Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Current Progress and Potential Microbial Cornucopia for Plastic Degradation

verfasst von : Shriniketan Puranik, Amanda Shylla, M. Manoj, D. Vijaysri

Erschienen in: Advanced Strategies for Biodegradation of Plastic Polymers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastic pollution has emerged to be the biggest global concern in the modern day. The production of large volumes and different varieties of plastics has led to their huge accumulation and contamination in environmental matrices. Along with plastics, there are additional problems posed by microplastics and related chemicals like phthalates that leach into surrounding resources, thereby polluting them and causing health hazards to living organisms. Thus, their degradation becomes an immediate concern. Although some strategies like photodegradation have been suggested to tackle plastic menace, microbial degradation has been found to be the most effective one. Several microbes have been isolated, characterized, and screened for plastic degradation. Various screening procedures provide more potent microorganisms that break down a variety of plastics by producing several specific and non-specific enzymes. These microbes constitute bacteria, fungi, and other classes like diatoms and microalgae. In-depth studies linked to potent microbes like Ideonella sakaiensis and establishment of databases like PlasticDB make the process more convenient. Further, advancements in molecular techniques like metagenomics and genetic engineering have opened doors for prospecting newer tactics against this global issue. This chapter deals with the microbial cornucopia that are capable of metabolizing various types of plastics and their allied aspects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67.CrossRef Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67.CrossRef
Zurück zum Zitat Ali, M. I., Ahmed, S., Robson, G., Javed, I., Ali, N., Atiq, N., & Hameed, A. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27.CrossRef Ali, M. I., Ahmed, S., Robson, G., Javed, I., Ali, N., Atiq, N., & Hameed, A. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27.CrossRef
Zurück zum Zitat Barcoto, M. O., & Rodrigues, A. (2022). Lessons from insect fungiculture: From microbial ecology to plastics degradation. Frontiers in Microbiology, 13, 812143.CrossRef Barcoto, M. O., & Rodrigues, A. (2022). Lessons from insect fungiculture: From microbial ecology to plastics degradation. Frontiers in Microbiology, 13, 812143.CrossRef
Zurück zum Zitat Barth, M., Honak, A., Oeser, T., et al. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 11(8), 1082–1087.CrossRef Barth, M., Honak, A., Oeser, T., et al. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 11(8), 1082–1087.CrossRef
Zurück zum Zitat Batista-García, R. A., Sutton, T., Jackson, S. A., et al. (2017). Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One, 12(3), e0173750.CrossRef Batista-García, R. A., Sutton, T., Jackson, S. A., et al. (2017). Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One, 12(3), e0173750.CrossRef
Zurück zum Zitat Bergmann, M., Collard, F., Fabres, J., et al. (2022). Plastic pollution in the Arctic. Nature Reviews Earth & Environment, 3(5), 323–337.CrossRef Bergmann, M., Collard, F., Fabres, J., et al. (2022). Plastic pollution in the Arctic. Nature Reviews Earth & Environment, 3(5), 323–337.CrossRef
Zurück zum Zitat Blettler, M. C., & Mitchell, C. (2021). Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Science of the Total Environment, 798, 149317.CrossRef Blettler, M. C., & Mitchell, C. (2021). Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Science of the Total Environment, 798, 149317.CrossRef
Zurück zum Zitat Boll, M., Geiger, R., Junghare, M., & Schink, B. (2020). Microbial degradation of phthalates: Biochemistry and environmental implications. Environmental Microbiology Reports, 12(1), 3–15.CrossRef Boll, M., Geiger, R., Junghare, M., & Schink, B. (2020). Microbial degradation of phthalates: Biochemistry and environmental implications. Environmental Microbiology Reports, 12(1), 3–15.CrossRef
Zurück zum Zitat Bollinger, A., Thies, S., Knieps-Grünhagen, E., et al. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri–structural and functional insights. Frontiers in Microbiology, 11, 114.CrossRef Bollinger, A., Thies, S., Knieps-Grünhagen, E., et al. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri–structural and functional insights. Frontiers in Microbiology, 11, 114.CrossRef
Zurück zum Zitat Bolyen, E., Rideout, J. R., Dillon, M. R., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.CrossRef Bolyen, E., Rideout, J. R., Dillon, M. R., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.CrossRef
Zurück zum Zitat Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.CrossRef Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.CrossRef
Zurück zum Zitat Buchholz, P. C., Feuerriegel, G., Zhang, H., et al. (2022). Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics, 90(7), 1443–1456.CrossRef Buchholz, P. C., Feuerriegel, G., Zhang, H., et al. (2022). Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics, 90(7), 1443–1456.CrossRef
Zurück zum Zitat Cai, L., Wang, J., Peng, J., et al. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of the Total Environment, 628, 740–747.CrossRef Cai, L., Wang, J., Peng, J., et al. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of the Total Environment, 628, 740–747.CrossRef
Zurück zum Zitat Callahan, B. J., McMurdie, P. J., Rosen, M. J., et al. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.CrossRef Callahan, B. J., McMurdie, P. J., Rosen, M. J., et al. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.CrossRef
Zurück zum Zitat Carson, H. S., Nerheim, M. S., Carroll, K. A., & Eriksen, M. (2013). The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1–2), 126–132.CrossRef Carson, H. S., Nerheim, M. S., Carroll, K. A., & Eriksen, M. (2013). The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1–2), 126–132.CrossRef
Zurück zum Zitat Caruso, F., Tedesco, P., Della Sala, G., Palma Esposito, F., Signore, M., Canese, S., et al. (2022). Science and dissemination for the UN Ocean decade outcomes: Current trends and future perspectives. Frontiers in Marine Science, 9, 863647.CrossRef Caruso, F., Tedesco, P., Della Sala, G., Palma Esposito, F., Signore, M., Canese, S., et al. (2022). Science and dissemination for the UN Ocean decade outcomes: Current trends and future perspectives. Frontiers in Marine Science, 9, 863647.CrossRef
Zurück zum Zitat Casabianca, S., Capellacci, S., Giacobbe, M. G., et al. (2019). Plastic-associated harmful microalgal assemblages in marine environment. Environmental Pollution, 244, 617–626.CrossRef Casabianca, S., Capellacci, S., Giacobbe, M. G., et al. (2019). Plastic-associated harmful microalgal assemblages in marine environment. Environmental Pollution, 244, 617–626.CrossRef
Zurück zum Zitat Chakraborty, P., Sampath, S., Mukhopadhyay, M., Selvaraj, S., Bharat, G. K., & Nizzetto, L. (2019). Baseline investigation on plasticizers, bisphenol a, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities. Environmental Pollution, 248, 1036–1045.CrossRef Chakraborty, P., Sampath, S., Mukhopadhyay, M., Selvaraj, S., Bharat, G. K., & Nizzetto, L. (2019). Baseline investigation on plasticizers, bisphenol a, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities. Environmental Pollution, 248, 1036–1045.CrossRef
