Mullapudi, S. S., Andugulapati, P., & Vijayasundaram, U. (2020). An assessment of the impact of a nation-wide lockdown on air pollution — A remote sensing perspective over India. 1–16. Pathakoti, M., Muppalla, A., Hazra, S., Dangeti, M., Shekhar, R., Jella, S., Mullapudi, S. S., Andugulapati, P., & Vijayasundaram, U. (2020). An assessment of the impact of a nation-wide lockdown on air pollution — A remote sensing perspective over India. 1–16.
Zurück zum Zitat Qin, Y., & Xie, S. D. (2012). Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980-2009. Atmospheric Chemistry and Physics, 12, 4825–4841.CrossRef Qin, Y., & Xie, S. D. (2012). Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980-2009. Atmospheric Chemistry and Physics, 12, 4825–4841.CrossRef
Zurück zum Zitat Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221–227.CrossRef Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221–227.CrossRef
Zurück zum Zitat Rana, A., Jia, S., & Sarkar, S. (2019). Black carbon aerosol in India: A comprehensive review of current status and future prospects. Atmospheric Research, 218, 207–230.CrossRef Rana, A., Jia, S., & Sarkar, S. (2019). Black carbon aerosol in India: A comprehensive review of current status and future prospects. Atmospheric Research, 218, 207–230.CrossRef
Zurück zum Zitat Ranjan, R., Sharma, A., & Verma, M. (2021). Characterization of the second wave of COVID-19 in India. 2021. Current Science, 121(1), 85–93.CrossRef Ranjan, R., Sharma, A., & Verma, M. (2021). Characterization of the second wave of COVID-19 in India. 2021. Current Science, 121(1), 85–93.CrossRef
Zurück zum Zitat Rothman, K. J., Greenland, S., & Lash, T. L. (2008.; Annals of Emergency Medicine, An International Journal). Modern epidemiology (p. 53–77). Wolters Kluwer/Lippincott Williams & Wilkins. Rothman, K. J., Greenland, S., & Lash, T. L. (2008.; Annals of Emergency Medicine, An International Journal). Modern epidemiology (p. 53–77). Wolters Kluwer/Lippincott Williams & Wilkins.
Zurück zum Zitat Rupakheti, D., Adhikary, B., Praveen, P. S., Rupakheti, M., Kang, S., Mahata, K. S., Naja, M., Zhang, Q., Panday, A. K., & Lawrence, M. G. (2017). Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 17, 11041–11063.CrossRef Rupakheti, D., Adhikary, B., Praveen, P. S., Rupakheti, M., Kang, S., Mahata, K. S., Naja, M., Zhang, Q., Panday, A. K., & Lawrence, M. G. (2017). Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 17, 11041–11063.CrossRef
Zurück zum Zitat Saharan, U. S., Kumar, R., Tripathy, P., Sateesh, M., Garg, J., Sharma, S. K., & Mandal, T. K. (2022). Drivers of air pollution variability during second wave of COVID-19 in Delhi, India. Urban Climate, 41, 101059.CrossRef Saharan, U. S., Kumar, R., Tripathy, P., Sateesh, M., Garg, J., Sharma, S. K., & Mandal, T. K. (2022). Drivers of air pollution variability during second wave of COVID-19 in Delhi, India. Urban Climate, 41, 101059.CrossRef
Zurück zum Zitat Sandradewi, J., Prevot, A. S., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., & Baltensperger, U. (2008). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science & Technology, 42(9), 3316–3323.CrossRef Sandradewi, J., Prevot, A. S., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., & Baltensperger, U. (2008). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science & Technology, 42(9), 3316–3323.CrossRef
Zurück zum Zitat Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., De Matteis, S., Jung, S. H., Mortimer, K., Perez-Padilla, R., Rice, M. B., Riojas-Rodriguez, H., Sood, A., & Thurston, G. D. (2019). Air pollution and noncommunicable diseases: A review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2. Air Pollution and Organ Systems Chest, 155(2), 417–426. Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., De Matteis, S., Jung, S. H., Mortimer, K., Perez-Padilla, R., Rice, M. B., Riojas-Rodriguez, H., Sood, A., & Thurston, G. D. (2019). Air pollution and noncommunicable diseases: A review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2. Air Pollution and Organ Systems Chest, 155(2), 417–426.
