Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Covalent Bonding Theories

verfasst von : Robert B. Jordan

Erschienen in: Principles of Inorganic Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aspects of covalent and ionic bonding are discussed. Common terms, such as valence, oxidation state, and formal charge, are defined; the rules for determination of oxidation states are given. The electron dot theory of Lewis and its applications and problems are described. The shapes of species predicted by valence shell electron pair repulsion theory and the ligand close packing model are discussed. Valence bond theory is introduced in its classical or Pauling version and its modern, more quantitative approach. The development of molecular orbital theory and its application to diatomic, triatomic, and hypervalent species are described. The bonding in methane is developed in terms of both theories. The coverage of these topics includes references published through to mid-2021.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Schmidt, M. W.; Ivanic, J.; Ruedenberg, K. J. Chem. Phys. 2014, 140, #204104; BacsKay, G. B.; Nordholm, S.; Ruedenberg, K. J. Phys. Chem. A 2018, 122, 7880.
 
2
Zhao, L.; Schwarz, W. H. E.; Frenking, G. Nat. Rev. Chem. 2019, 3, 35; Zhao, L.; Pan, S.; Holzman, N.; Schwerdtfeger, P.; Frenking, G. Chem. Rev. 2019, 119, 8781.
 
3
Politzer, P.; Murray, J. S. Struct. Chem. 2019, 30, 1153; Levine, D. S.; Head-Gordon, M. Nat. Commun. 2020, 11, 4893.
 
4
Smith, D. W. J. Chem. Educ. 2005, 82, 1202; Parkin, G. J. Chem. Educ. 2006, 83, 791.
 
5
Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762.
 
6
Langmuir, I. J. Am. Chem. Soc. 1919, 41, 274, 868, 1543; Ibid. Proc. Natl. Acad. Sci. U.S.A. 1919, 5, 252.
 
7
The term tautomer is used mainly in organic chemistry for species with the same molecular formula but a different arrangement of the atoms.
 
8
Straub, D. K. J. Chem. Educ. 1995, 72, 494, 889; Suidan, L.; Badenhoop, J. K.; Glendening, E. D.; Weinhold, F. J. Chem. Educ. 1995, 72, 583; Purser, G. H. J. Chem. Educ. 1999, 76, 1013; Ibid. 2001, 78, 981.
 
9
See, R. F. J. Chem. Educ. 2009, 86, 1241.
 
10
Sidgwick, N. V.; Powell, H. M. Proc. R. Soc. London, A 1940, 176, 153.
 
11
Gillespie, R. J.; Nyholm, R. S. Quart. Rev. Chem. Soc. 1957, 11, 339.
 
12
Gillespie, R. J. Coord. Chem. Rev. 2008, 252, 1315, and references therein.
 
13
Gillespie, R. J.; Robinson, E. A. Chem. Soc. Rev. 2005, 34, 396.
 
14
Bartell, L. S. J. Chem. Educ. 1968, 45, 754; Ibid. Coord. Chem. Rev. 2000, 197, 37.
 
15
Baird, N. C. Inorg. Chem. 1989, 28, 1224.
 
16
Hargittai, M. Acc. Chem. Res. 2009, 42, 453; Bersuker, I. B. Chem. Rev. 2013, 113, 1351.
 
17
Fernández, I.; Holzman, N.; Frenking, G. Chem. Eur. J. 2020, 26, 14194.
 
18
Gillespie, R. J.; Noury, S.; Pilmé, J.; Silvi, B. Inorg. Chem. 2004, 43, 3248; Munárriz, J.; Calatayud, M.; Contreras-Garcia, J. Chem. Eur. J. 2019, 25, 10938.
 
19
Linker, G.-J.; van Duijnen, P. Th.; Broer, R. J. Phys. Chem. A 2020, 124, 1306.
 
20
Wheatley, P. J. J. Chem. Soc. 1964, 3718; Beauchamp, A. L.; Bennett, M. J.; Cotton, F. A. J. Am. Chem. Soc. 1968, 90, 6675.
 