Zurück zum Zitat Chamas, A., Moon, H., Zheng, J., et al. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.CrossRef Chamas, A., Moon, H., Zheng, J., et al. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.CrossRef
Zurück zum Zitat Chang, B. V., Yang, C. M., Cheng, C. H., & Yuan, S. Y. (2004). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55(4), 533–538.CrossRef Chang, B. V., Yang, C. M., Cheng, C. H., & Yuan, S. Y. (2004). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55(4), 533–538.CrossRef
Zurück zum Zitat Charnock, C. (2021). Norwegian soils and waters contain mesophilic, plastic-degrading bacteria. Microorganisms, 9(1), 94.CrossRef Charnock, C. (2021). Norwegian soils and waters contain mesophilic, plastic-degrading bacteria. Microorganisms, 9(1), 94.CrossRef
Zurück zum Zitat Chouhan, S., Yadav, S. K., Prakash, J., & Swati, & Singh, S. P. (2014). Effect of Bisphenol A on human health and its degradation by microorganisms: A review. Annals of Microbiology, 64, 13–21.CrossRef Chouhan, S., Yadav, S. K., Prakash, J., & Swati, & Singh, S. P. (2014). Effect of Bisphenol A on human health and its degradation by microorganisms: A review. Annals of Microbiology, 64, 13–21.CrossRef
Zurück zum Zitat Crabbe, J. R., Campbell, J. R., Thompson, L., et al. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration & Biodegradation, 33(2), 103–113.CrossRef Crabbe, J. R., Campbell, J. R., Thompson, L., et al. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration & Biodegradation, 33(2), 103–113.CrossRef
Zurück zum Zitat Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by bacillus amyloliquefaciens. 3 Biotech, 5(1), 81–86.CrossRef Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by bacillus amyloliquefaciens. 3 Biotech, 5(1), 81–86.CrossRef
Zurück zum Zitat Dvořák, P., Nikel, P. I., Damborský, J., & de Lorenzo, V. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866.CrossRef Dvořák, P., Nikel, P. I., Damborský, J., & de Lorenzo, V. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866.CrossRef
Zurück zum Zitat Espinosa, M. J. C., Blanco, A. C., Schmidgall, T., et al. (2020). Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11, 404.CrossRef Espinosa, M. J. C., Blanco, A. C., Schmidgall, T., et al. (2020). Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11, 404.CrossRef
Zurück zum Zitat Feng, X., Wang, G., Neumann, K., et al. (2017). Synthesis and characterization of biodegradable poly (ether-ester) urethane acrylates for controlled drug release. Materials Science and Engineering: C, 74, 270–278.CrossRef Feng, X., Wang, G., Neumann, K., et al. (2017). Synthesis and characterization of biodegradable poly (ether-ester) urethane acrylates for controlled drug release. Materials Science and Engineering: C, 74, 270–278.CrossRef
Zurück zum Zitat Fields, R. D., Rodriguez, F., & Finn, R. K. (1974). Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. Journal of Applied Polymer Science, 18(12), 3571–3579.CrossRef Fields, R. D., Rodriguez, F., & Finn, R. K. (1974). Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. Journal of Applied Polymer Science, 18(12), 3571–3579.CrossRef
Zurück zum Zitat Fujiwara, R., Sanuki, R., Ajiro, H., et al. (2021). Direct fermentative conversion of poly (ethylene terephthalate) into poly (hydroxyalkanoate) by Ideonella sakaiensis. Scientific Reports, 11(1), 19991.CrossRef Fujiwara, R., Sanuki, R., Ajiro, H., et al. (2021). Direct fermentative conversion of poly (ethylene terephthalate) into poly (hydroxyalkanoate) by Ideonella sakaiensis. Scientific Reports, 11(1), 19991.CrossRef
Zurück zum Zitat Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.CrossRef Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.CrossRef
Zurück zum Zitat Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2021). Phylogenetic distribution of plastic degrading microorganisms. mSystems, 6, e01112–e01120.CrossRef Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2021). Phylogenetic distribution of plastic degrading microorganisms. mSystems, 6, e01112–e01120.CrossRef
Zurück zum Zitat Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2022). PlasticDB: A database of microorganisms and proteins linked to plastic biodegradation. Database, baac008. Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2022). PlasticDB: A database of microorganisms and proteins linked to plastic biodegradation. Database, baac008.
Zurück zum Zitat Gan, Z., & Zhang, H. (2019). PMBD: A comprehensive plastics microbial biodegradation database. Database, baz119. Gan, Z., & Zhang, H. (2019). PMBD: A comprehensive plastics microbial biodegradation database. Database, baz119.
Zurück zum Zitat Gao, R., Liu, R., & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 431, 128617.CrossRef Gao, R., Liu, R., & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 431, 128617.CrossRef
Zurück zum Zitat Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.CrossRef Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.CrossRef
Zurück zum Zitat Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 1369. Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 1369.
Zurück zum Zitat Goel, V., Luthra, P., Kapur, G. S., & Ramakumar, S. S. V. (2021). Biodegradable/bio-plastics: Myths and realities. Journal of Polymers and the Environment, 29, 3079–3104.CrossRef Goel, V., Luthra, P., Kapur, G. S., & Ramakumar, S. S. V. (2021). Biodegradable/bio-plastics: Myths and realities. Journal of Polymers and the Environment, 29, 3079–3104.CrossRef
Zurück zum Zitat Gong, Z., Jin, L., Yu, X., Wang, B., Hu, S., Ruan, H., et al. (2023). Biodegradation of low density polyethylene by the fungus Cladosporium sp. recovered from a landfill site. Journal of Fungi, 9(6), 605.CrossRef Gong, Z., Jin, L., Yu, X., Wang, B., Hu, S., Ruan, H., et al. (2023). Biodegradation of low density polyethylene by the fungus Cladosporium sp. recovered from a landfill site. Journal of Fungi, 9(6), 605.CrossRef
Zurück zum Zitat Gowthami, A., Marjuk, M. S., Raju, P., Devi, K. N., Santhanam, P., Kumar, S. D., & Perumal, P. (2023). Biodegradation efficacy of selected marine microalgae against low-density polyethylene (LDPE): An environment friendly green approach. Marine Pollution Bulletin, 190, 114889.CrossRef Gowthami, A., Marjuk, M. S., Raju, P., Devi, K. N., Santhanam, P., Kumar, S. D., & Perumal, P. (2023). Biodegradation efficacy of selected marine microalgae against low-density polyethylene (LDPE): An environment friendly green approach. Marine Pollution Bulletin, 190, 114889.CrossRef
Zurück zum Zitat Gu, J. D., Li, J. X., & Wang, Y. Y. (2005). Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Science and Technology, 52(8), 241–248.CrossRef Gu, J. D., Li, J. X., & Wang, Y. Y. (2005). Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Science and Technology, 52(8), 241–248.CrossRef
Zurück zum Zitat Gui, Z., Liu, G., Liu, X., Cai, R., Liu, R., & Sun, C. (2023). A deep-sea bacterium is capable of degrading polyurethane. Microbiology Spectrum, 11, e00073–e00023.CrossRef Gui, Z., Liu, G., Liu, X., Cai, R., Liu, R., & Sun, C. (2023). A deep-sea bacterium is capable of degrading polyurethane. Microbiology Spectrum, 11, e00073–e00023.CrossRef
Zurück zum Zitat Guo, H., Zheng, B., Jiang, D., & Qin, W. (2017). Overexpression of a laccase with dye decolorization activity from bacillus sp. induced in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 27(4), 217–227. Guo, H., Zheng, B., Jiang, D., & Qin, W. (2017). Overexpression of a laccase with dye decolorization activity from bacillus sp. induced in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 27(4), 217–227.
