Skip to main content

2024 | OriginalPaper | Buchkapitel

Deep Learning and MCMC with aggVAE for Shifting Administrative Boundaries: Mapping Malaria Prevalence in Kenya

verfasst von : Elizaveta Semenova, Swapnil Mishra, Samir Bhatt, Seth Flaxman, H Juliette T Unwin

Erschienen in: Epistemic Uncertainty in Artificial Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Model-based disease mapping remains a fundamental policy-informing tool in the fields of public health and disease surveillance. Hierarchical Bayesian models have emerged as the state-of-the-art approach for disease mapping since they are able to both capture structure in the data and robustly characterise uncertainty. When working with areal data, e.g. aggregates at the administrative unit level such as district or province, current models rely on the adjacency structure of areal units to account for spatial correlations and perform shrinkage. The goal of disease surveillance systems is to track disease outcomes over time. This task is especially challenging in crisis situations which often lead to redrawn administrative boundaries, meaning that data collected before and after the crisis are no longer directly comparable. Moreover, the adjacency-based approach ignores the continuous nature of spatial processes and cannot solve the change-of-support problem, i.e. when estimates are required to be produced at different administrative levels or levels of aggregation. We present a novel, practical, and easy to implement solution to solve these problems relying on a methodology combining deep generative modelling and fully Bayesian inference: we build on the recently proposed PriorVAE method able to encode spatial priors over small areas with variational autoencoders by encoding aggregates over administrative units. We map malaria prevalence in Kenya, a country in which administrative boundaries changed in 2010.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Any kernel can be used. We use RBF only as an example.
 
