Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2023

09.05.2023

Effect of Material State and Temperature on Nonlinear Viscoelastic Response: 3D Constitutive Model and Incremental Formulation for Numerical Analysis

verfasst von: J. Varna, L. Pupure

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a growing need to develop accurate nonlinear viscoelastic material models and tools that could describe the complex nonlinear behavior of being developed composite material systems at their simulations at high loads and temperatures or to move the industry towards more sustainable bio-based alternatives. Developing such models in 3D formulation for materials with changing material state due to physical aging, change of crystallinity or degree of cure is also imperative since the loading is mostly multiaxial in real-live applications and manufacturing processes. The present paper contains the derivation of two material models with varying complexity and accuracy. The incremental procedure for implementation of the nonlinear viscoelastic material model within the numerical analysis was presented. Two relatively simple simulations with the incremental methodology developed were performed, namely triaxial mechanical loading and thermal stress development during the manufacturing process. The results obtained showed significant differences between stresses calculated using 1D and 3D simulations. Significantly higher stresses obtained in 3D simulations demonstrated the necessity of 3D models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Flugge, Viscoelasticity, Blaisdel Publishing Company, Waltham, MA (1967). W. Flugge, Viscoelasticity, Blaisdel Publishing Company, Waltham, MA (1967).
2.
Zurück zum Zitat R. M. Christensen, Theory of Viscoelasticity: An Introduction; Academic Press, New York (1982). R. M. Christensen, Theory of Viscoelasticity: An Introduction; Academic Press, New York (1982).
3.
Zurück zum Zitat R. K. Abu Al-Rub, A. H. Tehrani, and M. K. Darabi, “Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites,” Int. J. Damage Mech., 24, No. 2, 198-244 (2014). R. K. Abu Al-Rub, A. H. Tehrani, and M. K. Darabi, “Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites,” Int. J. Damage Mech., 24, No. 2, 198-244 (2014).
4.
Zurück zum Zitat E. Marklund, J. Eitzenberger, and J. Varna “Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites,” Compos. Sci. and Technol., 68, No. 9, 2156-2162 (2008).CrossRef E. Marklund, J. Eitzenberger, and J. Varna “Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites,” Compos. Sci. and Technol., 68, No. 9, 2156-2162 (2008).CrossRef
5.
Zurück zum Zitat L. J. Zapas and J. M. Crissman, “Creep and recovery behavior of ultra-high molecular weight polyethylene in the region of small uniaxial deformations,” Polymer, 25, No. 1, 57-62 (1984).CrossRef L. J. Zapas and J. M. Crissman, “Creep and recovery behavior of ultra-high molecular weight polyethylene in the region of small uniaxial deformations,” Polymer, 25, No. 1, 57-62 (1984).CrossRef
6.
Zurück zum Zitat E. Sparnins, A. Pupurs, J. Varna, R. Joffe, K. Nattinenet, and J. Lampinen, “The moisture and temperature effect on mechanical performance of flax/starch composites in quasi-static tension,” Polymer Compos., 32, No.12, 2051-2061 (2011).CrossRef E. Sparnins, A. Pupurs, J. Varna, R. Joffe, K. Nattinenet, and J. Lampinen, “The moisture and temperature effect on mechanical performance of flax/starch composites in quasi-static tension,” Polymer Compos., 32, No.12, 2051-2061 (2011).CrossRef
7.
Zurück zum Zitat J. Varna, E. Sparnins, R. Joffe, K. Nattinen, and J. Lampinen,” Time dependent behavior of flax/starch composites,” Mech. Time-Dependent Mater., 16, No. 1, 47-70 (2012). J. Varna, E. Sparnins, R. Joffe, K. Nattinen, and J. Lampinen,” Time dependent behavior of flax/starch composites,” Mech. Time-Dependent Mater., 16, No. 1, 47-70 (2012).
8.
Zurück zum Zitat K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna,” The source of inelastic behavior of Glass Fibre/Vinilester noncrimp farbic [±45]s laminates,” J. Reinf. Plast. and Compos., 30, No. 12, 1015-1028 (2011). K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna,” The source of inelastic behavior of Glass Fibre/Vinilester noncrimp farbic [±45]s laminates,” J. Reinf. Plast. and Compos., 30, No. 12, 1015-1028 (2011).
9.