Zurück zum Zitat Han, Y. N., Wei, M., Han, F., Fang, C., Wang, D., Zhong, Y. J., et al. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8(12), 1979.CrossRef Han, Y. N., Wei, M., Han, F., Fang, C., Wang, D., Zhong, Y. J., et al. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8(12), 1979.CrossRef
Zurück zum Zitat Hartmann, G. F., Ricachenevsky, F. K., Silveira, N. M., & Pita-Barbosa, A. (2022). Phytotoxic effects of plastic pollution in crops: What is the size of the problem? Environmental Pollution, 292, 118420.CrossRef Hartmann, G. F., Ricachenevsky, F. K., Silveira, N. M., & Pita-Barbosa, A. (2022). Phytotoxic effects of plastic pollution in crops: What is the size of the problem? Environmental Pollution, 292, 118420.CrossRef
Zurück zum Zitat Herrero Acero, E., Ribitsch, D., Dellacher, A., et al. (2013). Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering, 110(10), 2581–2590.CrossRef Herrero Acero, E., Ribitsch, D., Dellacher, A., et al. (2013). Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering, 110(10), 2581–2590.CrossRef
Zurück zum Zitat Hou, L., Xi, J., Liu, J., Wang, P., Xu, T., Liu, T., et al. (2022). Biodegradability of polyethylene mulching film by two pseudomonas bacteria and their potential degradation mechanism. Chemosphere, 286, 131758.CrossRef Hou, L., Xi, J., Liu, J., Wang, P., Xu, T., Liu, T., et al. (2022). Biodegradability of polyethylene mulching film by two pseudomonas bacteria and their potential degradation mechanism. Chemosphere, 286, 131758.CrossRef
Zurück zum Zitat Huerta Lwanga, E., Gertsen, H., Gooren, H., et al. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685–2691.CrossRef Huerta Lwanga, E., Gertsen, H., Gooren, H., et al. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685–2691.CrossRef
Zurück zum Zitat Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., & Richter, M. (2015). Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5(1), 10465–10478.CrossRef Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., & Richter, M. (2015). Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5(1), 10465–10478.CrossRef
Zurück zum Zitat Indumathi, A., & Gayathri, T. (2016). Plastic degrading ability of aspergillus oryzae isolated from the garbage dumping sites of Thanjavur, India. International Journal of Current Microbiology and Applied Sciences., 8(13), 2319–7706. Indumathi, A., & Gayathri, T. (2016). Plastic degrading ability of aspergillus oryzae isolated from the garbage dumping sites of Thanjavur, India. International Journal of Current Microbiology and Applied Sciences., 8(13), 2319–7706.
Zurück zum Zitat Jambeck, J. R., Geyer, R., Wilcox, C., et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.CrossRef Jambeck, J. R., Geyer, R., Wilcox, C., et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.CrossRef
Zurück zum Zitat Janatunaim, R. Z., & Fibriani, A. (2020). Construction and cloning of plastic-degrading recombinant enzymes (MHETase). Recent Patents on Biotechnology, 14(3), 229–234.CrossRef Janatunaim, R. Z., & Fibriani, A. (2020). Construction and cloning of plastic-degrading recombinant enzymes (MHETase). Recent Patents on Biotechnology, 14(3), 229–234.CrossRef
Zurück zum Zitat Jeon, H. J., & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation, 103, 141–146.CrossRef Jeon, H. J., & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation, 103, 141–146.CrossRef
Zurück zum Zitat Jeyakumar, D., Chirsteen, J., & Doble, M. (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology, 148, 78–85.CrossRef Jeyakumar, D., Chirsteen, J., & Doble, M. (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology, 148, 78–85.CrossRef
Zurück zum Zitat Johnnie, D. A., Issac, R., & Prabha, M. L. (2021). Bio efficacy assay of laccase isolated and characterized from Trichoderma viride in biodegradation of low density polyethylene (LDPE) and textile industrial effluent dyes. Journal of Pure & Applied Microbiology, 15(1), 410–420.CrossRef Johnnie, D. A., Issac, R., & Prabha, M. L. (2021). Bio efficacy assay of laccase isolated and characterized from Trichoderma viride in biodegradation of low density polyethylene (LDPE) and textile industrial effluent dyes. Journal of Pure & Applied Microbiology, 15(1), 410–420.CrossRef
Zurück zum Zitat Joo, S., Cho, I. J., Seo, H., et al. (2018). Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nature Communications, 9(1), 382.CrossRef Joo, S., Cho, I. J., Seo, H., et al. (2018). Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nature Communications, 9(1), 382.CrossRef
Zurück zum Zitat Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.CrossRef Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.CrossRef
Zurück zum Zitat Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: A review. Journal of Biochemical Technology, 6(2), 952–961. Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: A review. Journal of Biochemical Technology, 6(2), 952–961.
Zurück zum Zitat Karich, A., Ullrich, R., Scheibner, K., & Hofrichter, M. (2017). Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Frontiers in Microbiology, 8, 1463–1478.CrossRef Karich, A., Ullrich, R., Scheibner, K., & Hofrichter, M. (2017). Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Frontiers in Microbiology, 8, 1463–1478.CrossRef
Zurück zum Zitat Kawai, F., Oda, M., Tamashiro, T., et al. (2014). A novel ca 2+−activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98, 10053–10064.CrossRef Kawai, F., Oda, M., Tamashiro, T., et al. (2014). A novel ca 2+−activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98, 10053–10064.CrossRef
Zurück zum Zitat Kay, M. J., Morton, L. H. G., & Prince, E. L. (1991). Bacterial degradation of polyester polyurethane. International Biodeterioration, 27(2), 205–222.CrossRef Kay, M. J., Morton, L. H. G., & Prince, E. L. (1991). Bacterial degradation of polyester polyurethane. International Biodeterioration, 27(2), 205–222.CrossRef
Zurück zum Zitat Khan, S., Ali, S. A., & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300–2314.CrossRef Khan, S., Ali, S. A., & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300–2314.CrossRef
Zurück zum Zitat Khatoon, N., Jamal, A., & Ali, M. I. (2019). Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 40(11), 1366–1375.CrossRef Khatoon, N., Jamal, A., & Ali, M. I. (2019). Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 40(11), 1366–1375.CrossRef
Zurück zum Zitat Khoironi, A., Anggoro, S., & Sudarno. (2019). Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Journal of Ecological Engineering, 20(6), 161–173.CrossRef Khoironi, A., Anggoro, S., & Sudarno. (2019). Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Journal of Ecological Engineering, 20(6), 161–173.CrossRef
Zurück zum Zitat Khruengsai, S., Sripahco, T., & Pripdeevech, P. (2022). Biodegradation of polyester polyurethane by Embarria clematidis. Frontiers in Microbiology, 13, 874842.CrossRef Khruengsai, S., Sripahco, T., & Pripdeevech, P. (2022). Biodegradation of polyester polyurethane by Embarria clematidis. Frontiers in Microbiology, 13, 874842.CrossRef
Zurück zum Zitat Kim, J. H., Choi, S. H., Park, M. G., Park, D. H., Son, K. H., & Park, H. Y. (2022). Polyurethane biodegradation by Serratia sp. HY-72 isolated from the intestine of the Asian mantis Hierodula patellifera. Frontiers in Microbiology, 13, 1005415.CrossRef Kim, J. H., Choi, S. H., Park, M. G., Park, D. H., Son, K. H., & Park, H. Y. (2022). Polyurethane biodegradation by Serratia sp. HY-72 isolated from the intestine of the Asian mantis Hierodula patellifera. Frontiers in Microbiology, 13, 1005415.CrossRef
Zurück zum Zitat Kim, H. R., Lee, C., Shin, H., et al. (2023). Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon, 9(5), e15731.CrossRef Kim, H. R., Lee, C., Shin, H., et al. (2023). Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon, 9(5), e15731.CrossRef
Zurück zum Zitat Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process Biochemistry, 61, 1–11.CrossRef Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process Biochemistry, 61, 1–11.CrossRef
Zurück zum Zitat Kumar, R. V., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(381), 2. Kumar, R. V., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(381), 2.
