Skip to main content
Erschienen in: Fire Technology 5/2022

10.06.2022

Coupling Characteristics of a Co-flow Water Mist System and Normal Temperature Counter Air Jets

verfasst von: Mingli He, Guang Zhang, Shaohua Hu, Ying Zhang, Cheng Wang

Erschienen in: Fire Technology | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A co-flow water mist system is considered a clean and efficient emergency handling measure for preventing and controlling the leakage of hazardous gas. To reveal the coupling characteristics of a co-flow water mist system and normal temperature counter air jets, a series of 3D numerical simulations were conducted to visualize the gas-phase flow field as well as the instantaneous trajectories, concentration distribution, and penetration of droplets. The results show that the two-phase flow field can be divided into the co-flow jet or counter jet dominant flow for different initial momentum ratios of the counter jets and the co-flow jet Φ′. Φ′ ≤ 1 is necessary to effectively control the leakage flow. A natural exponential function could be used to fit the dimensionless interaction boundary height zb* and the characteristic axial momentum ratio Φ for the scenarios of a co-flow water mist system interacting with counter jets. Moreover, a general design method for the co-flow water mist system which could be utilized to prevent and control the leakage of hazardous gas was proposed. The method was tested by a specific case, which shows that it can be used to guide engineering development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jo YD, Ahn BJ (2003) A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines. J Hazard Mater 97:31–46CrossRef Jo YD, Ahn BJ (2003) A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines. J Hazard Mater 97:31–46CrossRef
2.
Zurück zum Zitat Sugiyama Y, Wakabayashi K, Matsumura T et al (2020) Numerical study of the effect of high-explosive storage facility shape on the azimuthal distribution of blast-wave pressures. Eur J Mech B Fluids 79:153–164MathSciNetCrossRef Sugiyama Y, Wakabayashi K, Matsumura T et al (2020) Numerical study of the effect of high-explosive storage facility shape on the azimuthal distribution of blast-wave pressures. Eur J Mech B Fluids 79:153–164MathSciNetCrossRef
4.
Zurück zum Zitat Zhang J, Lei D, Feng W (2014) An approach for estimating toxic releases of H2S-containing natural gas. J Hazard Mater 264:350–362CrossRef Zhang J, Lei D, Feng W (2014) An approach for estimating toxic releases of H2S-containing natural gas. J Hazard Mater 264:350–362CrossRef
5.
Zurück zum Zitat Koper KD (2003) Seismic recordings of the Carlsbad, New Mexico, pipeline explosion of 19 August 2000. Bull Seismol Soc Am 93(4):1427–1432CrossRef Koper KD (2003) Seismic recordings of the Carlsbad, New Mexico, pipeline explosion of 19 August 2000. Bull Seismol Soc Am 93(4):1427–1432CrossRef
6.
Zurück zum Zitat Jackson RB, Down A, Phillips NG et al (2014) Natural gas pipeline leaks across Washington, DC. Environ Sci Technol 48(3):2051–2058CrossRef Jackson RB, Down A, Phillips NG et al (2014) Natural gas pipeline leaks across Washington, DC. Environ Sci Technol 48(3):2051–2058CrossRef
7.
Zurück zum Zitat Ma H, Long Y, Zhong M, Li X et al (2019) Study on ground vibration mode of physical explosion of high pressure natural gas pipeline. Acoust Phys 65(5):583–592CrossRef Ma H, Long Y, Zhong M, Li X et al (2019) Study on ground vibration mode of physical explosion of high pressure natural gas pipeline. Acoust Phys 65(5):583–592CrossRef
9.
Zurück zum Zitat Liu JH, Liao GX, Fan WC et al (2002) Study of liquid pool fire suppression with water mists by cone calorimeter. J Fire Sci 20(6):465–477CrossRef Liu JH, Liao GX, Fan WC et al (2002) Study of liquid pool fire suppression with water mists by cone calorimeter. J Fire Sci 20(6):465–477CrossRef
10.
Zurück zum Zitat Jayaweera TM, Fisher EM, Fleming JW (2005) Flame suppression by aerosols derived from aqueous solutions containing phosphorus. Combust Flame 141(3):308–321CrossRef Jayaweera TM, Fisher EM, Fleming JW (2005) Flame suppression by aerosols derived from aqueous solutions containing phosphorus. Combust Flame 141(3):308–321CrossRef
11.