Zurück zum Zitat Sciare, J., D'Argouges, O., Sarda-Esteve, R., Gaimoz, C., Dolgorouky, C., Bonnaire, N., Favez, O., Bonsang, B., & Gros, V. (2011). Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime. Journal of Geophysical Research: Atmospheres, 116(22), D22203. Sciare, J., D'Argouges, O., Sarda-Esteve, R., Gaimoz, C., Dolgorouky, C., Bonnaire, N., Favez, O., Bonsang, B., & Gros, V. (2011). Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime. Journal of Geophysical Research: Atmospheres, 116(22), D22203.
Zurück zum Zitat Shen, G., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., et al. (2010). Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environmental Science & Technology, 44(18), 7157–7162.CrossRef Shen, G., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., et al. (2010). Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environmental Science & Technology, 44(18), 7157–7162.CrossRef
Zurück zum Zitat Shrestha, G., Traina, J. S., & Swanston, W. C. (2010). Black carbon’s properties and role in the environment: A comprehensive review. Sustainability, 2, 294–320.CrossRef Shrestha, G., Traina, J. S., & Swanston, W. C. (2010). Black carbon’s properties and role in the environment: A comprehensive review. Sustainability, 2, 294–320.CrossRef
Zurück zum Zitat Van der Zee, S. C., Fischer, P. H., & Hoek, G. (2016). Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental Research, 148, 475–483.CrossRef Van der Zee, S. C., Fischer, P. H., & Hoek, G. (2016). Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental Research, 148, 475–483.CrossRef
Zurück zum Zitat Wang, Z., Wang, T., Gao, R., Xue, L., Guo, J., Zhou, Y., et al. (2011). Source and variation of carbonaceous aerosols at Mount Tai, North China: Results from a semi-continuous instrument. Atmospheric Environment, 45(9), 1655–1667.CrossRef Wang, Z., Wang, T., Gao, R., Xue, L., Guo, J., Zhou, Y., et al. (2011). Source and variation of carbonaceous aerosols at Mount Tai, North China: Results from a semi-continuous instrument. Atmospheric Environment, 45(9), 1655–1667.CrossRef
Zurück zum Zitat Wang, X., Chen, R., Meng, X., Geng, F., Wang, C., & Kan, H. (2013). Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city. The Science of the Total Environment, 458–460, 1–6.CrossRef Wang, X., Chen, R., Meng, X., Geng, F., Wang, C., & Kan, H. (2013). Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city. The Science of the Total Environment, 458–460, 1–6.CrossRef
Zurück zum Zitat Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., et al. (2014). Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2459–2463.CrossRef Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., et al. (2014). Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2459–2463.CrossRef
Zurück zum Zitat Waylen, K. A., Blackstock, K. L., van Hulst, F. J., Damian, C., Horvath, F., Johnson, R. K., Kanka, R., Külvik, M., Macleod, C. J. A., Meissner, K., Oprina-Pavelescu, M. M., Pino, J., Primmer, E., Rîșnoveanu, G., Satalova, B., Silander, J., Spulerova, J., Suskevics, M., & Van Uytvanck, J. (2019). Policy-driven monitoring and evaluation: Does it support adaptive management of socio-ecological systems? Science of the Total Environment, 662, 373–384.CrossRef Waylen, K. A., Blackstock, K. L., van Hulst, F. J., Damian, C., Horvath, F., Johnson, R. K., Kanka, R., Külvik, M., Macleod, C. J. A., Meissner, K., Oprina-Pavelescu, M. M., Pino, J., Primmer, E., Rîșnoveanu, G., Satalova, B., Silander, J., Spulerova, J., Suskevics, M., & Van Uytvanck, J. (2019). Policy-driven monitoring and evaluation: Does it support adaptive management of socio-ecological systems? Science of the Total Environment, 662, 373–384.CrossRef