21
Brabant, C.; Hubert, J.; Beauchamp, A. L. Can. J. Chem. 1973, 51, 2952.
 
22
Schmuck, A.; Buschmann, J.; Fuchs, J.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1987, 26, 1180; Schmuck, A.; Leopold, D.; Wallenhauer, S.; Seppelt, K. Chem. Ber. 1990, 123, 761.
 
23
Minoura, M.; Mukuda, T; Sagami, T.; Akiba, K. J. Am. Chem. Soc. 1999, 121, 10852; Ibid. Heteroat. Chem. 2001, 12, 380.
 
24
Dixon, D. A.; Grant, D. J.; Christe, K. O.; Peterson, K. A. Inorg. Chem. 2008, 47, 5485.
 
25
Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, N. Y., 1st ed.; 1939; 2nd ed.; 1940; 3rd ed.; 1960.
 
26
Pauling, L. J. Am. Chem. Soc. 1931, 53, 1367.
 
27
Hückel, E. Z. Phys. 1930, 60, 423.
 
28
Gamoke, B.; Neff, D.; Simons, J. J. Phys. Chem. A 2009, 113, 5677.
 
29
Li, Z.; Zheng, Y.; Cloutier, P.; Sanche, L.; Wagner, J. R. J. Am. Chem. Soc. 2008, 130, 5612; Kocisek, J.; Sedmidubská, B.; Indrajith, S.; Fárník, M.; Fedor, J. J. Phys. Chem B 2018, 122, 5212; Khorsandgolchin, G.; Sanche, L.; Cloutier, P.; Wagner, J. R. J. Am. Chem. Soc. 2019, 141, 10315; Zheng, Y.; Sanche, L. Int. J. Mol. Sci. 2019, 20, 3749; Yang, S.; Zhang, Y.; Zhao, X. J. Phys. Chem. B 2020, 124, 3695.
 
30
Heitler, W.; Poschl, G. Nature 1934, 133, 833.
 
31
Shaik, S.; Hiberty, P. C. Helv. Chim. Acta 2003, 86, 1063; Shaik, S. New J. Chem. 2007, 31, 2015.
 
32
Su, P.; Song, L.; Wu, W.; Hiberty, P. C.; Shaik, S. J. Comput. Chem. 2007, 28, 185; Chen, Z.; Song, J.; Shaik, S.; Hiberty, P. C.; Wu, W. J. Phys. Chem. A 2009, 113, 11560.
 
33
Shurki, A. Theor. Chem. Acc. 2006, 116, 253; Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C. Chem. Rev. 2011, 111, 7557; Hiberty, P. C.; Braïda, B.; Angew. Chem., Int. Ed. 2018, 57, 5994; Chen, Z.; Wu, W. J. Chem. Phys. 2020, 153, #090902.
 
34
Hiberty, P. C.; Flament, J. P.; Noizet, E.; Chem. Phys. Lett. 1992, 189, 259.
 
35
Shaik, S.; Maitre, P.; Sini, G.; Hiberty, P. C. J. Am. Chem. Soc. 1992, 114, 7861; Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443.
 
36
Kovács, A.; Esterhuysen, C.; Frenking, G. Chem. Eur. J. 2005, 11, 1813; Vyboishchikov, S. F.; Krapp, A.; Frenking, G. J. Chem. Phys. 2008, 129, 144111.
 
37
Frenking, G. Chem. Eur. J. 2017, 23, 18320; Zhao, L.; Schwarz, W. H. E.; Frenking, G. Nat. Rev. 2019, 3, 35; Casals-Sainz, J. L.; Jiménez-Grávalos, F.; Francisco, E.; Pendás, A. M. Chem. Commun. 2019, 55, 5071.
 
