Skip to main content

09.05.2024

Compressed Video Sensing Based on Deep Generative Adversarial Network

verfasst von: Valiyeh Ansarian Nezhad, Masoumeh Azghani, Farokh Marvasti

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper considers the deep-learning-aided compressed video sensing problem. To this end, a deep generative adversarial network has been proposed to provide an approximation of the non-reference frame using its corresponding reference frame. The tests confirm the superiority of this scheme over the conventional methods used earlier. Furthermore, two scenarios have been suggested for deep compressed video sensing and recovery. In the first scenario, the difference between the non-reference frame and its approximation obtained from the pre-trained network is compressively sampled and transmitted to the receiver where the proposed residual reconstruction network is adopted to reconstruct the signal. The second scenario utilizes a pre-trained network followed by an augmented layer to approximate the non-reference frames. In the transmitter, the parameters of the augmented layer are trained for the current non-reference block. Instead of transmitting the samples of the block, the parameters of its trained augmented layer are sent to the receiver where the reconstruction is done using the same pre-trained network. The performances of the proposed scenarios demonstrate their objective and subjective superiority over the state-of-the-art algorithms in both the reconstruction quality and run time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)MathSciNetCrossRef A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat M. Azghani, M. Karimi, F. Marvasti, Multihypothesis compressed video sensing technique. IEEE Trans. Circuits Syst. Video Technol. 26(4), 627–635 (2015)CrossRef M. Azghani, M. Karimi, F. Marvasti, Multihypothesis compressed video sensing technique. IEEE Trans. Circuits Syst. Video Technol. 26(4), 627–635 (2015)CrossRef
4.
Zurück zum Zitat M. Azghani, F. Marvasti, L 2-regularized iterative weighted algorithm for inverse scattering. IEEE Trans. Antennas Propag. 64(6), 2293–2300 (2016)MathSciNetCrossRef M. Azghani, F. Marvasti, L 2-regularized iterative weighted algorithm for inverse scattering. IEEE Trans. Antennas Propag. 64(6), 2293–2300 (2016)MathSciNetCrossRef
5.
Zurück zum Zitat E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef
6.
Zurück zum Zitat E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. A J. Issue Courant Inst. Math. Sci. 59(8), 1207–1223 (2006)MathSciNetCrossRef E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. A J. Issue Courant Inst. Math. Sci. 59(8), 1207–1223 (2006)MathSciNetCrossRef
7.
Zurück zum Zitat C. Chen, E.W. Tramel, J.E. Fowler, Compressed-sensing recovery of images and video using multihypothesis predictions. In 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1193–1198. IEEE (2011) C. Chen, E.W. Tramel, J.E. Fowler, Compressed-sensing recovery of images and video using multihypothesis predictions. In 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1193–1198. IEEE (2011)
8.
Zurück zum Zitat K. Dabov, A. Foi, V. Katkovnik, K, Egiazarian, Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In 2007 IEEE International Conference on Image Processing, vol. 1 ( IEEE, 2007), pp. I–313 K. Dabov, A. Foi, V. Katkovnik, K, Egiazarian, Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In 2007 IEEE International Conference on Image Processing, vol. 1 ( IEEE, 2007), pp. I–313
9.
Zurück zum Zitat Z. Gao, Y. Guo, J. Zhang, T. Zeng, G. Yang, Hierarchical perception adversarial learning framework for compressed sensing MRI. IEEE Trans. Med. Imaging (2023) Z. Gao, Y. Guo, J. Zhang, T. Zeng, G. Yang, Hierarchical perception adversarial learning framework for compressed sensing MRI. IEEE Trans. Med. Imaging (2023)
10.
Zurück zum Zitat I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks. arXiv:1406.2661 (2014) I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks. arXiv:​1406.​2661 (2014)
12.
Zurück zum Zitat C. Li, M. Wand, Precomputed real-time texture synthesis with markovian generative adversarial networks. In European Conference on Computer Vision, (Springer, 2016), pp. 702–716 C. Li, M. Wand, Precomputed real-time texture synthesis with markovian generative adversarial networks. In European Conference on Computer Vision, (Springer, 2016), pp. 702–716
13.