Zurück zum Zitat A. E. Green and R. S. Rivlin, “The mechanics of nonlinear materials with memory,” Archive for Rational Mechanics and Analysis, 1, 1-21 (1957).CrossRef A. E. Green and R. S. Rivlin, “The mechanics of nonlinear materials with memory,” Archive for Rational Mechanics and Analysis, 1, 1-21 (1957).CrossRef
10.
Zurück zum Zitat W. N. Findley and K. Onaran, “Product form of kernel functions for nonlinear viscoelasticity of PVC under constant rate stressing,” J. Rheology, 12, No. 2, 217-242 (1968). W. N. Findley and K. Onaran, “Product form of kernel functions for nonlinear viscoelasticity of PVC under constant rate stressing,” J. Rheology, 12, No. 2, 217-242 (1968).
11.
Zurück zum Zitat C. W. McGuirt and G. Lianis, “Constitutive equations for viscoelastic solids under finite uniaxial and biaxial deformations”, Transactions of the Society of Rheology, 14, No. 2, 117-134 (1970).CrossRef C. W. McGuirt and G. Lianis, “Constitutive equations for viscoelastic solids under finite uniaxial and biaxial deformations”, Transactions of the Society of Rheology, 14, No. 2, 117-134 (1970).CrossRef
12.
Zurück zum Zitat J. Smart and J. G. Williams, “A comparison of single-integral nonlinear viscoelasticity theories,” J. Mech. and Physics of Solids, 20, No. 5, 313-324 (1972).CrossRef J. Smart and J. G. Williams, “A comparison of single-integral nonlinear viscoelasticity theories,” J. Mech. and Physics of Solids, 20, No. 5, 313-324 (1972).CrossRef
13.
Zurück zum Zitat J. M. Caruthers, D. B. Adolf, R. S. Chambers, and P. Shrikhande, “A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers,” Polymer, 45, No. 13, 4577-4597 (2004).CrossRef J. M. Caruthers, D. B. Adolf, R. S. Chambers, and P. Shrikhande, “A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers,” Polymer, 45, No. 13, 4577-4597 (2004).CrossRef
14.
Zurück zum Zitat F. J. Lockett, Nonlinear Viscoelastic Solids, Academic Press, London (1972). F. J. Lockett, Nonlinear Viscoelastic Solids, Academic Press, London (1972).
15.
Zurück zum Zitat A. S. Khan, O. Lopez-Pamies, and R. Kazmin, “Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures,” Int. J. Plasticity, 22, 581-601 (2006).CrossRef A. S. Khan, O. Lopez-Pamies, and R. Kazmin, “Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures,” Int. J. Plasticity, 22, 581-601 (2006).CrossRef
16.
Zurück zum Zitat Y. C. Lou and R. A. Schapery, “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” J. Compos. Mater., 5, 208-234 (1971).CrossRef Y. C. Lou and R. A. Schapery, “Viscoelastic characterization of a nonlinear fiber-reinforced plastic,” J. Compos. Mater., 5, 208-234 (1971).CrossRef
17.
Zurück zum Zitat R. A. Schapery, “Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics,” Mech. Time-Dependent Mater., 1, No. 2, 209-240 (1997).CrossRef R. A. Schapery, “Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics,” Mech. Time-Dependent Mater., 1, No. 2, 209-240 (1997).CrossRef
18.
Zurück zum Zitat R. A. Schapery, “Further development of a thermodynamic constitutive theory: stress formulation,” Purdue University report No. 69-2 (1969). R. A. Schapery, “Further development of a thermodynamic constitutive theory: stress formulation,” Purdue University report No. 69-2 (1969).
19.
Zurück zum Zitat R. A. Schapery, “On the Characterization of nonlinear viscoelastic materials,” J. Polymer Eng. and Sci., 9, 295-310 (1969).CrossRef R. A. Schapery, “On the Characterization of nonlinear viscoelastic materials,” J. Polymer Eng. and Sci., 9, 295-310 (1969).CrossRef
20.
Zurück zum Zitat R. T. S. Freire, S. G. Nunes, S. C. Amico, N. J. Al-Ramahi, R. Joffe, and J. Varna, “On determination of linear viscoelastic compliance and relaxation functions for polymers in one tensile test”, Mech. Compos. Mater., 58, No. 6, 765-786 (2022).CrossRef R. T. S. Freire, S. G. Nunes, S. C. Amico, N. J. Al-Ramahi, R. Joffe, and J. Varna, “On determination of linear viscoelastic compliance and relaxation functions for polymers in one tensile test”, Mech. Compos. Mater., 58, No. 6, 765-786 (2022).CrossRef
21.
