Skip to main content

2024 | OriginalPaper | Buchkapitel

9. Design and Optimization of Nanostructures for Sulphur Cathodes

verfasst von : Nimra Arshad, Adnan Khalil, Saima Nazir, M. B. Tahir, M. Sagir

Erschienen in: Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, rechargeable lithium-sulphur has gained remarkable attention because of its low cost and specific energy. For different applications like grid-level energy storage, portable electronics, and electric vehicles, they are auspicious candidates. But, the main technical issues are low power capability and poor cycle life. To solve these problems, various nanostructured sulphur cathodes have designed, as they give greater trapping of soluble polysulfide, better resistance to pulverization, and an accelerated reaction kinetics. We will study the designs of nanostructured sulphur cathodes and their mechanism behind their operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bu Y et al (2016) Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Adv 6(106):104591–104596CrossRef Bu Y et al (2016) Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Adv 6(106):104591–104596CrossRef
Zurück zum Zitat Cao Y et al (2020) Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater 29:207–215CrossRef Cao Y et al (2020) Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater 29:207–215CrossRef
Zurück zum Zitat Chen H et al (2015a) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15(1):798–802PubMedCrossRef Chen H et al (2015a) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15(1):798–802PubMedCrossRef
Zurück zum Zitat Chen S et al (2015b) Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 16:268–280CrossRef Chen S et al (2015b) Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 16:268–280CrossRef
Zurück zum Zitat Cheng X-B, Huang J-Q, Zhang Q (2017) Review—Li metal anode in working lithium-sulfur batteries. J Electrochem Soc 165(1):A6058–A6072CrossRef Cheng X-B, Huang J-Q, Zhang Q (2017) Review—Li metal anode in working lithium-sulfur batteries. J Electrochem Soc 165(1):A6058–A6072CrossRef
Zurück zum Zitat Choudhury S et al (2015) Nanoporous cathodes for high-energy Li–S batteries from gyroid block copolymer templates. ACS Nano 9(6):6147–6157PubMedCrossRef Choudhury S et al (2015) Nanoporous cathodes for high-energy Li–S batteries from gyroid block copolymer templates. ACS Nano 9(6):6147–6157PubMedCrossRef
Zurück zum Zitat Choudhury S et al (2017) Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew Chem Int Ed 56(42):13070–13077CrossRef Choudhury S et al (2017) Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew Chem Int Ed 56(42):13070–13077CrossRef
Zurück zum Zitat Fotouhi A et al (2017) Lithium-sulfur battery technology readiness and applications—a review. Energies 10(12):1937CrossRef Fotouhi A et al (2017) Lithium-sulfur battery technology readiness and applications—a review. Energies 10(12):1937CrossRef
Zurück zum Zitat Gong Z et al (2016) A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Adv 6(44):37443–37451CrossRef Gong Z et al (2016) A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Adv 6(44):37443–37451CrossRef
Zurück zum Zitat Han D-D et al (2018) Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. J Mater Chem A 6(38):18627–18634CrossRef Han D-D et al (2018) Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. J Mater Chem A 6(38):18627–18634CrossRef
Zurück zum Zitat Huang L et al (2020) Electrode design for lithium–sulfur batteries: problems and solutions. Adv Funct Mater 30(22):1910375CrossRef Huang L et al (2020) Electrode design for lithium–sulfur batteries: problems and solutions. Adv Funct Mater 30(22):1910375CrossRef
Zurück zum Zitat Jiang J-H et al (2020) P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium–sulfur batteries. J Energy Chem 46:114–122CrossRef Jiang J-H et al (2020) P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium–sulfur batteries. J Energy Chem 46:114–122CrossRef
Zurück zum Zitat Jin C et al (2018) Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15mAcm−2. Nano Energy 45:203–209CrossRef Jin C et al (2018) Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15mAcm−2. Nano Energy 45:203–209CrossRef
Zurück zum Zitat Jung DS et al (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett 14(8):4418–4425PubMedCrossRef Jung DS et al (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett 14(8):4418–4425PubMedCrossRef
Zurück zum Zitat Kong W et al (2016) Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon 96:1053–1059CrossRef Kong W et al (2016) Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon 96:1053–1059CrossRef
Zurück zum Zitat Lee Y-G et al (2017) Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection. Chem Mater 29(14):5906–5914CrossRef Lee Y-G et al (2017) Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection. Chem Mater 29(14):5906–5914CrossRef
Zurück zum Zitat Li B, Xiao Q, Luo Y (2018) A modified synthesis process of three-dimensional sulfur/graphene aerogel as binder-free cathode for lithium-sulfur batteries. Mater Des 153:9–14CrossRef Li B, Xiao Q, Luo Y (2018) A modified synthesis process of three-dimensional sulfur/graphene aerogel as binder-free cathode for lithium-sulfur batteries. Mater Des 153:9–14CrossRef