Zurück zum Zitat Kumar, S., Das, M. P., Rebecca, L. J., & Sharmila, S. (2013). Isolation and identification of LDPE degrading fungi from municipal solid waste. Journal of Chemical and Pharmaceutical Research, 5(3), 78–81. Kumar, S., Das, M. P., Rebecca, L. J., & Sharmila, S. (2013). Isolation and identification of LDPE degrading fungi from municipal solid waste. Journal of Chemical and Pharmaceutical Research, 5(3), 78–81.
Zurück zum Zitat Kumari, A., & Chaudhary, D. R. (2020). Engineered microbes and evolving plastic bioremediation technology. In Bioremediation of pollutants (pp. 417–443). Elsevier.CrossRef Kumari, A., & Chaudhary, D. R. (2020). Engineered microbes and evolving plastic bioremediation technology. In Bioremediation of pollutants (pp. 417–443). Elsevier.CrossRef
Zurück zum Zitat Kurniawan, S. B., & Imron, M. F. (2019). The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environmental Technology & Innovation, 15, 100420.CrossRef Kurniawan, S. B., & Imron, M. F. (2019). The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environmental Technology & Innovation, 15, 100420.CrossRef
Zurück zum Zitat Kutmon, M., van Iersel, M. P., Bohler, A., et al. (2015). PathVisio 3: An extendable pathway analysis toolbox. PLoS Computational Biology, 11(2), e1004085.CrossRef Kutmon, M., van Iersel, M. P., Bohler, A., et al. (2015). PathVisio 3: An extendable pathway analysis toolbox. PLoS Computational Biology, 11(2), e1004085.CrossRef
Zurück zum Zitat Laroche, O., Pantos, O., Kingsbury, J. M., Zaiko, A., Wallbank, J., Lear, G., et al. (2023). A spatio-temporal analysis of marine diatom communities associated with pristine and aged plastics. Biofouling, 39, 1–17.CrossRef Laroche, O., Pantos, O., Kingsbury, J. M., Zaiko, A., Wallbank, J., Lear, G., et al. (2023). A spatio-temporal analysis of marine diatom communities associated with pristine and aged plastics. Biofouling, 39, 1–17.CrossRef
Zurück zum Zitat Liu, J., Zeng, Q., Lei, H., et al. (2023). Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways. Journal of Hazardous Materials, 448, 130776.CrossRef Liu, J., Zeng, Q., Lei, H., et al. (2023). Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways. Journal of Hazardous Materials, 448, 130776.CrossRef
Zurück zum Zitat Lin, Z., Jin, T., Xu, X., Yin, X., Zhang, D., Geng, M., et al. (2024). Screening and degradation characteristics of plastic-degrading microorganisms in film-mulched vegetable soil. International Biodeterioration & Biodegradation, 186, 105686.CrossRef Lin, Z., Jin, T., Xu, X., Yin, X., Zhang, D., Geng, M., et al. (2024). Screening and degradation characteristics of plastic-degrading microorganisms in film-mulched vegetable soil. International Biodeterioration & Biodegradation, 186, 105686.CrossRef
Zurück zum Zitat Liu, K., Su, Z., Miao, S., et al. (2016). Enzymatic waterborne polyurethane towards a robust and environmentally friendly anti-biofouling coating. RSC Advances, 6(38), 31698–31704.CrossRef Liu, K., Su, Z., Miao, S., et al. (2016). Enzymatic waterborne polyurethane towards a robust and environmentally friendly anti-biofouling coating. RSC Advances, 6(38), 31698–31704.CrossRef
Zurück zum Zitat Lomwongsopon, P., & Varrone, C. (2022). Critical review on the progress of plastic bioupcycling technology as a potential solution for sustainable plastic waste management. Polymers, 14(22), 4996.CrossRef Lomwongsopon, P., & Varrone, C. (2022). Critical review on the progress of plastic bioupcycling technology as a potential solution for sustainable plastic waste management. Polymers, 14(22), 4996.CrossRef
Zurück zum Zitat Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R., & Aguilar, C. N. (2012). Microbial enzymes involved in polyurethane biodegradation: A review. Journal of Polymers and the Environment, 20, 258–265.CrossRef Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R., & Aguilar, C. N. (2012). Microbial enzymes involved in polyurethane biodegradation: A review. Journal of Polymers and the Environment, 20, 258–265.CrossRef
Zurück zum Zitat Maeda, H., Yamagata, Y., Abe, K., et al. (2005). Purification and characterization of a biodegradable plasticdegrading enzyme from aspergillus oryzae. Applied Microbiology and Biotechnology, 67, 778–788.CrossRef Maeda, H., Yamagata, Y., Abe, K., et al. (2005). Purification and characterization of a biodegradable plasticdegrading enzyme from aspergillus oryzae. Applied Microbiology and Biotechnology, 67, 778–788.CrossRef
Zurück zum Zitat Magnin, A., Pollet, E., Phalip, V., & Avérous, L. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39, 107457.CrossRef Magnin, A., Pollet, E., Phalip, V., & Avérous, L. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39, 107457.CrossRef
Zurück zum Zitat Maroof, L., Iqbal, M., Farman, S., & Faisal, S. (2022). Biodegradation of low-density polyethylene (LDPE) bags by fungi isolated from waste disposal soil. Applied and Environmental Soil Science, 2022, 1–7. Maroof, L., Iqbal, M., Farman, S., & Faisal, S. (2022). Biodegradation of low-density polyethylene (LDPE) bags by fungi isolated from waste disposal soil. Applied and Environmental Soil Science, 2022, 1–7.