38
Shaik, S.; Danovich, D.; Braida, B.; Wu, W.; Hiberty, P. C. Struct. Bond. 2016, 170, 169; Shaik, S.; Danovich, D.; Galbraith, J. M.; Braida, B.; Wu, W.; Hiberty, P. C. Angew. Chem., Int. Ed. 2020, 59, 984.
 
39
Hund, F. Z. Phys. 1930, 63, 719; Ibid. 1928, 51, 759.
 
40
Mulliken, R. S. Phys. Rev. 1928, 32, 186, 761.
 
41
Mulliken, R. S. Rev. Mod. Phys. 1932, 4, 1; Ibid. Phys. Rev. 1932, 41, 49; Ibid. J. Chem. Phys. 1935, 3, 375.
 
42
Lennard-Jones, J. E. Trans. Faraday Soc. 1929, 25, 668.
 
43
Harrison, J. F.; Lawson, D. B. J. Chem. Educ. 2005, 82, 1205.
 
44
Ervin, K. M.; Anusiewicz, I.; Skurski, P.; Simons, J.; Lineberger, W. C. J. Phys. Chem. A 2003, 107, 8521.
 
45
Koopmans, T. Physica 1934, 1, 104.
 
46
Gardner, J. L.; Samson, J. A. R. J. Chem. Phys. 1975, 62, 4460.
 
47
Takeshita, K.; Sadamatu, Y.; Tanaka, K. J. Chem. Phys. 2005, 122, #044302, and references therein.
 
48
Gardner, J. L.; Samson, J. A. R. J. Chem. Phys. 1975, 62, 1447.
 
49
Cade, P. E.; Sales, K. D.; Wahl, A. C. J. Chem. Phys. 1966, 44, 1973; Huzinaga, S.; Klobukowski, M.; Tatewaki, H. Can. J. Chem. 1985, 63, 1812.
 
50
Veseth, L. J. Chem. Phys. 2001, 114, 8789.
 
51
Duke, B. J.; O’Leary, B. J. Chem. Educ. 1995, 72, 501.
 
52
Harrison, J. F.; Lawson, D. B. J. Chem. Educ. 2005, 82, 1205.
 
53
Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
 
54
Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691; Perdew, J. P.; Norman, M. R. Phys. Rev. B 1982, 26, 5445.
 
55
Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121, 3414.
 
56
Zhang, G.; Musgrave, C. B. J. Phys. Chem. A 2007, 111, 1554.
 
57
Plashkevych, O.; Ågren, H.; Karlsson, L.; Pettersson, L. G. M. J. Electron Spectrosc. Relat. Phenom. 2000, 106, 51.
 
58
Baerends, E. J.; Gritsenko, O. V. J. Chem. Phys. 2005, 123, #062202, and references therein.
 
59
Salzner, U.; Baer, R. J. Chem. Phys. 2009, 131, #231101.
 
60
Guan, J.; Wang, F.; Ziegler, T.; Cox, H. J. Chem. Phys. 2006, 125, #044314.
 
61
Bieri, G.; Åsbrink, L.; Von Niessen, W. J. Electron Spectrosc. Relat. Phenom. 1981, 23, 281; Duffy, P.; Chong, D. P. Org. Mass Spectrom. 1993, 28, 321; Chong, D. P.; Gritsenko, O. V.; Baerends, E. J. J. Chem. Phys. 2002, 116, 1760; Jellinek, J.; Acioli, P. H. J. Chem. Phys. 2003, 118, 7783; Salzner, U.; Baer, R. J. Chem. Phys. 2009, 131, #231101.
 
62
Bredhol, H.; Dubois, I.; Nzohabonayo, P. J. Mol. Spectrosc. 1982, 93, 281; Bredhol, H.; Dubois, I.; Mélen, F. J. Mol. Spectrosc. 1987, 121, 128.
 
63
Knight, L. B.; Gregory, B. W.; Cobranchi, S. T.; Feller, D.; Davidson, E. R. J. Am. Chem. Soc. 1987, 109, 3521; Fernandez, B.; Jørgenson, P.; McCullogh, E. A., Jr.; Simons, J. J. Chem. Phys. 1993, 99, 5995.
 
