Skip to main content

2023 | OriginalPaper | Buchkapitel

Distributed-Prover Interactive Proofs

verfasst von : Sourav Das, Rex Fernando, Ilan Komargodski, Elaine Shi, Pratik Soni

Erschienen in: Theory of Cryptography

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interactive proof systems enable a verifier with limited resources to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee soundness: the prover can only convince the verifier of true statements. This is a central notion in computer science with far-reaching implications. One key drawback of the classical model is that the data on which the prover operates must be held by a single machine.
In this work, we initiate the study of distributed-prover interactive proofs (dpIPs): an untrusted cluster of machines, acting as a distributed prover, interacts with a single verifier. The machines in the cluster jointly store and operate on a massive data-set that no single machine can store. The goal is for the machines in the cluster to convince the verifier of the validity of some statement about its data-set. We formalize the communication and space constraints via the massively parallel computation (MPC) model, a widely accepted analytical framework capturing the computational power of massive data-centers.
Our main result is a compiler that generically augments any verification algorithm in the MPC model with a (computational) soundness guarantee. Concretely, for any language L for which there is an MPC algorithm verifying whether \(x \in L\), we design a new MPC protocol capable of convincing a verifier of the validity of \(x \in L\) and where if \(x\not \in L\), the verifier rejects with overwhelming probability. The new protocol requires only slightly more rounds, i.e., a \(\textsf{poly}(\log N)\) blowup, and a slightly bigger memory per machine, i.e., \(\textsf{poly}(\lambda )\) blowup, where N is the total size of the dataset and \(\lambda \) is a security parameter independent of N.
En route, we introduce distributed-prover interactive oracle proofs (dpIOPs), a natural adaptation of the (by now classical) IOP model to the distributed prover setting. We design a dpIOP for verification algorithms in the MPC model and then translate them to “plain model” dpIPs via an adaptation of existing polynomial commitment schemes into the distributed prover setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual primal algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput. (TOPC) 4(4), 17 (2018) Kook Jin Ahn and Sudipto Guha: Access to data and number of iterations: dual primal algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput. (TOPC) 4(4), 17 (2018)
2.
Zurück zum Zitat Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems. In: STOC 2014 (2014) Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems. In: STOC 2014 (2014)
3.
Zurück zum Zitat Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for \(2 \)-vertex and \(2 \)-edge connectivity. arXiv preprint arXiv:1905.00850 (2019) Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for \(2 \)-vertex and \(2 \)-edge connectivity. arXiv preprint arXiv:​1905.​00850 (2019)
4.
Zurück zum Zitat Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS, pp. 14–23 (1992) Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS, pp. 14–23 (1992)
5.
Zurück zum Zitat Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp. 542–571 (2023) Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: a transparent constant-sized polynomial commitment scheme. In: Public Key Cryptography, pp. 542–571 (2023)
6.
Zurück zum Zitat Assadi, S.: Simple round compression for parallel vertex cover. CoRR, abs/1709.04599 (2017) Assadi, S.: Simple round compression for parallel vertex cover. CoRR, abs/1709.04599 (2017)
7.
Zurück zum Zitat Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint arXiv:1711.03076 (2017) Assadi, S., Bateni, M.H., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. arXiv preprint arXiv:​1711.​03076 (2017)
8.
Zurück zum Zitat Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 3–12. ACM (2017) Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex cover. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 3–12. ACM (2017)
9.
Zurück zum Zitat Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-connected components in sparse graphs. CoRR, abs/1805.02974 (2018) Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-connected components in sparse graphs. CoRR, abs/1805.02974 (2018)
10.
Zurück zum Zitat Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC, pp. 21–31 (1991) Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC, pp. 21–31 (1991)
11.
Zurück zum Zitat Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)CrossRefMATH Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)CrossRefMATH
12.
Zurück zum Zitat Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)CrossRef Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. Proc. VLDB Endow. 5(5), 454–465 (2012)CrossRef
13.
Zurück zum Zitat Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)CrossRef Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)CrossRef
14.
Zurück zum Zitat Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering via mapping coresets. In: Advances in Neural Information Processing Systems, pp. 2591–2599 (2014) Bateni, M.H., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering via mapping coresets. In: Advances in Neural Information Processing Systems, pp. 2591–2599 (2014)
15.
Zurück zum Zitat Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively parallel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR, abs/1807.06701 (2018) Behnezhad, S., Derakhshan, M., Hajiaghayi, M.T., Karp, R.M.: Massively parallel symmetry breaking on sparse graphs: MIS and maximal matching. CoRR, abs/1807.06701 (2018)
16.
Zurück zum Zitat Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively parallel maximal matching. arXiv preprint arXiv:1901.03744 (2019) Behnezhad, S., Hajiaghayi, M.T., Harris, D.G.: Exponentially faster massively parallel maximal matching. arXiv preprint arXiv:​1901.​03744 (2019)
17.
Zurück zum Zitat Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interactive oracle proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018) Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-Solomon interactive oracle proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 14:1–14:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)
19.
Zurück zum Zitat Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness, pp. 5:1–5:32 (2020) Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness, pp. 5:1–5:32 (2020)
20.
Zurück zum Zitat Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks. In: SODA, pp. 2426–2458 (2022) Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks. In: SODA, pp. 2426–2458 (2022)
21.