Zurück zum Zitat Matthews, S., Belcher, J. D., Tee, K. L., et al. (2017). Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. The Journal of Biological Chemistry, 292, 5128–5143.CrossRef Matthews, S., Belcher, J. D., Tee, K. L., et al. (2017). Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. The Journal of Biological Chemistry, 292, 5128–5143.CrossRef
Zurück zum Zitat Mishra, A., Gupta, J., Kumari, T., Pal, R., & Thakur, I. S. (2021). Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. Bioresource Technology, 337, 125473.CrossRef Mishra, A., Gupta, J., Kumari, T., Pal, R., & Thakur, I. S. (2021). Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. Bioresource Technology, 337, 125473.CrossRef
Zurück zum Zitat Mo, Y., Lao, H. I., Au, S. W., et al. (2022). Expression, secretion and functional characterization of three laccases in E. Coli. Synthetic and Systems Biotechnology, 7(1), 474–480.CrossRef Mo, Y., Lao, H. I., Au, S. W., et al. (2022). Expression, secretion and functional characterization of three laccases in E. Coli. Synthetic and Systems Biotechnology, 7(1), 474–480.CrossRef
Zurück zum Zitat Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625.CrossRef Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625.CrossRef
Zurück zum Zitat Montazer, Z., Habibi Najafi, M. B., & Levin, D. B. (2019). Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Canadian Journal of Microbiology, 65(3), 224–234.CrossRef Montazer, Z., Habibi Najafi, M. B., & Levin, D. B. (2019). Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Canadian Journal of Microbiology, 65(3), 224–234.CrossRef
Zurück zum Zitat Munir, E., Harefa, R. S. M., Priyani, N., & Suryanto, D. (2018, March). Plastic degrading fungi Trichoderma viride and aspergillus nomius isolated from local landfill soil in Medan. In IOP conference series: Earth and environmental science (Vol. 126, No. 1, p. 012145). IOP Publishing. Munir, E., Harefa, R. S. M., Priyani, N., & Suryanto, D. (2018, March). Plastic degrading fungi Trichoderma viride and aspergillus nomius isolated from local landfill soil in Medan. In IOP conference series: Earth and environmental science (Vol. 126, No. 1, p. 012145). IOP Publishing.
Zurück zum Zitat Ndahebwa Muhonja, C., Magoma, G., Imbuga, M., & Makonde, H. M. (2018). Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018. Ndahebwa Muhonja, C., Magoma, G., Imbuga, M., & Makonde, H. M. (2018). Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018.
Zurück zum Zitat Nakajima-Kambe, T., Onuma, F., Kimpara, N., & Nakahara, T. (1995). Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, 129(1), 39–42.CrossRef Nakajima-Kambe, T., Onuma, F., Kimpara, N., & Nakahara, T. (1995). Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, 129(1), 39–42.CrossRef
Zurück zum Zitat Nakamiya, K., Ooi, T., & Kinoshita, S. (1997). Non-heme hydroquinone peroxidase from Azotobacter beijerinckii HM121. Journal of Fermentation and Bioengineering, 84(1), 14–21.CrossRef Nakamiya, K., Ooi, T., & Kinoshita, S. (1997). Non-heme hydroquinone peroxidase from Azotobacter beijerinckii HM121. Journal of Fermentation and Bioengineering, 84(1), 14–21.CrossRef
Zurück zum Zitat Nanda, S., Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14(2). Nanda, S., Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14(2).
Zurück zum Zitat Nandakumar, A., Chuah, J. A., & Sudesh, K. (2021). Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews, 147, 111237.CrossRef Nandakumar, A., Chuah, J. A., & Sudesh, K. (2021). Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews, 147, 111237.CrossRef
Zurück zum Zitat Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 11(8), e0159289.CrossRef Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 11(8), e0159289.CrossRef
Zurück zum Zitat Ojha, N., Pradhan, N., Singh, S., et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7(1), 39515.CrossRef Ojha, N., Pradhan, N., Singh, S., et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7(1), 39515.CrossRef
Zurück zum Zitat Olicón-Hernández, D. R., González-López, J., & Aranda, E. (2017). Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Frontiers in Microbiology, 8, 1792–1809.CrossRef Olicón-Hernández, D. R., González-López, J., & Aranda, E. (2017). Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Frontiers in Microbiology, 8, 1792–1809.CrossRef
Zurück zum Zitat Oluwoye, I., Machuca, L. L., Higgins, S., et al. (2023). Degradation and lifetime prediction of plastics in subsea and offshore infrastructures. Science of the Total Environment, 166719. Oluwoye, I., Machuca, L. L., Higgins, S., et al. (2023). Degradation and lifetime prediction of plastics in subsea and offshore infrastructures. Science of the Total Environment, 166719.
Zurück zum Zitat Orhan, Y., & Büyükgüngör, H. (2000). Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation, 45(1–2), 49–55.CrossRef Orhan, Y., & Büyükgüngör, H. (2000). Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation, 45(1–2), 49–55.CrossRef
Zurück zum Zitat Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.CrossRef Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.CrossRef
Zurück zum Zitat Palm, G. J., Reisky, L., Böttcher, D., et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717.CrossRef Palm, G. J., Reisky, L., Böttcher, D., et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717.CrossRef
Zurück zum Zitat Pathak, V. M. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 1–31.CrossRef Pathak, V. M. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 1–31.CrossRef
Zurück zum Zitat Patil, R., & Bagde, U. S. (2012). Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. African Journal of Biotechnology, 11(31), 7947–7956. Patil, R., & Bagde, U. S. (2012). Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. African Journal of Biotechnology, 11(31), 7947–7956.
Zurück zum Zitat Penkhrue, W., Khanongnuch, C., Masaki, K., et al. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 31, 1431–1442.CrossRef Penkhrue, W., Khanongnuch, C., Masaki, K., et al. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 31, 1431–1442.CrossRef
Zurück zum Zitat Pinnell, L. J., Conkle, J. L., & Turner, J. W. (2022). Microbial succession during the degradation of bioplastic in coastal marine sediment favors sulfate reducing microorganisms. Frontiers in Marine Science, 9, 945822.CrossRef Pinnell, L. J., Conkle, J. L., & Turner, J. W. (2022). Microbial succession during the degradation of bioplastic in coastal marine sediment favors sulfate reducing microorganisms. Frontiers in Marine Science, 9, 945822.CrossRef
Zurück zum Zitat Pramila, R., & Ramesh, K. V. (2011). Biodegradation of low-density polyethylene (LDPE) by fungi isolated from marine water a SEM analysis. African Journal of Microbiology Research, 5(28), 5013–5018.CrossRef Pramila, R., & Ramesh, K. V. (2011). Biodegradation of low-density polyethylene (LDPE) by fungi isolated from marine water a SEM analysis. African Journal of Microbiology Research, 5(28), 5013–5018.CrossRef
Zurück zum Zitat Priya, A., Dutta, K., & Daverey, A. (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology & Biotechnology, 97(2), 381–390.CrossRef Priya, A., Dutta, K., & Daverey, A. (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology & Biotechnology, 97(2), 381–390.CrossRef
Zurück zum Zitat Puranik, S., Shukla, L., Kundu, A., et al. (2023). Exploring potent fungal isolates from sanitary landfill soil for in vitro degradation of dibutyl phthalate. Journal of Fungi, 9(1), 125.CrossRef Puranik, S., Shukla, L., Kundu, A., et al. (2023). Exploring potent fungal isolates from sanitary landfill soil for in vitro degradation of dibutyl phthalate. Journal of Fungi, 9(1), 125.CrossRef
Zurück zum Zitat Rani, A., & Singh, P. (2017). Screening of polyethylene degrading fungi from polyethylene dump site. International Journal of ChemTech Research, 10(3), 699–704. Rani, A., & Singh, P. (2017). Screening of polyethylene degrading fungi from polyethylene dump site. International Journal of ChemTech Research, 10(3), 699–704.