64
Mann, J. B.; Meek, T. L.; Allen, L. C. J. Am. Chem. Soc. 2000, 122, 2780.
 
65
Bickelhaupt, F. M.; Nagle, J. K.; Klemm, W. L. J. Phys. Chem. 2008, 112, 2437.
 
66
Shaik, S.; Danovich, D.; Wu, W.; Su, P.; Rzepa, H. S.; Hiberty, P. C. Nature Chem. 2012, 4, 195; Shaik, S.; Danovich, D.; Braida, B.; Hiberty, P. C. Chem. Eur. J. 2016, 22, 4116.
 
67
Harper, O. J.; Boyé-Pérronne, S.; Garcia, G. A.; Hrodmarsson, H. R.; Loison, J.-C.; Gans, B. J. Chem. Phys. 2020, 152, #041105.
 
68
Dunning, T. H., Jr.; Xu, L. T.; Cooper, D. L.; Karadakov, P. B. J. Phys. Chem. A 2021, 125, 2021.
 
69
Miyamoto, K.; Narita, S.; Masumoto, Y.; Hashishin, T.; Osawa, T.; Kimura, M.; Ochiai, M.; Uchiyama, M. Nat. Commun. 2020, 11, 2134.
 
70
Rzepa, H. S. Phys. Chem. Chem. Phys. 2021, 23, 12630.
 
71
Wade, E. A.; Cline, J. I.; Lorenz, K. T.; Hayden, C.; Chandler, D. W. J. Chem. Phys. 2002, 116, 4755.
 
72
The spectrum shown is composed from results in the following references: Turner, D. W.; May, D. P. J. Chem. Phys. 1966, 45, 471; Brundle, C. R. Chem. Phys. Lett. 1970, 5, 410; Brion, C. E.; Tan, K. H. J. Electron Spectrosc. Relat. Phenom. 1981, 23, 1; Kao, C. M.; Caves, T. C.; Messmer, R. P. J. Vac. Sci. Technol. A 1984, 2, 922; Hermann, M. R.; Bauschlicher, C. W., Jr.; Huo, W. M., Langhoff, S. R.; Langhoff, P. W. Chem. Phys. 1986, 109, 1.
 
73
Krapp, A.; Frenking, G. J. Am. Chem. Soc. 2008, 130, 16646, and references therein; Bartlett, R. J. Chem. Phys. Lett. 2009, 484, 1.
 
74
Frenking, G.; Loschen, C.; Krapp, A.; Fau, S.; Strauss, S. H. J. Comput. Chem. 2007, 28, 117.
 
75
Radius, U.; Bickelhaupt, F. M.; Ehlers, A. W.; Goldberg, N.; Hoffmann, R. Inorg. Chem. 1998, 37, 1080.
 
76
Lupinetti, A. J.; Strauss, S. H.; Frenking, G. Prog. Inorg. Chem. 2001, 49, 1; Willner, H.; Aubke, F. Chem. Eur. J. 2003, 9, 1668; Velasquez, J., III; Njegic, B.; Gordon, M. S.; Duncan, M. A. J. Phys. Chem. A 2008, 112, 1907.
 
77
Goldman, A. S.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1996, 118, 12159.
 
78
Saha, R.; Pan, S.; Frenking, G.; Chattaraj, P. K.; Merino, G. Phys. Chem. Chem. Phys. 2017, 19, 2286; Van der Lubbe, S. C. C.; Vermeeren, P.; Guerra, C. F.; Bickelhaupt, F. M. Chem. Eur. J. 2020, 26, 15690.
 
79
Finze, M.; Bernhardt, E.; Terheiden, A.; Berkei, M.; Willner, H.; Christen, D.; Oberhammer, H.; Aubke, F. J. Am. Chem. Soc. 2002, 124, 15385.
 