Zurück zum Zitat L. Pupure, J. Varna, and R. Joffe. “Natural fiber composites: challenges simulating inelastic response in strain controlled tensile tests,” J. Compos. Mater., 50, No. 5, 575-587 (2016).CrossRef L. Pupure, J. Varna, and R. Joffe. “Natural fiber composites: challenges simulating inelastic response in strain controlled tensile tests,” J. Compos. Mater., 50, No. 5, 575-587 (2016).CrossRef
22.
Zurück zum Zitat J. Varna, L. Pupure, and R. Joffe, “Incremental forms of Schapery’s model: convergence and inversion to simulate strain controlled ramps,” Mechanics of Time-Dependent Materials, 20, No. 4, 353-552 (2016).CrossRef J. Varna, L. Pupure, and R. Joffe, “Incremental forms of Schapery’s model: convergence and inversion to simulate strain controlled ramps,” Mechanics of Time-Dependent Materials, 20, No. 4, 353-552 (2016).CrossRef
23.
Zurück zum Zitat L. Pupure, J. Varna, and R. Joffe, “Methodology for macro-modeling of bio-based composites with inelastic constituents,” Compos. Sci. and Tehcnol., 163, 41-48 (2018).CrossRef L. Pupure, J. Varna, and R. Joffe, “Methodology for macro-modeling of bio-based composites with inelastic constituents,” Compos. Sci. and Tehcnol., 163, 41-48 (2018).CrossRef
24.
Zurück zum Zitat M. Benavente, L. Marcin, A. Courtois, M. Lévesque, and E. Ruiz, “Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing,” Compos., Part A, 107, 205-216 (2018).CrossRef M. Benavente, L. Marcin, A. Courtois, M. Lévesque, and E. Ruiz, “Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing,” Compos., Part A, 107, 205-216 (2018).CrossRef
25.
Zurück zum Zitat M. Machado, U. D. Cakmak, I. Kallai, and Z. Major, “Thermomechanical viscoelastic analysis of woven-reinforced thermoplastic-matrix composites,” Compos. Struct., 157, 256-264 (2016).CrossRef M. Machado, U. D. Cakmak, I. Kallai, and Z. Major, “Thermomechanical viscoelastic analysis of woven-reinforced thermoplastic-matrix composites,” Compos. Struct., 157, 256-264 (2016).CrossRef
26.
Zurück zum Zitat Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501‐6 epoxy resin during cure,” Polymer Eng. and Sci., 36, No. 23, 2852-2862 (1996).CrossRef Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501‐6 epoxy resin during cure,” Polymer Eng. and Sci., 36, No. 23, 2852-2862 (1996).CrossRef
27.
Zurück zum Zitat A. Ding, S. Li, J. Wang, A. Ni, and L. Zu, “A new path-dependent constitutive model predicting cure-induced distortions in composite structures,” Compos., Part A, 95, 183-196 (2017).CrossRef A. Ding, S. Li, J. Wang, A. Ni, and L. Zu, “A new path-dependent constitutive model predicting cure-induced distortions in composite structures,” Compos., Part A, 95, 183-196 (2017).CrossRef
28.
Zurück zum Zitat J. T. Zhang, M. Zhang, S. X. Li, M. J. Pavier, and D. J. Smith, “Residual stresses created during curing of a polymer matrix composite using a viscoelastic model,” Compos. Sci. and Technol., 130, 20-27 (2016).CrossRef J. T. Zhang, M. Zhang, S. X. Li, M. J. Pavier, and D. J. Smith, “Residual stresses created during curing of a polymer matrix composite using a viscoelastic model,” Compos. Sci. and Technol., 130, 20-27 (2016).CrossRef
29.
Zurück zum Zitat D. J. O’Brien, P. T. Mather, and S.R. White, “Viscoelastic properties of an epoxy resin during cure,” J. Compos. Mater., 35, No. 10, 883-904 (2001).CrossRef D. J. O’Brien, P. T. Mather, and S.R. White, “Viscoelastic properties of an epoxy resin during cure,” J. Compos. Mater., 35, No. 10, 883-904 (2001).CrossRef
30.