Zurück zum Zitat Renstad, R., Karlsson, S., & Albertsson, A. C. (1999). The influence of processing induced differences in molecular structure on the biological and non-biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate), P (3-HB-co-3-HV). Polymer Degradation and Stability, 63(2), 201–211.CrossRef Renstad, R., Karlsson, S., & Albertsson, A. C. (1999). The influence of processing induced differences in molecular structure on the biological and non-biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate), P (3-HB-co-3-HV). Polymer Degradation and Stability, 63(2), 201–211.CrossRef
Zurück zum Zitat Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.CrossRef Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.CrossRef
Zurück zum Zitat Russell, J. R., Huang, J., Anand, P., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77(17), 6076–6084.CrossRef Russell, J. R., Huang, J., Anand, P., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77(17), 6076–6084.CrossRef
Zurück zum Zitat Rüthi, J., Cerri, M., Brunner, I., et al. (2023). Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Frontiers in Microbiology, 14, 1178474.CrossRef Rüthi, J., Cerri, M., Brunner, I., et al. (2023). Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Frontiers in Microbiology, 14, 1178474.CrossRef
Zurück zum Zitat Sakti, A. D., Sembiring, E., Rohayani, P., et al. (2023). Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using Sentinel-2 satellite imagery. Scientific Reports, 13(1), 5039.CrossRef Sakti, A. D., Sembiring, E., Rohayani, P., et al. (2023). Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using Sentinel-2 satellite imagery. Scientific Reports, 13(1), 5039.CrossRef
Zurück zum Zitat Sakhalkar, S., & Mishra, R. L. (2013). Screening and identification of soil fungi with potential of plastic degrading ability. Indian Journal of Applied Research, 3(12), 1–3. Sakhalkar, S., & Mishra, R. L. (2013). Screening and identification of soil fungi with potential of plastic degrading ability. Indian Journal of Applied Research, 3(12), 1–3.
Zurück zum Zitat Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.CrossRef Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.CrossRef
Zurück zum Zitat Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), 5390.CrossRef Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), 5390.CrossRef
Zurück zum Zitat Sanniyasi, E., Gopal, R. K., Gunasekar, D. K., & Raj, P. P. (2021). Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema africanum Borge. Scientific Reports, 11(1), 17233.CrossRef Sanniyasi, E., Gopal, R. K., Gunasekar, D. K., & Raj, P. P. (2021). Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema africanum Borge. Scientific Reports, 11(1), 17233.CrossRef
Zurück zum Zitat Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme, laccase, in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 84, 204–210.CrossRef Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme, laccase, in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 84, 204–210.CrossRef
Zurück zum Zitat Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8.CrossRef Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8.CrossRef
Zurück zum Zitat Schmit, J. P., & Mueller, G. M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16, 99–111.CrossRef Schmit, J. P., & Mueller, G. M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16, 99–111.CrossRef
Zurück zum Zitat Schmidt, J., Wei, R., Oeser, T., et al. (2017). Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers, 9(2), 65.CrossRef Schmidt, J., Wei, R., Oeser, T., et al. (2017). Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers, 9(2), 65.CrossRef
Zurück zum Zitat Schwartz, M., Perrot, T., Aubert, E., et al. (2018). Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Scientific Reports, 8(1), 8472–8483.CrossRef Schwartz, M., Perrot, T., Aubert, E., et al. (2018). Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Scientific Reports, 8(1), 8472–8483.CrossRef
Zurück zum Zitat Seo, H., Kim, S., Son, H. F., et al. (2019). Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250–255.CrossRef Seo, H., Kim, S., Son, H. F., et al. (2019). Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250–255.CrossRef
Zurück zum Zitat Sevilla, M. E., Garcia, M. D., Perez-Castillo, Y., et al. (2023). Degradation of PET bottles by an engineered Ideonella sakaiensis PETase. Polymers, 15(7), 1779.CrossRef Sevilla, M. E., Garcia, M. D., Perez-Castillo, Y., et al. (2023). Degradation of PET bottles by an engineered Ideonella sakaiensis PETase. Polymers, 15(7), 1779.CrossRef
Zurück zum Zitat Shah, Z., Gulzar, M., Hasan, F., & Shah, A. A. (2016). Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and bacillus species isolated from soil. Polymer Degradation and Stability, 134, 349–356.CrossRef Shah, Z., Gulzar, M., Hasan, F., & Shah, A. A. (2016). Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and bacillus species isolated from soil. Polymer Degradation and Stability, 134, 349–356.CrossRef
Zurück zum Zitat Sharma, J., Gurung, T., Upadhyay, A., Nandy, K., Agnihotri, P., & Mitra, A. K. (2014). Isolation and characterization of plastic degrading bacteria from soil collected from the dumping grounds of an industrial area. International Journal of Advanced and Innovative Research, 3(3), 225–232. Sharma, J., Gurung, T., Upadhyay, A., Nandy, K., Agnihotri, P., & Mitra, A. K. (2014). Isolation and characterization of plastic degrading bacteria from soil collected from the dumping grounds of an industrial area. International Journal of Advanced and Innovative Research, 3(3), 225–232.
Zurück zum Zitat Sharma, N., Kumar, V., Maitra, S. S., Lakkaboyana, S. K., & Khantong, S. (2021). DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil. Environmental Technology & Innovation, 21, 101240.CrossRef Sharma, N., Kumar, V., Maitra, S. S., Lakkaboyana, S. K., & Khantong, S. (2021). DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil. Environmental Technology & Innovation, 21, 101240.CrossRef
Zurück zum Zitat Sheik, S., Chandrashekar, K. R., Swaroop, K., & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 105, 21–29.CrossRef Sheik, S., Chandrashekar, K. R., Swaroop, K., & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 105, 21–29.CrossRef
Zurück zum Zitat Shi, L., Liu, H., Gao, S., Weng, Y., & Zhu, L. (2021). Enhanced extracellular production of is PETase in Escherichia coli via engineering of the pelB signal peptide. Journal of Agricultural and Food Chemistry, 69(7), 2245–2252.CrossRef Shi, L., Liu, H., Gao, S., Weng, Y., & Zhu, L. (2021). Enhanced extracellular production of is PETase in Escherichia coli via engineering of the pelB signal peptide. Journal of Agricultural and Food Chemistry, 69(7), 2245–2252.CrossRef
Zurück zum Zitat Shimao, M., Saimoto, H., Kato, N., & Sakazawa, C. (1983). Properties and roles of bacterial symbionts of polyvinyl alcohol-utilizing mixed cultures. Applied and Environmental Microbiology, 46(3), 605–610.CrossRef Shimao, M., Saimoto, H., Kato, N., & Sakazawa, C. (1983). Properties and roles of bacterial symbionts of polyvinyl alcohol-utilizing mixed cultures. Applied and Environmental Microbiology, 46(3), 605–610.CrossRef
Zurück zum Zitat Singh, G., Singh, A. K., & Bhatt, K. (2016). Biodegradation of polythenes by bacteria isolated from soil. International Journal of Research and Development in Pharmacy & Life Sciences, 5(2), 2056–2062. Singh, G., Singh, A. K., & Bhatt, K. (2016). Biodegradation of polythenes by bacteria isolated from soil. International Journal of Research and Development in Pharmacy & Life Sciences, 5(2), 2056–2062.