80
Zhao, L.; Pan, S.; Holzman, N.; Schwerdtfeger, P.; Frenking, G. Chem. Rev. 2019, 119, 8781.
 
81
Mulliken, R. S. Rev. Mod. Phys. 1942, 14, 204.
 
82
Walsh, A. D. J. Chem. Soc. 1953, 2266.
 
83
Peyerimhoff, S. D.; Buenker, R. J.; Allen, L. C. J. Chem. Phys. 1966, 45, 734; Peyerimhoff, S. D.; Buenker, R. J. J. Chem. Phys. 1967, 47, 1953; Burnelle, L.; Beaudouin, P.; Schaad, L. J. J. Phys. Chem. 1967, 71, 2240.
 
84
Buenker, R. J.; Peyerimhoff, S. D. Chem. Rev. 1974, 74, 127; Gimarc, B. M. Acc. Chem. Res. 1974, 7, 384.
 
85
Mayer, I. J. Comput. Chem. 2007, 28, 204; Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. J. Chem. Soc., Dalton Trans. 2001, 2095; See, R. F. J. Chem. Educ. 2009, 86, 1241.
 
86
Thorwirth, S.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P.; Gupta, H.; Stanton, J. F. J. Chem. Phys. 2005, 123, #054326.
 
87
Thorwirth, S.; Theulé, P.; Gottlieb, C. A.; Müller, H. S. P.; McCarthy, M. C.; Thaddeus, P. J. Mol. Struct. 2006, 795, 219.
 
88
Müller, H. S. P.; Miller, C. E.; Cohen, E. J. Chem. Phys. 1997, 107, 8292.
 
89
Jansen, M.; Nuss, H. Z. Anorg. Allg. Chem. 2007, 633, 1307, and references therein.
 
90
Wang, L. J.; Woo, S. B.; Helmy, E. M. Phys. Rev. A 1987, 35, 759; Arnold, D. W.; Xu, C.; Kim, E. H.; Neumark, D. M. J. Chem. Phys. 1994, 101, 912.
 
91
Müller, H. S. P.; Cohen, E. A. J. Chem. Phys. 1997, 106, 8344.
 
92
Gillespie, R. B.; Sparks, R. A.; Trueblood, K. N. Acta Crystallogr. 1959, 12, 867; Okuda, M.; Ishihara, M.; Yamanaka, M.; Ohba, S.; Saito, Y. Acta Crystallogr. C 1990, 46, 1755; Smolentsev, A. I.; Naumov, D. Yu. J. Struct. Chem. 2008, 49, 696, and references therein.
 
93
Svensson, P. H.; Kloo, L. Chem. Rev. 2003, 103, 1649; Sonnenberg, K.; Mann, L.; Redeker, F. A.; Schmidt, B.; Riedel, S. Angew. Chem., Int. Ed. 2020, 59, 5464.
 
94
Tackett, B. S.; Clouthier, D. J. J. Chem. Phys. 2002, 117, 10604; Lee, E. P. F.; Mok, D. K. W.; Chau, F.-T.; Dyke, J. M. J. Chem. Phys. 2007, 127, #214305.
 
95
Musher, J. I. Angew. Chem., Int. Ed. 1969, 8, 54.
 
96
Pimentel, G. C. J. Chem. Phys. 1951, 19, 446; Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321.
 
97
Jensen, W. B. J. Chem. Educ. 2006, 83, 1751.
 
98
Ault, B. S.; Andrews, L. Inorg. Chem. 1977, 16, 2024.
 
99
Tuinman, A. A.; Gakh, A. A.; Hinde, R. J.; Compton, R. N. J. Am. Chem. Soc. 1999, 121, 8397.
 
100
Artau, A.; Nizzi, K. E.; Hill, B. T.; Sunderlin, L. S.; Wenthold, P. G. J. Am. Chem. Soc. 2000, 122, 10667.
 
101
Riedel, S.; Köchner, T.; Wang, X.; Andrews, L. Inorg. Chem. 2010, 49, 7156.
 
102
Martin, J. C. Science 1983, 221, 509, and references therein; Forbus, T. R., Jr.; Martin, J. C. Heteroat. Chem. 1993, 4, 113.
 