Zurück zum Zitat A. Ding, S. Li, J. Wang, and L. Zu, “A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates”, Compos. Struct., 129, 60-69 (2015).CrossRef A. Ding, S. Li, J. Wang, and L. Zu, “A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates”, Compos. Struct., 129, 60-69 (2015).CrossRef
31.
Zurück zum Zitat A. Ding, S. Li, J. Sun, J. Wang, and L. Zu, “A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence,” Compos. Struct., 136, 34-43 (2016).CrossRef A. Ding, S. Li, J. Sun, J. Wang, and L. Zu, “A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence,” Compos. Struct., 136, 34-43 (2016).CrossRef
32.
Zurück zum Zitat N. Zobeiry, S. Malek, R. Vaziri, and A. Poursartip, “A differential approach to finite element modelling of isotropic and transversely isotropic viscoelastic materials,” Mech. Mater., 97, 76-91 (2016).CrossRef N. Zobeiry, S. Malek, R. Vaziri, and A. Poursartip, “A differential approach to finite element modelling of isotropic and transversely isotropic viscoelastic materials,” Mech. Mater., 97, 76-91 (2016).CrossRef
33.
Zurück zum Zitat M. Abida, J. Mars, F. Gehring, A. Vivet, and F. Danmak, “Anisotropic elastic-viscoplastic modelling of a quasiunidirectional flax fibre-reinforced epoxy subjected to low-velocity impact”, Lecture Notes in Mech. Eng., 171-178 (2018). M. Abida, J. Mars, F. Gehring, A. Vivet, and F. Danmak, “Anisotropic elastic-viscoplastic modelling of a quasiunidirectional flax fibre-reinforced epoxy subjected to low-velocity impact”, Lecture Notes in Mech. Eng., 171-178 (2018).
34.
Zurück zum Zitat A. Courtois, M. Hirsekorn, M. Benavente, A. Jaillon, L. Marcin, E. Ruiz, and M. Lévesque, “Viscoelastic behavior of an epoxy resin during cure below the glass transition temperature: Characterization and modeling,” J. Compos. Mater., 53, No. 2, 155-171 (2019).CrossRef A. Courtois, M. Hirsekorn, M. Benavente, A. Jaillon, L. Marcin, E. Ruiz, and M. Lévesque, “Viscoelastic behavior of an epoxy resin during cure below the glass transition temperature: Characterization and modeling,” J. Compos. Mater., 53, No. 2, 155-171 (2019).CrossRef
35.
Zurück zum Zitat A. Courtois, L. Marcin, M. Benavente, E. Ruiz, and M. Lévesque, “Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites,” Int. J. Solids and Struct., 15, No. 163, 61-74 (2019).CrossRef A. Courtois, L. Marcin, M. Benavente, E. Ruiz, and M. Lévesque, “Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites,” Int. J. Solids and Struct., 15, No. 163, 61-74 (2019).CrossRef
36.
Zurück zum Zitat S. Saseendran, D. Berglund, J. Varna, and P. Fernberg, “Incremental 1D viscoelastic model for residual stress and shape distortion analysis during composite manufacturing processes,” Conf. Proc. Society of Experimental Mechanics Series, 65-76 (2020). S. Saseendran, D. Berglund, J. Varna, and P. Fernberg, “Incremental 1D viscoelastic model for residual stress and shape distortion analysis during composite manufacturing processes,” Conf. Proc. Society of Experimental Mechanics Series, 65-76 (2020).
37.
Zurück zum Zitat L. Pupure, N. Doroudgarian, and R. Joffe, “Moisture uptake and resulting mechanical response of biobased composites. I. constituents,” Polymer Compos., 35, No. 6, 1150-1159 (2014).CrossRef L. Pupure, N. Doroudgarian, and R. Joffe, “Moisture uptake and resulting mechanical response of biobased composites. I. constituents,” Polymer Compos., 35, No. 6, 1150-1159 (2014).CrossRef
38.
Zurück zum Zitat L. Pupure, S. Saseendran, J. Varna, and M. Basso, “Effect of degree of cure on viscoplastic shear strain development in layers of [45/−45]s glass fibre/ epoxy resin composites,” J. Compos. Mater., 52, No. 24, 3277-3288 (2018).CrossRef L. Pupure, S. Saseendran, J. Varna, and M. Basso, “Effect of degree of cure on viscoplastic shear strain development in layers of [45/−45]s glass fibre/ epoxy resin composites,” J. Compos. Mater., 52, No. 24, 3277-3288 (2018).CrossRef
39.