Zurück zum Zitat Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Theory of Cryptography, pp. 168–197 (2020) Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Theory of Cryptography, pp. 168–197 (2020)
23.
Zurück zum Zitat Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using multiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014) Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using multiple provers. IACR Cryptol. ePrint Arch., p. 846 (2014)
26.
Zurück zum Zitat Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs in the low-memory MPC model. CoRR, abs/1807.05374 (2018) Brandt, S., Fischer, M., Uitto, J.: Matching and MIS for uniformly sparse graphs in the low-memory MPC model. CoRR, abs/1807.05374 (2018)
28.
Zurück zum Zitat Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (\(\Delta \)+1) coloring incongested clique, massively parallel computation, and centralized local computation. arXiv preprint arXiv:1808.08419 (2018) Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (\(\Delta \)+1) coloring incongested clique, massively parallel computation, and centralized local computation. arXiv preprint arXiv:​1808.​08419 (2018)
30.
Zurück zum Zitat Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computation. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 153–162 (2020) Chung, K.-M., Ho, K.-Y., Sun, X.: On the hardness of massively parallel computation. In: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, pp. 153–162 (2020)
31.
Zurück zum Zitat Czumaj, A., Ła̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round compression for parallel matching algorithms. In: STOC (2018) Czumaj, A., Ła̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round compression for parallel matching algorithms. In: STOC (2018)
32.
Zurück zum Zitat da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: FOCS, pp. 645–654 (2016) da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: FOCS, pp. 645–654 (2016)
33.
Zurück zum Zitat Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 681–689. ACM (2011) Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 681–689. ACM (2011)
34.
Zurück zum Zitat Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decomposable submodular functions. In: International Conference on Machine Learning, pp. 787–795 (2015) Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decomposable submodular functions. In: International Conference on Machine Learning, pp. 787–795 (2015)
35.
Zurück zum Zitat Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_24 Fernando, R., Gelles, Y., Komargodski, I., Shi, E.: Maliciously secure massively parallel computation for all-but-one corruptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13507, pp. 688–718. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-15802-5_​24
36.
Zurück zum Zitat Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel computation for dishonest majority. In: Theory of Cryptography - 18th International Conference, TCC, pp. 379–409 (2020) Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel computation for dishonest majority. In: Theory of Cryptography - 18th International Conference, TCC, pp. 379–409 (2020)
37.
Zurück zum Zitat Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019) Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019)
38.
Zurück zum Zitat Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pp. 99–108 (2011) Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pp. 99–108 (2011)
39.
Zurück zum Zitat Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-based network clustering. In: International Conference on Machine Learning, pp. 2201–2210 (2019) Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-based network clustering. In: International Conference on Machine Learning, pp. 2201–2210 (2019)
40.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefMATH Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATH Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 938–948 (2010) Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 938–948 (2010)
44.
Zurück zum Zitat Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polynomial commitments. In: CCS, pp. 1725–1737 (2022) Kattis, A.A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polynomial commitments. In: CCS, pp. 1725–1737 (2022)
45.
Zurück zum Zitat Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp. 255–264 (2018) Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: PODC, pp. 255–264 (2018)
46.
Zurück zum Zitat Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. TOPC. 2(3), 1–22 (2015)CrossRef Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. TOPC. 2(3), 1–22 (2015)CrossRef
47.
Zurück zum Zitat Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021) Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Theory of Cryptography, pp. 1–34 (2021)
48.
Zurück zum Zitat Lindell: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16, 143–184 (2003) Lindell: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16, 143–184 (2003)
50.
Zurück zum Zitat Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: SODA, pp. 1096–115 (2020) Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs. In: SODA, pp. 1096–115 (2020)
51.
Zurück zum Zitat Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022) Ozdemir, A., Boneh, D.: Experimenting with collaborative ZK-snarks: zero-knowledge proofs for distributed secrets. In: USENIX, pp. 4291–4308 (2022)
52.
Zurück zum Zitat Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Theory of Cryptography, pp. 222–242 (2013) Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Theory of Cryptography, pp. 222–242 (2013)
53.
Zurück zum Zitat Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)MathSciNetCrossRefMATH Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)MathSciNetCrossRefMATH Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower bounds for modern parallel computation). J. ACM 65(6), 1–24 (2018)MathSciNetCrossRefMATH
55.
Zurück zum Zitat Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology ePrint Archive, Paper 2020/1275 (2020) Setty, S., Lee, J.: Quarks: quadruple-efficient transparent Zksnarks. Cryptology ePrint Archive, Paper 2020/1275 (2020)
56.
Zurück zum Zitat Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018) Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient Zksnarks without trusted setup. In: S&P, pp. 926–943 (2018)
58.
Zurück zum Zitat Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: USENIX, pp. 675–692 (2018) Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: USENIX, pp. 675–692 (2018)
59.
Zurück zum Zitat Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020) Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S&P, pp. 859–876 (2020)
Metadaten
Titel
Distributed-Prover Interactive Proofs
verfasst von
Sourav Das
Rex Fernando
Ilan Komargodski
Elaine Shi
Pratik Soni
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-48615-9_4

Premium Partner