103
Akiba, K.-y.; Yamashita, M.; Yamamoto, Y.; Nagase, S. J. Am. Chem. Soc. 1999, 121, 10644.
 
104
Akiba, K.-y.; Moriyama, Y.; Mizozoe, M.; Inohara, H.; Nishii, T.; Yamamoto, Y.; Minoura, M.; Hashizume, D.; Iwasaki, F.; Takagi, N.; Ishimura, K.; Nagase, S. J. Am. Chem. Soc. 2005, 127, 5893.
 
105
Yamaguchi, T.; Yamamoto, Y.; Kinoshita, D.; Akiba, K.-y.; Zhang, Y.; Reed, C. A.; Hashizume, D.; Iwasaki, F. J. Am. Chem. Soc. 2008, 130, 6894.
 
106
Yan, C.; Takeshita, M.; Nakatsuji, J.-y.; Kurosaki, A.; Sato, K.; Shang, R.; Nakamoto, M.; Yamamoto, Y.; Adachi, Y.; Furukawa, K.; Kishi, R.; Nakano, M. Chem. Sci. 2020, 11, 5082, and references therein.
 
107
Fernández, I.; Uggerud, E.; Frenking, G. Chem. Eur. J. 2007, 13, 8620; Kikuchi, Y.; Ishuu, M.; Akiba, K.-y.; Nakai, H. Chem. Phys. Lett. 2008, 460, 37; Pierrefixe, S. C. A. H.; van Stralen, S. J. M.; van Stralen, J. N. P.; Guerra, C. F.; Bickelhaupt, F. M. Angew. Chem., Int. Ed. 2009, 48, 6469.
 
108
Braida, B.; Hiberty, P. C. J. Am. Chem. Soc. 2004, 126, 14890; Braida, B.; Hiberty, P. C. J. Phys. Chem. A 2008, 112, 13045.
 
109
Munzarova, M. L.; Hoffmann, R. J. Am. Chem. Soc. 2002, 124, 4787; Ponec, R.; Yuzhakov, G.; Cooper, D. L. Theor. Chim. Acta 2004, 112, 419; Aragoni, M. C.; Arca, M.; Devillanova, F. A.; Garau, A.; Isaia, F.; Lippolis, V.; Mancini, A. Bioinorg. Chem. Appl. 2007, #17416.
 
110
Gilheany, D. G. Chem. Rev. 1994, 94, 1339.
 
111
Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434.
 
112
Mitzel, N. W.; Smart, B. A.; Dreihäupl, K. H.; Rankin, D. W. H.; Schmidbaur, H. J. Am. Chem. Soc. 1996, 118, 12673.
 
113
Mitzel, N. W.; Lustig, C. J. Chem. Soc., Dalton Trans. 1999, 3177.
 
114
Brundle, C. R.; Robin, M. B.; Basch, H. J. Chem. Phys. 1970, 53, 2196; Göthe, M. C.; Wannberg, B.; Karlsson, L.; Svensson, S.; Baltzer, P.; Chau, F. T.; Adam, M.-Y. J. Chem. Phys. 1991, 94, 2536; Rogers, N. J.; Simpson, M. J.; Tuckett, R. P.; Dunn, K. F.; Latimer, C. J. Mol. Phys. 2010, 108, 895.
 
115
Landis, C. R.; Weinhold, F. J. Chem. Educ. 2012, 89, 570; Hiberty, P. C.; Volatron, F.; Shaik, S. J. Chem. Educ. 2012, 89, 575.
 
116
Zhao, L.; Pan, S.; Holzmann, N.; Schwerdfeger, P.; Frenking, G. Chem. Rev. 2019, 119, 8781.
 
Metadaten
Titel
Covalent Bonding Theories
verfasst von
Robert B. Jordan
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-22926-8_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.