Zurück zum Zitat S. G. Nunes, S. Saseendran, R. Joffe, S.C. Amico, P. Fernberg, and J. Varna, “On temperature-related shift factors and master curves in viscoelastic constitutive models for thermoset polymers,” Mech. Compos. Mater., 56, No. 5, 573-590 (2020).CrossRef S. G. Nunes, S. Saseendran, R. Joffe, S.C. Amico, P. Fernberg, and J. Varna, “On temperature-related shift factors and master curves in viscoelastic constitutive models for thermoset polymers,” Mech. Compos. Mater., 56, No. 5, 573-590 (2020).CrossRef
40.
Zurück zum Zitat C. Suna, J. Xua, X. Chena, J. Zhenga, Y. Zhenga, and W. Wangb, “Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant,” Mech. Mater., 89, 35-46 (2015).CrossRef C. Suna, J. Xua, X. Chena, J. Zhenga, Y. Zhenga, and W. Wangb, “Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant,” Mech. Mater., 89, 35-46 (2015).CrossRef
41.
Zurück zum Zitat S. Saseendran, D. Berglund, and J. Varna, “Viscoelastic model with complex rheological behavior (VisCoR): incremental formulation,” Adv. Manufacturing: Polymer & Compos. Sci., 6, No. 1, 1-16 (2020). S. Saseendran, D. Berglund, and J. Varna, “Viscoelastic model with complex rheological behavior (VisCoR): incremental formulation,” Adv. Manufacturing: Polymer & Compos. Sci., 6, No. 1, 1-16 (2020).
42.
Zurück zum Zitat R. Brouwer, “Nonlinear viscoelastic characterization of transversely isotropic fibrous composites under biaxial loading,” Ph.D. thesis Free Univ of Brussels (1986). R. Brouwer, “Nonlinear viscoelastic characterization of transversely isotropic fibrous composites under biaxial loading,” Ph.D. thesis Free Univ of Brussels (1986).
43.
Zurück zum Zitat S.G. Nunes., R. Joffe, N. Emami, P. Fernberg, S. Saseendran, A. Esposito, S. C. Amico and J. Varna, “Physical aging effect on viscoelastic behavior of polymers,” Compos., Part C, 7, 100223 (2022). S.G. Nunes., R. Joffe, N. Emami, P. Fernberg, S. Saseendran, A. Esposito, S. C. Amico and J. Varna, “Physical aging effect on viscoelastic behavior of polymers,” Compos., Part C, 7, 100223 (2022).
44.
Zurück zum Zitat S. G. Nunes, Z. Al-Maqdasi, P. Fernberg, S.C. Amico, and J. Varna, “Does the viscoelastic behavior of fully cured epoxy depend on the thermal history during curing?” J. Compos. Mater., 56, No. 22, 3439-3453 (2022).CrossRef S. G. Nunes, Z. Al-Maqdasi, P. Fernberg, S.C. Amico, and J. Varna, “Does the viscoelastic behavior of fully cured epoxy depend on the thermal history during curing?” J. Compos. Mater., 56, No. 22, 3439-3453 (2022).CrossRef
45.
Zurück zum Zitat M.R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Eng. and Sci., 13, No. 1., 59-64 (1973).CrossRef M.R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Eng. and Sci., 13, No. 1., 59-64 (1973).CrossRef
47.
Zurück zum Zitat J. M. Svanberg and J.A. Holmberg,” Prediction of shape distortions Part I. FE-implementation of a pathdependent constitutive model,” Compos., Part A, 35, No. 6, 711-721 (2004). J. M. Svanberg and J.A. Holmberg,” Prediction of shape distortions Part I. FE-implementation of a pathdependent constitutive model,” Compos., Part A, 35, No. 6, 711-721 (2004).
Metadaten
Titel
Effect of Material State and Temperature on Nonlinear Viscoelastic Response: 3D Constitutive Model and Incremental Formulation for Numerical Analysis
verfasst von
J. Varna
L. Pupure
Publikationsdatum
09.05.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10092-z

Weitere Artikel der Ausgabe 2/2023

Mechanics of Composite Materials 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.