Zurück zum Zitat Li X et al (2019) High-performance Li–SeSx all-solid-state lithium batteries. Adv Mater 31(17):1808100CrossRef Li X et al (2019) High-performance Li–SeSx all-solid-state lithium batteries. Adv Mater 31(17):1808100CrossRef
Zurück zum Zitat Liang X et al (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6(1):5682PubMedCrossRef Liang X et al (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6(1):5682PubMedCrossRef
Zurück zum Zitat Lin D et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11(7):626–632PubMedCrossRef Lin D et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11(7):626–632PubMedCrossRef
Zurück zum Zitat Liu Y et al (2016) Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim Acta 214:110–118CrossRef Liu Y et al (2016) Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim Acta 214:110–118CrossRef
Zurück zum Zitat Liu X et al (2017a) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29(20):1601759CrossRef Liu X et al (2017a) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29(20):1601759CrossRef
Zurück zum Zitat Liu Y et al (2017b) An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531CrossRef Liu Y et al (2017b) An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531CrossRef
Zurück zum Zitat Lyu Z et al (2015) Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12:657–665CrossRef Lyu Z et al (2015) Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12:657–665CrossRef
Zurück zum Zitat Ma L et al (2015) Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10(3):315–338CrossRef Ma L et al (2015) Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10(3):315–338CrossRef
Zurück zum Zitat Ma L et al (2016) Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10(1):1050–1059PubMedCrossRef Ma L et al (2016) Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10(1):1050–1059PubMedCrossRef
Zurück zum Zitat Maihom T et al (2018) Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium–sulfur batteries. J Phys Chem C 122(13):7033–7040CrossRef Maihom T et al (2018) Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium–sulfur batteries. J Phys Chem C 122(13):7033–7040CrossRef
Zurück zum Zitat Manthiram A et al (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787PubMedCrossRef Manthiram A et al (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787PubMedCrossRef
Zurück zum Zitat Pan H et al (2018) Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv Funct Mater 28(38):1707234CrossRef Pan H et al (2018) Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv Funct Mater 28(38):1707234CrossRef
Zurück zum Zitat Ren W et al (2019) Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater 23:707–732CrossRef Ren W et al (2019) Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater 23:707–732CrossRef
Zurück zum Zitat Shi L et al (2017) High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte. J Alloys Compd 723:974–982CrossRef Shi L et al (2017) High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte. J Alloys Compd 723:974–982CrossRef
Zurück zum Zitat Tan KW et al (2018) Synthesis and formation mechanism of all-organic block copolymer-directed templating of laser-induced crystalline silicon nanostructures. ACS Appl Mater Interfaces 10(49):42777–42785PubMedCrossRef Tan KW et al (2018) Synthesis and formation mechanism of all-organic block copolymer-directed templating of laser-induced crystalline silicon nanostructures. ACS Appl Mater Interfaces 10(49):42777–42785PubMedCrossRef
Zurück zum Zitat Wang Q et al (2015a) Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl Mater Interfaces 7(45):25002–25006PubMedCrossRef Wang Q et al (2015a) Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl Mater Interfaces 7(45):25002–25006PubMedCrossRef
Zurück zum Zitat Wang H et al (2015b) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787CrossRef Wang H et al (2015b) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787CrossRef
Zurück zum Zitat Wang J-G, Xie K, Wei B (2015c) Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy 15:413–444CrossRef Wang J-G, Xie K, Wei B (2015c) Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy 15:413–444CrossRef
Zurück zum Zitat Wang X et al (2016) Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy Environ Sci 9(8):2533–2538CrossRef Wang X et al (2016) Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy Environ Sci 9(8):2533–2538CrossRef
Zurück zum Zitat Wang L et al (2018) Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv Funct Mater 28(38):1800919CrossRef Wang L et al (2018) Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv Funct Mater 28(38):1800919CrossRef
Zurück zum Zitat Wang D-Y et al (2019a) Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles. J Mater Chem A 7(13):7423–7429CrossRef Wang D-Y et al (2019a) Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles. J Mater Chem A 7(13):7423–7429CrossRef
Zurück zum Zitat Wang J et al (2019b) An electronegative modified separator with semifused pores as a selective barrier for highly stable lithium–sulfur batteries. Ind Eng Chem Res 58(31):14538–14547CrossRef Wang J et al (2019b) An electronegative modified separator with semifused pores as a selective barrier for highly stable lithium–sulfur batteries. Ind Eng Chem Res 58(31):14538–14547CrossRef