Zurück zum Zitat Y. Li, F. Xiao, W. Liang, L. Gui, Multiply complementary priors for image compressive sensing reconstruction in impulsive noise (ACM Transactions on Multimedia Computing, Communications and Applications, 2024) Y. Li, F. Xiao, W. Liang, L. Gui, Multiply complementary priors for image compressive sensing reconstruction in impulsive noise (ACM Transactions on Multimedia Computing, Communications and Applications, 2024)
15.
Zurück zum Zitat S. Mun, J.E. Fowler, Block compressed sensing of images using directional transforms. In 2009 16th IEEE International Conference on Image Processing (ICIP) (IEEE, 2009), pp. 3021–3024 S. Mun, J.E. Fowler, Block compressed sensing of images using directional transforms. In 2009 16th IEEE International Conference on Image Processing (ICIP) (IEEE, 2009), pp. 3021–3024
16.
Zurück zum Zitat V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines. In Icml (2010) V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines. In Icml (2010)
17.
Zurück zum Zitat H. Rajoriya, R. Sadiwala, Deep compressive sensing and reconstruction algorithm in wireless internet of things. J. Integr. Sci. Technol. 11(2), 487 (2023) H. Rajoriya, R. Sadiwala, Deep compressive sensing and reconstruction algorithm in wireless internet of things. J. Integr. Sci. Technol. 11(2), 487 (2023)
18.
Zurück zum Zitat O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, 2015), pp. 234–241 O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, 2015), pp. 234–241
19.
Zurück zum Zitat N. Sadeghi, M. Azghani, Multi-user massive mimo channel estimation using joint sparsity and non-ideal feedback modeling. Digit. Signal Process. 100, 102640 (2020)CrossRef N. Sadeghi, M. Azghani, Multi-user massive mimo channel estimation using joint sparsity and non-ideal feedback modeling. Digit. Signal Process. 100, 102640 (2020)CrossRef
20.
Zurück zum Zitat G.B. Satrya, I.N.A. Ramatryana, S.Y. Shin, Compressive sensing of medical images based on HSV color space. Sensors 23(5), 2616 (2023)CrossRef G.B. Satrya, I.N.A. Ramatryana, S.Y. Shin, Compressive sensing of medical images based on HSV color space. Sensors 23(5), 2616 (2023)CrossRef
21.
Zurück zum Zitat R. Sedghi, M. Azghani, Sparsity-based mimo interference suppression technique in the presence of imperfect channel state information. IET Commun. 13(19), 3201–3206 (2019)CrossRef R. Sedghi, M. Azghani, Sparsity-based mimo interference suppression technique in the presence of imperfect channel state information. IET Commun. 13(19), 3201–3206 (2019)CrossRef
22.
Zurück zum Zitat X. Sun, C. Tian, W. Tian, Y. Zhang, Privacy-enhanced and verifiable compressed sensing reconstruction for medical image processing on the cloud. IEEE Access 10, 18134–18145 (2022)CrossRef X. Sun, C. Tian, W. Tian, Y. Zhang, Privacy-enhanced and verifiable compressed sensing reconstruction for medical image processing on the cloud. IEEE Access 10, 18134–18145 (2022)CrossRef
23.
Zurück zum Zitat S. Tang, C.F. Cheang, X. Yu, Y. Liang, Q. Feng, Z. Chen, Transcs-net: a hybrid transformer-based privacy-protecting network using compressed sensing for medical image segmentation. Biomed. Signal Process. Control 86, 105131 (2023)CrossRef S. Tang, C.F. Cheang, X. Yu, Y. Liang, Q. Feng, Z. Chen, Transcs-net: a hybrid transformer-based privacy-protecting network using compressed sensing for medical image segmentation. Biomed. Signal Process. Control 86, 105131 (2023)CrossRef
24.
Zurück zum Zitat E.W. Tramel, J.E. Fowler, Video compressed sensing with multihypothesis. In 2011 Data Compression Conference (IEEE, 2011), pp. 193–202 E.W. Tramel, J.E. Fowler, Video compressed sensing with multihypothesis. In 2011 Data Compression Conference (IEEE, 2011), pp. 193–202
25.