Zurück zum Zitat Zhou XM, Liao GX, Cai B (2006) Improvement of water mist’s fire-extinguishing efficiency with MC additive. Fire Saf J 41(1):39–45CrossRef Zhou XM, Liao GX, Cai B (2006) Improvement of water mist’s fire-extinguishing efficiency with MC additive. Fire Saf J 41(1):39–45CrossRef
12.
Zurück zum Zitat Liang T, Liu M, Liu Z et al (2015) A study of the probability distribution of pool fire extinguishing times using water mist. Process Saf Environ Prot 93:240–248CrossRef Liang T, Liu M, Liu Z et al (2015) A study of the probability distribution of pool fire extinguishing times using water mist. Process Saf Environ Prot 93:240–248CrossRef
13.
Zurück zum Zitat Zhou Y, Bu R, Gong J et al (2018) Assessment of a clean and efficient fire-extinguishing technique: continuous and cycling discharge water mist system. J Clean Prod 182:682–693CrossRef Zhou Y, Bu R, Gong J et al (2018) Assessment of a clean and efficient fire-extinguishing technique: continuous and cycling discharge water mist system. J Clean Prod 182:682–693CrossRef
14.
Zurück zum Zitat Rasbash DJ, Rogowski ZW, Stark GWV (1960) Mechanisms of extinction of liquid fires with water sprays. Combust Flame 4:223–234CrossRef Rasbash DJ, Rogowski ZW, Stark GWV (1960) Mechanisms of extinction of liquid fires with water sprays. Combust Flame 4:223–234CrossRef
15.
Zurück zum Zitat Wang XS, Liao GX, Qin J et al (2002) Experimental study on the effectiveness of the extinction of a pool fire with water mist. J Fire Sci 20(4):279–295CrossRef Wang XS, Liao GX, Qin J et al (2002) Experimental study on the effectiveness of the extinction of a pool fire with water mist. J Fire Sci 20(4):279–295CrossRef
16.
Zurück zum Zitat Liu Z, Carpenter D, Kim AK (2008) Cooling characteristics of hot oil pool by water mist during fire suppression. Fire Saf J 43(4):269–281CrossRef Liu Z, Carpenter D, Kim AK (2008) Cooling characteristics of hot oil pool by water mist during fire suppression. Fire Saf J 43(4):269–281CrossRef
17.
Zurück zum Zitat Ferng YM, Liu CH (2011) Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code. Nucl Eng Des 241(8):3142–3148CrossRef Ferng YM, Liu CH (2011) Numerically investigating fire suppression mechanisms for the water mist with various droplet sizes through FDS code. Nucl Eng Des 241(8):3142–3148CrossRef
18.
Zurück zum Zitat Zhou X (2015) Characterization of interactions between hot air plumes and water sprays for sprinkler protection. Proc Combust Inst 35(3):2723–2729CrossRef Zhou X (2015) Characterization of interactions between hot air plumes and water sprays for sprinkler protection. Proc Combust Inst 35(3):2723–2729CrossRef
19.
Zurück zum Zitat Beji T, Ebrahimzadeh S, Maragkos G et al (2018) Numerical modelling of the interaction between water sprays and hot air jets—Part II: two-phase flow simulations. Fire Saf J 96:143–152CrossRef Beji T, Ebrahimzadeh S, Maragkos G et al (2018) Numerical modelling of the interaction between water sprays and hot air jets—Part II: two-phase flow simulations. Fire Saf J 96:143–152CrossRef
20.
Zurück zum Zitat Blanchard E, Morlon R, Parent G et al (2018) Experimental study of the interaction between water sprays and smoke layer. Fire Technol 54(2):479–501CrossRef Blanchard E, Morlon R, Parent G et al (2018) Experimental study of the interaction between water sprays and smoke layer. Fire Technol 54(2):479–501CrossRef
21.
Zurück zum Zitat Rana MA, Guo YY, Mannan MS (2010) Use of water spray curtain to disperse LNG vapor clouds. J Loss Prev Process Ind 23:77–88CrossRef Rana MA, Guo YY, Mannan MS (2010) Use of water spray curtain to disperse LNG vapor clouds. J Loss Prev Process Ind 23:77–88CrossRef
22.
Zurück zum Zitat Zhu P, Wang XS, Li GC et al (2017) Experimental study on interaction of water mist spray with high-velocity gas jet. Fire Saf J 93:60–73CrossRef Zhu P, Wang XS, Li GC et al (2017) Experimental study on interaction of water mist spray with high-velocity gas jet. Fire Saf J 93:60–73CrossRef
23.
Zurück zum Zitat Liu Z, Kim AK, Carpenter D (2007) A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Saf J 42(1):25–42CrossRef Liu Z, Kim AK, Carpenter D (2007) A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Saf J 42(1):25–42CrossRef
25.
Zurück zum Zitat Alpert RL (1985) Numerical modeling of the interaction between automatic sprinkler sprays and fire plumes. Fire Saf J 9(2):157–163CrossRef Alpert RL (1985) Numerical modeling of the interaction between automatic sprinkler sprays and fire plumes. Fire Saf J 9(2):157–163CrossRef