Zurück zum Zitat Skariyachan, S., Megha, M., Kini, M. N., et al. (2015). Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187, 4174.CrossRef Skariyachan, S., Megha, M., Kini, M. N., et al. (2015). Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187, 4174.CrossRef
Zurück zum Zitat Son, H. F., Cho, I. J., Joo, S., et al. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9(4), 3519–3526.CrossRef Son, H. F., Cho, I. J., Joo, S., et al. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9(4), 3519–3526.CrossRef
Zurück zum Zitat Soud, S. A. (2019). Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. Journal of Pharmaceutical Sciences and Research, 11(4), 1333–1339. Soud, S. A. (2019). Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. Journal of Pharmaceutical Sciences and Research, 11(4), 1333–1339.
Zurück zum Zitat Sowmya, H. V., Ramalingappa, K., & M., & Thippeswamy, B. (2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability, 17, 731–745.CrossRef Sowmya, H. V., Ramalingappa, K., & M., & Thippeswamy, B. (2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability, 17, 731–745.CrossRef
Zurück zum Zitat Srikanth, M., Sandeep, T. S. R. S., Sucharitha, K., & Godi, S. (2022). Biodegradation of plastic polymers by fungi: A brief review. Bioresources and Bioprocessing, 9(1), 42.CrossRef Srikanth, M., Sandeep, T. S. R. S., Sucharitha, K., & Godi, S. (2022). Biodegradation of plastic polymers by fungi: A brief review. Bioresources and Bioprocessing, 9(1), 42.CrossRef
Zurück zum Zitat Su, Y., Qi, H., Hou, Y., et al. (2022). Combined effects of microplastics and benzo [a] pyrene on the marine diatom Chaetoceros muelleri. Frontiers in Marine Science, 8, 779321.CrossRef Su, Y., Qi, H., Hou, Y., et al. (2022). Combined effects of microplastics and benzo [a] pyrene on the marine diatom Chaetoceros muelleri. Frontiers in Marine Science, 8, 779321.CrossRef
Zurück zum Zitat Sulaiman, S., Yamato, S., Kanaya, E., et al. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562.CrossRef Sulaiman, S., Yamato, S., Kanaya, E., et al. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562.CrossRef
Zurück zum Zitat Sun, Y., Wu, M., Zang, J., Du, L., Huang, M., Chen, C., & Wang, J. (2023). Plastisphere microbiome: Methodology, diversity, and functionality. iMeta, 2(2), e101.CrossRef Sun, Y., Wu, M., Zang, J., Du, L., Huang, M., Chen, C., & Wang, J. (2023). Plastisphere microbiome: Methodology, diversity, and functionality. iMeta, 2(2), e101.CrossRef
Zurück zum Zitat Taghavi, N., Singhal, N., Zhuang, W. Q., & Baroutian, S. (2021). Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere, 263, 127975.CrossRef Taghavi, N., Singhal, N., Zhuang, W. Q., & Baroutian, S. (2021). Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere, 263, 127975.CrossRef
Zurück zum Zitat Takamoto, T., Shirasaka, H., Uyama, H., & Kobayashi, S. (2001). Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chemistry Letters, 30(6), 492–493.CrossRef Takamoto, T., Shirasaka, H., Uyama, H., & Kobayashi, S. (2001). Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chemistry Letters, 30(6), 492–493.CrossRef
Zurück zum Zitat Takei, D., Washio, K., & Morikawa, M. (2008). Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnology Letters, 30, 1447–1452.CrossRef Takei, D., Washio, K., & Morikawa, M. (2008). Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnology Letters, 30, 1447–1452.CrossRef
Zurück zum Zitat Tanasupawat, S., Takehana, T., Yoshida, S., et al. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818.CrossRef Tanasupawat, S., Takehana, T., Yoshida, S., et al. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818.CrossRef
Zurück zum Zitat Tokiwa, Y., & Suzuki, T. (1977). Hydrolysis of polyesters by lipases. Nature, 270(5632), 76–78.CrossRef Tokiwa, Y., & Suzuki, T. (1977). Hydrolysis of polyesters by lipases. Nature, 270(5632), 76–78.CrossRef
Zurück zum Zitat Tseng, W. S., Lee, M. J., Wu, J. A., Kuo, S. L., Chang, S. L., Huang, S. J., & Liu, C. T. (2023). Poly (butylene adipate-co-terephthalate) biodegradation by Purpureocillium lilacinum strain BA1S. Applied Microbiology and Biotechnology, 107(19), 6057–6070.CrossRef Tseng, W. S., Lee, M. J., Wu, J. A., Kuo, S. L., Chang, S. L., Huang, S. J., & Liu, C. T. (2023). Poly (butylene adipate-co-terephthalate) biodegradation by Purpureocillium lilacinum strain BA1S. Applied Microbiology and Biotechnology, 107(19), 6057–6070.CrossRef
Zurück zum Zitat UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.CrossRef UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.CrossRef
Zurück zum Zitat Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2(4), 200–204. Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2(4), 200–204.
Zurück zum Zitat Vaksmaa, A., Hernando-Morales, V., Zeghal, E., & Niemann, H. (2021). Microbial degradation of marine plastics: Current state and future prospects. Biotechnology for sustainable environment, 1, 111–154. Vaksmaa, A., Hernando-Morales, V., Zeghal, E., & Niemann, H. (2021). Microbial degradation of marine plastics: Current state and future prospects. Biotechnology for sustainable environment, 1, 111–154.