Zurück zum Zitat V. Upadhyaya, G. Sharma, T.A. Tran, M. Salim, Compressive sensing-based medical imaging techniques to detect the type of pneumonia in lungs. In: Computational Intelligence in Medical Decision Making and Diagnosis, (CRC Press, 2023), pp. 151–168 V. Upadhyaya, G. Sharma, T.A. Tran, M. Salim, Compressive sensing-based medical imaging techniques to detect the type of pneumonia in lungs. In: Computational Intelligence in Medical Decision Making and Diagnosis, (CRC Press, 2023), pp. 151–168
26.
Zurück zum Zitat M. Wakin, J.N. Laska, M.F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K.F. Kelly, R.G. Baraniuk, Compressive imaging for video representation and coding. In Picture Coding Symposium, vol 13 (2006) M. Wakin, J.N. Laska, M.F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K.F. Kelly, R.G. Baraniuk, Compressive imaging for video representation and coding. In Picture Coding Symposium, vol 13 (2006)
27.
Zurück zum Zitat Z. Wang, Z. Wang, C. Zeng, Y. Yu, X. Wan, High-quality image compressed sensing and reconstruction with multi-scale dilated convolutional neural network. Circuits Syst. Signal Process. 42(3), 1593–1616 (2023)CrossRef Z. Wang, Z. Wang, C. Zeng, Y. Yu, X. Wan, High-quality image compressed sensing and reconstruction with multi-scale dilated convolutional neural network. Circuits Syst. Signal Process. 42(3), 1593–1616 (2023)CrossRef
28.
Zurück zum Zitat K. Xu, F. Ren, Csvideonet: a real-time end-to-end learning framework for high-frame-rate video compressive sensing. In: 2018 IEEE winter conference on applications of computer vision (WACV). (IEEE, 2018), pp. 1680–1688 K. Xu, F. Ren, Csvideonet: a real-time end-to-end learning framework for high-frame-rate video compressive sensing. In: 2018 IEEE winter conference on applications of computer vision (WACV). (IEEE, 2018), pp. 1680–1688
29.
Zurück zum Zitat H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, Dr2-net: Deep residual reconstruction network for image compressive sensing. Neurocomputing 359, 483–493 (2019)CrossRef H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, Dr2-net: Deep residual reconstruction network for image compressive sensing. Neurocomputing 359, 483–493 (2019)CrossRef
30.
Zurück zum Zitat D. Ye, Z. Ni, H. Wang, J. Zhang, S. Wang, S. Kwong, Csformer: bridging convolution and transformer for compressive sensing. IEEE Trans. Image Process. (2023) D. Ye, Z. Ni, H. Wang, J. Zhang, S. Wang, S. Kwong, Csformer: bridging convolution and transformer for compressive sensing. IEEE Trans. Image Process. (2023)
31.
Zurück zum Zitat Z. Zha, B. Wen, X. Yuan, S. Ravishankar, J. Zhou, C. Zhu, Learning nonlocal sparse and low-rank models for image compressive sensing: Nonlocal sparse and low-rank modeling. IEEE Signal Process. Mag. 40(1), 32–44 (2023)CrossRef Z. Zha, B. Wen, X. Yuan, S. Ravishankar, J. Zhou, C. Zhu, Learning nonlocal sparse and low-rank models for image compressive sensing: Nonlocal sparse and low-rank modeling. IEEE Signal Process. Mag. 40(1), 32–44 (2023)CrossRef
32.
Zurück zum Zitat C. Zhao, S. Ma, J. Zhang, R. Xiong, W. Gao, Video compressive sensing reconstruction via reweighted residual sparsity. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1182–1195 (2016)CrossRef C. Zhao, S. Ma, J. Zhang, R. Xiong, W. Gao, Video compressive sensing reconstruction via reweighted residual sparsity. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1182–1195 (2016)CrossRef
34.
Zurück zum Zitat C. Zhou, C. Chen, Y. Zhang, F. Ding, D. Zhang, Mh-net: A learnable multi-hypothesis network for compressed video sensing. IEEE Access 7, 166606–166613 (2019)CrossRef C. Zhou, C. Chen, Y. Zhang, F. Ding, D. Zhang, Mh-net: A learnable multi-hypothesis network for compressed video sensing. IEEE Access 7, 166606–166613 (2019)CrossRef
Metadaten
Titel
Compressed Video Sensing Based on Deep Generative Adversarial Network
verfasst von
Valiyeh Ansarian Nezhad
Masoumeh Azghani
Farokh Marvasti
Publikationsdatum
09.05.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02672-8