Zurück zum Zitat Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., & Baltensperger, U. (2003). Absorption of light by soot particles, determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science, 34, 1445–1463.CrossRef Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., & Baltensperger, U. (2003). Absorption of light by soot particles, determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science, 34, 1445–1463.CrossRef
Zurück zum Zitat Wells, A. J. (1999). Deaths in the United States from passive smoking; ten-year update. Environment International, 25, 515–519.CrossRef Wells, A. J. (1999). Deaths in the United States from passive smoking; ten-year update. Environment International, 25, 515–519.CrossRef
Zurück zum Zitat Wu, J., Lu, J., Min, X., & Zhang, Z. (2018). Distribution and health risks of aerosol black carbon in a representative city of the Qingha, Tibet plateau. Environmental Science and Pollution Research, 25(20), 19403–19412.CrossRef Wu, J., Lu, J., Min, X., & Zhang, Z. (2018). Distribution and health risks of aerosol black carbon in a representative city of the Qingha, Tibet plateau. Environmental Science and Pollution Research, 25(20), 19403–19412.CrossRef
Zurück zum Zitat Xu, L., Zhang, J., Sun, X., Xu, S., Shan, M., & Yuan, Q. (2020). Variation in concentration and sources of black carbon in a megacity of China during the COVID‐19 pandemic. Geophysical Research Letters, 47-2020GL090444. https://doi.org/10.1029/2020GL090444 Xu, L., Zhang, J., Sun, X., Xu, S., Shan, M., & Yuan, Q. (2020). Variation in concentration and sources of black carbon in a megacity of China during the COVID‐19 pandemic. Geophysical Research Letters, 47-2020GL090444. https://​doi.​org/​10.​1029/​2020GL090444
Zurück zum Zitat Yao, Y., Pan, J. H., Liu, Z. X., Meng, X., Wang, W., Kan, H., & Wang, W. (2020). Temporal association between particulate matter pollution and case fatality rate of COVID-19 in Wuhan. Environmental Research, 189, 109941.CrossRef Yao, Y., Pan, J. H., Liu, Z. X., Meng, X., Wang, W., Kan, H., & Wang, W. (2020). Temporal association between particulate matter pollution and case fatality rate of COVID-19 in Wuhan. Environmental Research, 189, 109941.CrossRef
Zurück zum Zitat Zhang, R. Y., Li, Y. X., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 117(26), 202009637. Zhang, R. Y., Li, Y. X., Zhang, A. L., Wang, Y., & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 117(26), 202009637.
Zurück zum Zitat Zhao, D. L., Liu, D. T., Yu, C. J., Tian, P., Hu, D., Zhou, W., et al. (2020). Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing Winter. Science of the Total Environment, 709, 136251.CrossRef Zhao, D. L., Liu, D. T., Yu, C. J., Tian, P., Hu, D., Zhou, W., et al. (2020). Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing Winter. Science of the Total Environment, 709, 136251.CrossRef
Zurück zum Zitat Zhu, Y. J., Xie, J. G., Huang, F. M., & Cao, L. Q. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. The Science of the Total Environment, 727, 138704.CrossRef Zhu, Y. J., Xie, J. G., Huang, F. M., & Cao, L. Q. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. The Science of the Total Environment, 727, 138704.CrossRef
Metadaten
Titel
Comparative Health Risk Assessment of Black Carbon and Particulate Matter Emissions in East India During the COVID-19 First and Second Waves
verfasst von
Dilip Kumar Mahato
Balram Ambade
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-55836-8_4