Skip to main content

2024 | OriginalPaper | Buchkapitel

Design and Parametric Variation Assessment of Extended Source Double Gate Tunnel Field-Effect Transistor (ESDGTFET) for Enhanced Performance

verfasst von : Vedvrat, Vidyadhar Gupta, Rohit Tripathi

Erschienen in: Mobile Radio Communications and 5G Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Tunnel field-effect transistors (TFETs) leverage quantum tunneling for efficient power consumption and improved switching capabilities. In this paper, we have demonstrated the impact of parametric variation on electrostatics and analog performance of the proposed tunnel field-effect transistor (ESDGTFET) device using Silvaco 2D device simulator. The paper investigates various parameters like threshold voltage, ION/IOFF ratio, drain current, subthreshold swing (SS), transconductance(gm) and cutoff frequency (fT) for different channel lengths and gate dielectric materials. The finding from the investigation reveals that the subthreshold swing (SS) is improved by 49% when the channel length is reduced from 40 to 20nm but no notable changes were observed in threshold voltage. The total capacitance of the device is also improved for a shorter channel length. Furthermore, the on current and SS of the device are improved for HfO2 gate dielectric material as compared to SiO2. For high-k dielectrics, the device’s threshold voltage drops substantially. As a result, the device functions optimally in low-power contexts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wong HSP, Frank DJ, Solomon PM, Wann CHJ, Welser JJ (1999) Nanoscale CMOS. Proc IEEE 87:537–570CrossRef Wong HSP, Frank DJ, Solomon PM, Wann CHJ, Welser JJ (1999) Nanoscale CMOS. Proc IEEE 87:537–570CrossRef
2.
Zurück zum Zitat Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nat Nanotechnol 479:329–337 Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nat Nanotechnol 479:329–337
3.
Zurück zum Zitat Huang JST, Schrankler JW (1987) Switching characteristics of scaled CMOS circuits at 77 K. IEEE Trans Electron Devices 34(1):101–106CrossRef Huang JST, Schrankler JW (1987) Switching characteristics of scaled CMOS circuits at 77 K. IEEE Trans Electron Devices 34(1):101–106CrossRef
4.
Zurück zum Zitat Kuhn K (2018) CMOS and beyond CMOS: scaling challenges. In High mobility materials for CMOS applications, pp. 1–44, Woodhead Publishing Kuhn K (2018) CMOS and beyond CMOS: scaling challenges. In High mobility materials for CMOS applications, pp. 1–44, Woodhead Publishing
5.
Zurück zum Zitat Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337CrossRef Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337CrossRef
6.
Zurück zum Zitat Wang PF (2004) Complementary tunneling transistor for low power application. Solid-State Electron 48:2281–2286CrossRef Wang PF (2004) Complementary tunneling transistor for low power application. Solid-State Electron 48:2281–2286CrossRef
7.
Zurück zum Zitat Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745CrossRef Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745CrossRef
8.
Zurück zum Zitat Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733CrossRef Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733CrossRef
9.
Zurück zum Zitat Seabaugh AC, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98(12):2095–2110CrossRef Seabaugh AC, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98(12):2095–2110CrossRef
10.
Zurück zum Zitat Datta S, Liu H, Narayanan V (2014) Tunnel FET technology: a reliability perspective. Microelectron Reliab 54(5):861–874 Datta S, Liu H, Narayanan V (2014) Tunnel FET technology: a reliability perspective. Microelectron Reliab 54(5):861–874
11.
Zurück zum Zitat Wu J, Min J, Taur Y (2015) Short-channel effects in tunnel FETs. IEEE Trans Electron Devices 62(9):3019–3024CrossRef Wu J, Min J, Taur Y (2015) Short-channel effects in tunnel FETs. IEEE Trans Electron Devices 62(9):3019–3024CrossRef
12.
Zurück zum Zitat Kavalieros J, Doyle B, Datta S, Dewey G, Doczy M, Jin B, Lionberger D, Metz M, Rachmady W, Radosavljevic M, Shah U, Zelick N, Chau R (2006) Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. VLSI Tech Digest, 50–51 Kavalieros J, Doyle B, Datta S, Dewey G, Doczy M, Jin B, Lionberger D, Metz M, Rachmady W, Radosavljevic M, Shah U, Zelick N, Chau R (2006) Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. VLSI Tech Digest, 50–51
13.
Zurück zum Zitat Dubey PK, Kaushik BK (2017) T-shaped III-V heterojunction tunnelling field-effect transistor. IEEE Trans Electron Devices 64(8):3120–3125CrossRef Dubey PK, Kaushik BK (2017) T-shaped III-V heterojunction tunnelling field-effect transistor. IEEE Trans Electron Devices 64(8):3120–3125CrossRef
14.
Zurück zum Zitat Kim SW, Choi WY (2016) Hump effects of germanium/silicon heterojunction tunnel field-effect transistors. IEEE Trans Electron Devices 63(6):2583–2588CrossRef Kim SW, Choi WY (2016) Hump effects of germanium/silicon heterojunction tunnel field-effect transistors. IEEE Trans Electron Devices 63(6):2583–2588CrossRef
15.
Zurück zum Zitat Raad BR, Nigam K, Sharma D, Kondekar PN (2016) Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct 94:138–146CrossRef Raad BR, Nigam K, Sharma D, Kondekar PN (2016) Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct 94:138–146CrossRef
16.
Zurück zum Zitat Nirmal D, Nalini B, Vijaya P (2010) Nanosized high κ dielectric material for FINFET. Integr Ferroelectr 121(1):31–35CrossRef Nirmal D, Nalini B, Vijaya P (2010) Nanosized high κ dielectric material for FINFET. Integr Ferroelectr 121(1):31–35CrossRef
17.
Zurück zum Zitat Narang R, Saxena M, Gupta RS, Gupta M (2013) Device and circuit level performance comparison of tunnel FET architectures and impact of heterogeneous gate dielectric. J of Semiconductor Technol Sci 13:224–236CrossRef Narang R, Saxena M, Gupta RS, Gupta M (2013) Device and circuit level performance comparison of tunnel FET architectures and impact of heterogeneous gate dielectric. J of Semiconductor Technol Sci 13:224–236CrossRef
18.
Zurück zum Zitat Dutta U, Soni MK, Pattanaik M (2019) Simulation study of hetero dielectric tri material gate tunnel FET based common source amplifier circuit. AEU- Int J Electron Commun 99:258–263CrossRef Dutta U, Soni MK, Pattanaik M (2019) Simulation study of hetero dielectric tri material gate tunnel FET based common source amplifier circuit. AEU- Int J Electron Commun 99:258–263CrossRef
19.
Zurück zum Zitat ATLAS Device Simulation Software, Silvaco Int., Santa. Clara, CA, Version 5.14.0.R, 2013 ATLAS Device Simulation Software, Silvaco Int., Santa. Clara, CA, Version 5.14.0.R, 2013
Metadaten
Titel
Design and Parametric Variation Assessment of Extended Source Double Gate Tunnel Field-Effect Transistor (ESDGTFET) for Enhanced Performance
verfasst von
Vedvrat
Vidyadhar Gupta
Rohit Tripathi
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0700-3_24