Literatur
Zurück zum Zitat Bernadinelli, L., Pascutto, C., Best, N.G., Gilks, W.R.: Disease mapping with errors in covariates. Stat. Med. 16(7), 741–752 (1997)CrossRef Bernadinelli, L., Pascutto, C., Best, N.G., Gilks, W.R.: Disease mapping with errors in covariates. Stat. Med. 16(7), 741–752 (1997)CrossRef
Zurück zum Zitat Bernardinelli, L., Montomoli, C.: Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk. Stat. Med. 11(8), 983–1007 (1992)CrossRef Bernardinelli, L., Montomoli, C.: Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk. Stat. Med. 11(8), 983–1007 (1992)CrossRef
Zurück zum Zitat Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 192–225 (1974)MathSciNetCrossRef Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 192–225 (1974)MathSciNetCrossRef
Zurück zum Zitat Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991)MathSciNetCrossRef Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991)MathSciNetCrossRef
Zurück zum Zitat Bhatt, S., et al.: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (2015)CrossRef Bhatt, S., et al.: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (2015)CrossRef
Zurück zum Zitat Bhatt, S., Cameron, E., Flaxman, S.R., Weiss, D.J., Smith, D.L., Gething, P.W.: Improved prediction accuracy for disease risk mapping using gaussian process stacked generalization. J. Roy. Soc. Interface 14(134), 20170520 (2017)CrossRef Bhatt, S., Cameron, E., Flaxman, S.R., Weiss, D.J., Smith, D.L., Gething, P.W.: Improved prediction accuracy for disease risk mapping using gaussian process stacked generalization. J. Roy. Soc. Interface 14(134), 20170520 (2017)CrossRef
Zurück zum Zitat Clayton, D.G.: Bayesian methods for mapping disease risk. In: Geographical and Environmental Epidemiology: Methods for Small-Area Studies, pp. 205–220 (1992) Clayton, D.G.: Bayesian methods for mapping disease risk. In: Geographical and Environmental Epidemiology: Methods for Small-Area Studies, pp. 205–220 (1992)
Zurück zum Zitat Clayton, D.G., Bernardinelli, L., Montomoli, C.: Spatial correlation in ecological analysis. Int. J. Epidemiol. 22(6), 1193–1202 (1993)CrossRef Clayton, D.G., Bernardinelli, L., Montomoli, C.: Spatial correlation in ecological analysis. Int. J. Epidemiol. 22(6), 1193–1202 (1993)CrossRef
Zurück zum Zitat Cressie, N.: Statistics for Spatial Data. Wiley, Hoboken (2015) Cressie, N.: Statistics for Spatial Data. Wiley, Hoboken (2015)
Zurück zum Zitat Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (1995) Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (1995)
Zurück zum Zitat Gemperli, A., et al.: Mapping malaria transmission in West and Central Africa. Trop. Med. Int. Health 11(7), 1032–1046 (2006)CrossRef Gemperli, A., et al.: Mapping malaria transmission in West and Central Africa. Trop. Med. Int. Health 11(7), 1032–1046 (2006)CrossRef
Zurück zum Zitat Gosoniu, L., Vounatsou, P., Sogoba, N., Smith, T.: Bayesian modelling of geostatistical malaria risk data. Geospat. Health 1(1), 127–139 (2006)CrossRef Gosoniu, L., Vounatsou, P., Sogoba, N., Smith, T.: Bayesian modelling of geostatistical malaria risk data. Geospat. Health 1(1), 127–139 (2006)CrossRef
Zurück zum Zitat Hassan, M.: A state of change: district creation in Kenya after the beginning of multi-party elections. Polit. Res. Q. 69(3), 510–521 (2016)CrossRef Hassan, M.: A state of change: district creation in Kenya after the beginning of multi-party elections. Polit. Res. Q. 69(3), 510–521 (2016)CrossRef
Zurück zum Zitat Hay, S.I., et al.: A world malaria map: plasmodium falciparum endemicity in 2007. PLoS Med. 6(3), e1000048 (2009)CrossRef Hay, S.I., et al.: A world malaria map: plasmodium falciparum endemicity in 2007. PLoS Med. 6(3), e1000048 (2009)CrossRef
Zurück zum Zitat Johnson, O., Diggle, P., Giorgi, E.: A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data. Stat. Med. 38(24), 4871–4887 (2019)MathSciNetCrossRef Johnson, O., Diggle, P., Giorgi, E.: A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data. Stat. Med. 38(24), 4871–4887 (2019)MathSciNetCrossRef
Zurück zum Zitat Kang, S.Y., Cramb, S.M., White, N.M., Ball, S.J., Mengersen, K.L.: Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data. Geospat. Health 11(2), 190–198 (2016)CrossRef Kang, S.Y., Cramb, S.M., White, N.M., Ball, S.J., Mengersen, K.L.: Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data. Geospat. Health 11(2), 190–198 (2016)CrossRef
Zurück zum Zitat Leroux, B.G., Lei, X., Breslow, N.: Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran, M.E., Berry, D. (eds.) Statistical Models in Epidemiology, the Environment, and Clinical Trials. IMA, vol. 116, pp. 179–191. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1284-3_4CrossRef Leroux, B.G., Lei, X., Breslow, N.: Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran, M.E., Berry, D. (eds.) Statistical Models in Epidemiology, the Environment, and Clinical Trials. IMA, vol. 116, pp. 179–191. Springer, New York (2000). https://​doi.​org/​10.​1007/​978-1-4612-1284-3_​4CrossRef
