Skip to main content

2024 | OriginalPaper | Buchkapitel

DiffFind: Discovering Differential Equations from Time Series

verfasst von : Lalithsai Posam, Shubhranshu Shekhar, Meng-Chieh Lee, Christos Faloutsos

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Given one or more time sequences, how can we extract their governing equations? Single and co-evolving time sequences appear in numerous settings, including medicine (neuroscience - EEG signals, cardiology - EKG), epidemiology (covid/flu spreading over time), physics (astrophysics, material science), marketing (sales and competition modeling; market penetration), and numerous more. Linear differential equations will fail, since the underlying equations are often non-linear (SIR model for virus/product spread; Lotka-Volterra for product/species competition, Van der Pol for heartbeat modeling).
We propose DiffFind and we use genetic algorithms to find suitable, parsimonious, differential equations. Thanks to our careful design decisions, DiffFind has the following properties - it is: (a) Effective, discovering the correct model when applied on real and synthetic nonlinear dynamical systems, (b) Explainable, gives succinct differential equations, and (c) Hands-off, requiring no manual hyperparameter specification.
DiffFind outperforms traditional methods (like auto-regression), includes as special case and thus outperforms a recent baseline (‘SINDy’), and wins first or second place for all 5 real and synthetic datasets we tried, often achieving excellent, zero or near-zero RMSE of 0.005.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Identical mutations are assigned the same identifier.
 