Zurück zum Zitat Wang M et al (2019c) Porous carbon hosts for lithium–sulfur batteries. Chemistry 25(15):3710–3725PubMedCrossRef Wang M et al (2019c) Porous carbon hosts for lithium–sulfur batteries. Chemistry 25(15):3710–3725PubMedCrossRef
Zurück zum Zitat Wei Q et al (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29(20):1602300CrossRef Wei Q et al (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29(20):1602300CrossRef
Zurück zum Zitat Werner JG et al (2015) Carbon–sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem Mater 27(9):3349–3357CrossRef Werner JG et al (2015) Carbon–sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem Mater 27(9):3349–3357CrossRef
Zurück zum Zitat Xiao S et al (2015) Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium–sulfur batteries. J Power Sources 293:119–126CrossRef Xiao S et al (2015) Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium–sulfur batteries. J Power Sources 293:119–126CrossRef
Zurück zum Zitat Xu Y et al (2015) Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv Funct Mater 25(27):4312–4320CrossRef Xu Y et al (2015) Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv Funct Mater 25(27):4312–4320CrossRef
Zurück zum Zitat Xu S et al (2018) Three-dimensional, solid-state mixed electron–ion conductive framework for lithium metal anode. Nano Lett 18(6):3926–3933PubMedCrossRef Xu S et al (2018) Three-dimensional, solid-state mixed electron–ion conductive framework for lithium metal anode. Nano Lett 18(6):3926–3933PubMedCrossRef
Zurück zum Zitat Yan M et al (2019) Interfacial design for lithium–sulfur batteries: from liquid to solid. EnergyChem 1(1):100002CrossRef Yan M et al (2019) Interfacial design for lithium–sulfur batteries: from liquid to solid. EnergyChem 1(1):100002CrossRef
Zurück zum Zitat Yang W et al (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182CrossRef Yang W et al (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182CrossRef
Zurück zum Zitat Yang W et al (2018) A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. J Energy Chem 27(3):813–819CrossRef Yang W et al (2018) A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. J Energy Chem 27(3):813–819CrossRef
Zurück zum Zitat Yang X, Luo J, Sun X (2020) Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chem Soc Rev 49(7):2140–2195PubMedCrossRef Yang X, Luo J, Sun X (2020) Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chem Soc Rev 49(7):2140–2195PubMedCrossRef
Zurück zum Zitat Yoo S et al (2016) Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. J Electroanal Chem 780:19–25CrossRef Yoo S et al (2016) Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. J Electroanal Chem 780:19–25CrossRef
Zurück zum Zitat Zeng L et al (2022) Catalytic effects of electrodes and electrolytes in metal–sulfur batteries: progress and prospective. Adv Mater 34(49):2204636CrossRef Zeng L et al (2022) Catalytic effects of electrodes and electrolytes in metal–sulfur batteries: progress and prospective. Adv Mater 34(49):2204636CrossRef
Zurück zum Zitat Zhang Q et al (2015a) Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett 15(6):3780–3786PubMedCrossRef Zhang Q et al (2015a) Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett 15(6):3780–3786PubMedCrossRef
Zurück zum Zitat Zhang S et al (2015b) Recent advances in electrolytes for lithium–sulfur batteries. Adv Energy Mater 5(16):1500117CrossRef Zhang S et al (2015b) Recent advances in electrolytes for lithium–sulfur batteries. Adv Energy Mater 5(16):1500117CrossRef
Zurück zum Zitat Zhang Q et al (2018) Pathways to mesoporous resin/carbon thin films with alternating gyroid morphology. ACS Nano 12(1):347–358PubMedCrossRef Zhang Q et al (2018) Pathways to mesoporous resin/carbon thin films with alternating gyroid morphology. ACS Nano 12(1):347–358PubMedCrossRef
Zurück zum Zitat Zhao M et al (2020) Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed 59(31):12636–12652CrossRef Zhao M et al (2020) Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed 59(31):12636–12652CrossRef
Zurück zum Zitat Zhou J et al (2019) 8-Acetonyldihydronitidine inhibits the proliferation of human colorectal cancer cells via activation of p53. Eur J Pharmacol 854:256–264PubMedCrossRef Zhou J et al (2019) 8-Acetonyldihydronitidine inhibits the proliferation of human colorectal cancer cells via activation of p53. Eur J Pharmacol 854:256–264PubMedCrossRef
Zurück zum Zitat Zhu L et al (2015) Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 11:746–755CrossRef Zhu L et al (2015) Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 11:746–755CrossRef
Zurück zum Zitat Zyga L (2011) Rechargeable lithium-sulfur batteries get a boost from graphene 13. PhysOrg.com 1–5 Zyga L (2011) Rechargeable lithium-sulfur batteries get a boost from graphene 13. PhysOrg.com 1–5
Metadaten
Titel
Design and Optimization of Nanostructures for Sulphur Cathodes
verfasst von
Nimra Arshad
Adnan Khalil
Saima Nazir
M. B. Tahir
M. Sagir
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2796-8_9