26.
Zurück zum Zitat Prasad K, Li C, Kailasanath K (1999) Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Saf J 33(3):185–212CrossRef Prasad K, Li C, Kailasanath K (1999) Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Saf J 33(3):185–212CrossRef
27.
Zurück zum Zitat Sikanen T, Vaari J, Hostikka S et al (2014) Modeling and simulation of high pressure water mist systems. Fire Technol 50(3):483–504CrossRef Sikanen T, Vaari J, Hostikka S et al (2014) Modeling and simulation of high pressure water mist systems. Fire Technol 50(3):483–504CrossRef
28.
Zurück zum Zitat Yu HZ, Kasiski R, Daelhousen M (2015) Characterization of twin-fluid (water mist and inert gas) fire extinguishing systems by testing and modeling. Fire Technol 51:923–950CrossRef Yu HZ, Kasiski R, Daelhousen M (2015) Characterization of twin-fluid (water mist and inert gas) fire extinguishing systems by testing and modeling. Fire Technol 51:923–950CrossRef
29.
Zurück zum Zitat Wang Z, Wang W, Wang Q (2016) Optimization of water mist droplet size by using CFD modeling for fire suppressions. J Loss Prev Process Ind 44:626–632CrossRef Wang Z, Wang W, Wang Q (2016) Optimization of water mist droplet size by using CFD modeling for fire suppressions. J Loss Prev Process Ind 44:626–632CrossRef
30.
Zurück zum Zitat Shih TH, Liou WW, Shabbir A et al (1995) A new k-ε Eddy-Viscosity Model for high reynolds number turbulent flows. Comput Fluids 24(3):227–238CrossRef Shih TH, Liou WW, Shabbir A et al (1995) A new k-ε Eddy-Viscosity Model for high reynolds number turbulent flows. Comput Fluids 24(3):227–238CrossRef
31.
Zurück zum Zitat Schmidt DP, Nouar I, Senecal PK et al (1999) Pressure-swirl atomization in the near field. In: Sae International Congress & Exhibition. Detroit Schmidt DP, Nouar I, Senecal PK et al (1999) Pressure-swirl atomization in the near field. In: Sae International Congress & Exhibition. Detroit
33.
Zurück zum Zitat O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Princeton University, New Jersey O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Princeton University, New Jersey
34.
Zurück zum Zitat Liu AB, Mather D, Reitz RD (1993) Modeling the effects of drop drag and breakup on fuel sprays. In: SAE Technical Paper 930072 Liu AB, Mather D, Reitz RD (1993) Modeling the effects of drop drag and breakup on fuel sprays. In: SAE Technical Paper 930072
35.
Zurück zum Zitat Longmire P (2007) Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube. Texas A&M University, Texas Longmire P (2007) Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube. Texas A&M University, Texas
36.
Zurück zum Zitat Lam C (2015) Statistical analyses of historical pipeline incident data with application to the risk assessment of onshore natural gas transmission pipelines. Western University, London Lam C (2015) Statistical analyses of historical pipeline incident data with application to the risk assessment of onshore natural gas transmission pipelines. Western University, London
37.
Zurück zum Zitat Wang H, Duncan IJ (2014) Likelihood, causes, and consequences of focused leakage and rupture of US natural gas transmission pipelines. J Loss Prev Process Ind 30:177–187CrossRef Wang H, Duncan IJ (2014) Likelihood, causes, and consequences of focused leakage and rupture of US natural gas transmission pipelines. J Loss Prev Process Ind 30:177–187CrossRef
39.
Zurück zum Zitat Beji T, Zadeh SE, Maragkos G et al (2017) Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations. Fire Saf J 91:586–595CrossRef Beji T, Zadeh SE, Maragkos G et al (2017) Influence of the particle injection rate, droplet size distribution and volume flux angular distribution on the results and computational time of water spray CFD simulations. Fire Saf J 91:586–595CrossRef
Metadaten
Titel
Coupling Characteristics of a Co-flow Water Mist System and Normal Temperature Counter Air Jets
verfasst von
Mingli He
Guang Zhang
Shaohua Hu
Ying Zhang
Cheng Wang
Publikationsdatum
10.06.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2022
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01270-x

Weitere Artikel der Ausgabe 5/2022

Fire Technology 5/2022 Zur Ausgabe