Literatur
1.
Zurück zum Zitat Anisiu, M.C.: Lotka, Volterra and their model. Didáctica Mathematica 32, 9–17 (2014) Anisiu, M.C.: Lotka, Volterra and their model. Didáctica Mathematica 32, 9–17 (2014)
2.
Zurück zum Zitat Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. PNAS 104(24), 9943–9948 (2007)CrossRef Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. PNAS 104(24), 9943–9948 (2007)CrossRef
3.
Zurück zum Zitat Box, G.E., Jenkins, G.M., MacGregor, J.F.: Some recent advances in forecasting and control. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 23(2), 158–179 (1974)MathSciNet Box, G.E., Jenkins, G.M., MacGregor, J.F.: Some recent advances in forecasting and control. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 23(2), 158–179 (1974)MathSciNet
5.
Zurück zum Zitat Brown, R.G.: Statistical forecasting for inventory control (1959) Brown, R.G.: Statistical forecasting for inventory control (1959)
6.
Zurück zum Zitat Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 113(15), 3932–3937 (2016)MathSciNetCrossRef Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 113(15), 3932–3937 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat Chai, T., Draxler, R.R.: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)CrossRef Chai, T., Draxler, R.R.: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)CrossRef
8.
Zurück zum Zitat Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, Boca Raton (2000) Chatfield, C.: Time-Series Forecasting. Chapman and Hall/CRC, Boca Raton (2000)
9.
Zurück zum Zitat Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: NeurIPS, vol. 31 (2018) Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: NeurIPS, vol. 31 (2018)
10.
Zurück zum Zitat Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases. In: NeurIPS, vol. 33, pp. 17429–17442 (2020) Cranmer, M., et al.: Discovering symbolic models from deep learning with inductive biases. In: NeurIPS, vol. 33, pp. 17429–17442 (2020)
11.
Zurück zum Zitat Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a review. Artif. Intell. Rev. 39(3), 251–260 (2013)CrossRef Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a review. Artif. Intell. Rev. 39(3), 251–260 (2013)CrossRef
12.
Zurück zum Zitat Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. JMLR 20(1), 1997–2017 (2019)MathSciNet Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. JMLR 20(1), 1997–2017 (2019)MathSciNet
13.
Zurück zum Zitat FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961)CrossRef FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961)CrossRef
14.
Zurück zum Zitat Kramer, O., Kramer, O.: Genetic Algorithms. Springer, Cham (2017) Kramer, O., Kramer, O.: Genetic Algorithms. Springer, Cham (2017)
15.
Zurück zum Zitat Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)MathSciNetCrossRef
17.
Zurück zum Zitat Luo, Y., Xu, C., Liu, Y., Liu, W., Zheng, S., Bian, J.: Learning differential operators for interpretable time series modeling. In: ACM SIGKDD, pp. 1192–1201 (2022) Luo, Y., Xu, C., Liu, Y., Liu, W., Zheng, S., Bian, J.: Learning differential operators for interpretable time series modeling. In: ACM SIGKDD, pp. 1192–1201 (2022)
18.
Zurück zum Zitat Makridakis, S., Hibon, M.: ARMA models and the Box-Jenkins methodology. J. Forecast. 16(3), 147–163 (1997)CrossRef Makridakis, S., Hibon, M.: ARMA models and the Box-Jenkins methodology. J. Forecast. 16(3), 147–163 (1997)CrossRef
19.
Zurück zum Zitat Park, N., Kim, M., Hoai, N.X., McKay, R.B., Kim, D.K.: Knowledge-based dynamic systems modeling: a case study on modeling river water quality. In: ICDE, pp. 2231–2236. IEEE (2021) Park, N., Kim, M., Hoai, N.X., McKay, R.B., Kim, D.K.: Knowledge-based dynamic systems modeling: a case study on modeling river water quality. In: ICDE, pp. 2231–2236. IEEE (2021)
20.
Zurück zum Zitat Van der Pol, B.: LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 2(11), 978–992 (1926) Van der Pol, B.: LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 2(11), 978–992 (1926)
21.
Zurück zum Zitat Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef
22.
Zurück zum Zitat Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and control. In: ICML, pp. 4442–4450. PMLR (2018) Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and control. In: ICML, pp. 4442–4450. PMLR (2018)
23.
Zurück zum Zitat Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)CrossRef Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)CrossRef
24.
Zurück zum Zitat Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009) Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)
25.
Zurück zum Zitat Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef
26.
Zurück zum Zitat Tealab, A.: Time series forecasting using artificial neural networks methodologies: a systematic review. Future Comput. Inform. J. 3(2), 334–340 (2018)CrossRef Tealab, A.: Time series forecasting using artificial neural networks methodologies: a systematic review. Future Comput. Inform. J. 3(2), 334–340 (2018)CrossRef
27.
Zurück zum Zitat Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021)CrossRef Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021)CrossRef
28.
Zurück zum Zitat Wang, R., Maddix, D., Faloutsos, C., Wang, Y., Yu, R.: Bridging physics-based and data-driven modeling for learning dynamical systems. In: Learning for Dynamics and Control, pp. 385–398. PMLR (2021) Wang, R., Maddix, D., Faloutsos, C., Wang, Y., Yu, R.: Bridging physics-based and data-driven modeling for learning dynamical systems. In: Learning for Dynamics and Control, pp. 385–398. PMLR (2021)
29.
Zurück zum Zitat Wang, R., Robinson, D., Faloutsos, C., Wang, Y.B., Yu, R.: AutoODE: bridging physics-based and data-driven modeling for COVID-19 forecasting. In: NeurIPS 2020 Workshop on Machine Learning in Public Health (2020) Wang, R., Robinson, D., Faloutsos, C., Wang, Y.B., Yu, R.: AutoODE: bridging physics-based and data-driven modeling for COVID-19 forecasting. In: NeurIPS 2020 Workshop on Machine Learning in Public Health (2020)
30.
Zurück zum Zitat Zhou, X., Qin, A.K., Gong, M., Tan, K.C.: A survey on evolutionary construction of deep neural networks. IEEE Trans. Evol. Comput. 25(5), 894–912 (2021)CrossRef Zhou, X., Qin, A.K., Gong, M., Tan, K.C.: A survey on evolutionary construction of deep neural networks. IEEE Trans. Evol. Comput. 25(5), 894–912 (2021)CrossRef
Metadaten
Titel
DiffFind: Discovering Differential Equations from Time Series
verfasst von
Lalithsai Posam
Shubhranshu Shekhar
Meng-Chieh Lee
Christos Faloutsos
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2266-2_14

Premium Partner