Zurück zum Zitat Martins, T.G., Simpson, D., Lindgren, F., Rue, H.: Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68–83 (2013)MathSciNetCrossRef Martins, T.G., Simpson, D., Lindgren, F., Rue, H.: Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68–83 (2013)MathSciNetCrossRef
Zurück zum Zitat Mishra, S., Flaxman, S., Berah, T., Pakkanen, M., Zhu, H., Bhatt, S.: \(pi\)VAE: encoding stochastic process priors with variational autoencoders. Stat. Comput. (2022) Mishra, S., Flaxman, S., Berah, T., Pakkanen, M., Zhu, H., Bhatt, S.: \(pi\)VAE: encoding stochastic process priors with variational autoencoders. Stat. Comput. (2022)
Zurück zum Zitat Phan, D., Pradhan, N., Jankowiak, M.: Composable effects for flexible and accelerated probabilistic programming in NumPyro. arXiv preprint arXiv:1912.11554 (2019) Phan, D., Pradhan, N., Jankowiak, M.: Composable effects for flexible and accelerated probabilistic programming in NumPyro. arXiv preprint arXiv:​1912.​11554 (2019)
Zurück zum Zitat Reid, H., et al.: Mapping malaria risk in Bangladesh using Bayesian geostatistical models. Am. J. Trop. Med. Hyg. 83(4), 861 (2010)CrossRef Reid, H., et al.: Mapping malaria risk in Bangladesh using Bayesian geostatistical models. Am. J. Trop. Med. Hyg. 83(4), 861 (2010)CrossRef
Zurück zum Zitat Riebler, A., Sørbye, S.H., Simpson, D., Rue, H.: An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat. Methods Med. Res. 25(4), 1145–1165 (2016)MathSciNetCrossRef Riebler, A., Sørbye, S.H., Simpson, D., Rue, H.: An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat. Methods Med. Res. 25(4), 1145–1165 (2016)MathSciNetCrossRef
Zurück zum Zitat Semenova, E., et al.: PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation. J. R. Soc. Interface 19(191), 20220094 (2022)CrossRef Semenova, E., et al.: PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation. J. R. Soc. Interface 19(191), 20220094 (2022)CrossRef
Zurück zum Zitat Semenova, E., Verma, P., Cairney-Leeming, M., Solin, A., Bhatt, S., Flaxman, S.: PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling. arXiv preprint arXiv:2304.04307 (2023) Semenova, E., Verma, P., Cairney-Leeming, M., Solin, A., Bhatt, S., Flaxman, S.: PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling. arXiv preprint arXiv:​2304.​04307 (2023)
Zurück zum Zitat Snow, R.W., et al.: The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550(7677), 515–518 (2017)CrossRef Snow, R.W., et al.: The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550(7677), 515–518 (2017)CrossRef
Zurück zum Zitat Tanaka, Y., et al.: Spatially aggregated gaussian processes with multivariate areal outputs. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Tanaka, Y., et al.: Spatially aggregated gaussian processes with multivariate areal outputs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Zurück zum Zitat U.S. President’s Malaria Initiative. U.S. president’s malaria initiative Kenya malaria operational plan FY 2022 (2022). www.pmi.gov U.S. President’s Malaria Initiative. U.S. president’s malaria initiative Kenya malaria operational plan FY 2022 (2022). www.​pmi.​gov
Zurück zum Zitat Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., Bürkner, P.-C.: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC (with discussion). Bayesian Anal. 16(2), 667–718 (2021)MathSciNetCrossRef Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., Bürkner, P.-C.: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC (with discussion). Bayesian Anal. 16(2), 667–718 (2021)MathSciNetCrossRef
Zurück zum Zitat Wakefield, J.C., Best, N.G., Waller, L.: Bayesian approaches to disease mapping. In: Spatial Epidemiology: Methods and Applications, vol. 59 (2000) Wakefield, J.C., Best, N.G., Waller, L.: Bayesian approaches to disease mapping. In: Spatial Epidemiology: Methods and Applications, vol. 59 (2000)
Zurück zum Zitat Weiss, D.J., et al.: Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. The Lancet 394(10195), 322–331 (2019)CrossRef Weiss, D.J., et al.: Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. The Lancet 394(10195), 322–331 (2019)CrossRef
Zurück zum Zitat Yousefi, F., Smith, M.T., Alvarez, M.: Multi-task learning for aggregated data using Gaussian processes. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Yousefi, F., Smith, M.T., Alvarez, M.: Multi-task learning for aggregated data using Gaussian processes. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Zurück zum Zitat Zhu, H., et al.: Aggregated Gaussian processes with multiresolution earth observation covariates. arXiv preprint arXiv:2105.01460 (2021) Zhu, H., et al.: Aggregated Gaussian processes with multiresolution earth observation covariates. arXiv preprint arXiv:​2105.​01460 (2021)
Metadaten
Titel
Deep Learning and MCMC with aggVAE for Shifting Administrative Boundaries: Mapping Malaria Prevalence in Kenya
verfasst von
Elizaveta Semenova
Swapnil Mishra
Samir Bhatt
Seth Flaxman
H Juliette T Unwin
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57963-9_2

Premium Partner