Zurück zum Zitat Vermeiren, P., Muñoz, C. C., & Ikejima, K. (2016). Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms. Marine Pollution Bulletin, 113(1–2), 7–16.CrossRef Vermeiren, P., Muñoz, C. C., & Ikejima, K. (2016). Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms. Marine Pollution Bulletin, 113(1–2), 7–16.CrossRef
Zurück zum Zitat Vidiella, B., & Solé, R. (2022). Ecological firewalls for synthetic biology. Iscience, 25(7), 104658.CrossRef Vidiella, B., & Solé, R. (2022). Ecological firewalls for synthetic biology. Iscience, 25(7), 104658.CrossRef
Zurück zum Zitat Viljakainen, V. R., & Hug, L. A. (2021). New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Computational and Structural Biotechnology Journal, 19, 6191–6200.CrossRef Viljakainen, V. R., & Hug, L. A. (2021). New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Computational and Structural Biotechnology Journal, 19, 6191–6200.CrossRef
Zurück zum Zitat Vingiani, G. M., Leone, S., De Luca, D., Borra, M., Dobson, A. D., Ianora, A., et al. (2022). First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. Science of the Total Environment, 812, 152535.CrossRef Vingiani, G. M., Leone, S., De Luca, D., Borra, M., Dobson, A. D., Ianora, A., et al. (2022). First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. Science of the Total Environment, 812, 152535.CrossRef
Zurück zum Zitat Wallace, N. E., Adams, M. C., Chafin, A. C., et al. (2020). The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environmental Microbiology Reports, 12(5), 578–582.CrossRef Wallace, N. E., Adams, M. C., Chafin, A. C., et al. (2020). The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environmental Microbiology Reports, 12(5), 578–582.CrossRef
Zurück zum Zitat Wang, W., Leung, A. O. W., Chu, L. H., et al. (2018). Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environmental Pollution, 238, 771–782.CrossRef Wang, W., Leung, A. O. W., Chu, L. H., et al. (2018). Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environmental Pollution, 238, 771–782.CrossRef
Zurück zum Zitat Wang, J., Youkharibache, P., Zhang, D., et al. (2020). iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics, 36(1), 131–135.CrossRef Wang, J., Youkharibache, P., Zhang, D., et al. (2020). iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics, 36(1), 131–135.CrossRef
Zurück zum Zitat Wang, D., Zhang, P., Yan, M., et al. (2022). Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments. Polymer Degradation and Stability, 195, 109806.CrossRef Wang, D., Zhang, P., Yan, M., et al. (2022). Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments. Polymer Degradation and Stability, 195, 109806.CrossRef
Zurück zum Zitat Watanabe, M., Kawai, F., Shibata, M., et al. (2003). Computational method for analysis of polyethylene biodegradation. Journal of Computational and Applied Mathematics, 161, 133–144.CrossRef Watanabe, M., Kawai, F., Shibata, M., et al. (2003). Computational method for analysis of polyethylene biodegradation. Journal of Computational and Applied Mathematics, 161, 133–144.CrossRef
Zurück zum Zitat Wei, R., & Wierckx, N. (2021). Microbial degradation of plastics. Frontiers in Microbiology, 12, 635621.CrossRef Wei, R., & Wierckx, N. (2021). Microbial degradation of plastics. Frontiers in Microbiology, 12, 635621.CrossRef
Zurück zum Zitat Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.CrossRef Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.CrossRef
Zurück zum Zitat Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512.CrossRef Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512.CrossRef
Zurück zum Zitat Wright, R. J., Bosch, R., Gibson, M. I., & Christie-Oleza, J. A. (2020). Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environmental Science & Technology, 54(4), 2244–2256.CrossRef Wright, R. J., Bosch, R., Gibson, M. I., & Christie-Oleza, J. A. (2020). Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environmental Science & Technology, 54(4), 2244–2256.CrossRef
Zurück zum Zitat Wu, H., Liu, Q., Sun, W., Lu, Y., Qi, Y., & Zhang, H. (2023). Biodegradability of polyethylene mulch film by Bacillus paramycoides. Chemosphere, 311, 136978.CrossRef Wu, H., Liu, Q., Sun, W., Lu, Y., Qi, Y., & Zhang, H. (2023). Biodegradability of polyethylene mulch film by Bacillus paramycoides. Chemosphere, 311, 136978.CrossRef
Zurück zum Zitat Wufuer, R., Li, W., Wang, S., & Duo, J. (2022). Isolation and degradation characteristics of PBAT film degrading bacteria. International Journal of Environmental Research and Public Health, 19(24), 17087.CrossRef Wufuer, R., Li, W., Wang, S., & Duo, J. (2022). Isolation and degradation characteristics of PBAT film degrading bacteria. International Journal of Environmental Research and Public Health, 19(24), 17087.CrossRef
Zurück zum Zitat Yadav, V., Dhanger, S., & Sharma, J. (2022). Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. Journal of Applied Biology and Biotechnology, 10(2), 38–47.CrossRef Yadav, V., Dhanger, S., & Sharma, J. (2022). Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. Journal of Applied Biology and Biotechnology, 10(2), 38–47.CrossRef
Zurück zum Zitat Yoon, M. G., Jeon, J. H., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3, 145. Yoon, M. G., Jeon, J. H., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3, 145.
Zurück zum Zitat Yoshida, S., Hiraga, K., Takehana, T., et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.CrossRef Yoshida, S., Hiraga, K., Takehana, T., et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.CrossRef
Zurück zum Zitat Yu, J., Sun, L., Ma, C., et al. (2016). Thermal degradation of PVC: A review. Waste Management, 48, 300–314.CrossRef Yu, J., Sun, L., Ma, C., et al. (2016). Thermal degradation of PVC: A review. Waste Management, 48, 300–314.CrossRef
Zurück zum Zitat Zahra, S., Abbas, S. S., Mahsa, M. T., & Mohsen, N. (2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management, 30(3), 396–401.CrossRef Zahra, S., Abbas, S. S., Mahsa, M. T., & Mohsen, N. (2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management, 30(3), 396–401.CrossRef
Zurück zum Zitat Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., & Niemann, H. (2021). The potential role of marine fungi in plastic degradation–a review. Frontiers in Marine Science, 8, 738877–738894.CrossRef Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., & Niemann, H. (2021). The potential role of marine fungi in plastic degradation–a review. Frontiers in Marine Science, 8, 738877–738894.CrossRef
Zurück zum Zitat Zhang, F., Ding, Z., Gong, H., & Chi, J. (2019). Effects of microphytobenthos Cylindrotheca closterium on the fate of di-n-butyl phthalate in an aquatic microcosm. Marine Pollution Bulletin, 140, 101–106.CrossRef Zhang, F., Ding, Z., Gong, H., & Chi, J. (2019). Effects of microphytobenthos Cylindrotheca closterium on the fate of di-n-butyl phthalate in an aquatic microcosm. Marine Pollution Bulletin, 140, 101–106.CrossRef
Zurück zum Zitat Zhang, Y., Lin, Y., Gou, H., et al. (2022a). Screening of polyethylene-degrading bacteria from Rhyzopertha Dominica and evaluation of its key enzymes degrading polyethylene. Polymers, 14(23), 5127.CrossRef Zhang, Y., Lin, Y., Gou, H., et al. (2022a). Screening of polyethylene-degrading bacteria from Rhyzopertha Dominica and evaluation of its key enzymes degrading polyethylene. Polymers, 14(23), 5127.CrossRef
Zurück zum Zitat Zhang, K., Hu, J., Yang, S., Xu, W., et al. (2022b). Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1. Journal of Hazardous Materials, 437, 129406.CrossRef Zhang, K., Hu, J., Yang, S., Xu, W., et al. (2022b). Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1. Journal of Hazardous Materials, 437, 129406.CrossRef
Zurück zum Zitat Zhang, N., Ding, M., & Yuan, Y. (2022c). Current advances in biodegradation of polyolefins. Microorganisms, 10(8), 1537.CrossRef Zhang, N., Ding, M., & Yuan, Y. (2022c). Current advances in biodegradation of polyolefins. Microorganisms, 10(8), 1537.CrossRef
Zurück zum Zitat Zylstra, E. R. (2013). Accumulation of wind-dispersed trash in desert environments. Journal of Arid Environments, 89, 13–15.CrossRef Zylstra, E. R. (2013). Accumulation of wind-dispersed trash in desert environments. Journal of Arid Environments, 89, 13–15.CrossRef
Metadaten
Titel
Current Progress and Potential Microbial Cornucopia for Plastic Degradation
verfasst von
Shriniketan Puranik
Amanda Shylla
M. Manoj
D. Vijaysri
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-55661-6_3