Skip to main content

2024 | OriginalPaper | Buchkapitel

Electrocatalytic Properties of Atomically Precise Electrocatalysts

verfasst von : Kalaiarasi Senthurpandi, Kirupagaran Ramar, Karpagavinayagam Petchimuthu, Vedhi Chinnapaiyan

Erschienen in: Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electro-catalysis and thereby to lead to the development of a new efficient electro-catalyst. Atomically regulated metal nanoclusters will allow us to systematically optimize the electrochemical and surface properties suitable for electro-catalysis, giving a potent platform for precisely tuned electro-catalysis. Nanoclusters are made up of metal atoms and ligands with diameters ranging from 2 to 3 nm. Gold nanoclusters with precise atomic numbers have received a lot of attention due to their stability and unusual structure. More new ways for synthesizing atomically accurate gold nanoclusters have been developed as a result of more extensive research on gold nanoclusters. Recent advances in the electrochemistry of atomically accurate metal nanoclusters and their applications in electro-catalysis are discussed in this account. Other metal nanoclusters have made far less progress in electrochemical investigations than gold nanoclusters; hence, this chapter focuses on electro-catalyst applications of metal-based nanoclusters. Voltammetry has proven to be particularly effective in studying the electrical structure of metal nanoclusters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aet Y (2023) Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis. Nano Res 16:1527–1532CrossRef Aet Y (2023) Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis. Nano Res 16:1527–1532CrossRef
Zurück zum Zitat Antoine R (2020) Supramolecular gold chemistry: from atomically precise thiolateprotected gold nanoclusters to gold-thiolate nanostructures. Nanomaterials 10:377CrossRef Antoine R (2020) Supramolecular gold chemistry: from atomically precise thiolateprotected gold nanoclusters to gold-thiolate nanostructures. Nanomaterials 10:377CrossRef
Zurück zum Zitat Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. AngewandteChemie Int Ed 50(32):7238–7266CrossRef Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. AngewandteChemie Int Ed 50(32):7238–7266CrossRef
Zurück zum Zitat Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Hoboken, NJ. ISBN 0-471-04372-9. OCLC 43859504 Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Hoboken, NJ. ISBN 0-471-04372-9. OCLC 43859504
Zurück zum Zitat Bard AJ, Faulkner LR (2001b) Electrochemical methods: fundamentals and applications. Wiley, New York Bard AJ, Faulkner LR (2001b) Electrochemical methods: fundamentals and applications. Wiley, New York
Zurück zum Zitat Brown MD, Schoenfisch MH (2019) Electrochemical nitric oxide sensors: principles of design and characterization. Chem Rev 119(22):11551–11575CrossRef Brown MD, Schoenfisch MH (2019) Electrochemical nitric oxide sensors: principles of design and characterization. Chem Rev 119(22):11551–11575CrossRef
Zurück zum Zitat Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRef
Zurück zum Zitat Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117(12):8208–8271CrossRef Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117(12):8208–8271CrossRef
Zurück zum Zitat Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389CrossRef Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48:4386–4389CrossRef
Zurück zum Zitat Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD (2020) Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev 120(23):12903–12993CrossRef Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD (2020) Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev 120(23):12903–12993CrossRef
Zurück zum Zitat Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25CrossRef Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25CrossRef
Zurück zum Zitat Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51CrossRef
Zurück zum Zitat He X, Gao CY, Wang MX, Zhao L (2012) Designed synthesis of a metal cluster-pillared coordination cage. Chem Commun 48:10877–10879CrossRef He X, Gao CY, Wang MX, Zhao L (2012) Designed synthesis of a metal cluster-pillared coordination cage. Chem Commun 48:10877–10879CrossRef
Zurück zum Zitat Hesari M, Ding ZA (2017) Grand avenue to au nanocluster electrochemiluminescence. Acc Chem Res 50:218–230CrossRef Hesari M, Ding ZA (2017) Grand avenue to au nanocluster electrochemiluminescence. Acc Chem Res 50:218–230CrossRef
Zurück zum Zitat Ito S, Takano S, Tsukuda T (2019) Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J Phys Chem Lett 10:6892–6896CrossRef Ito S, Takano S, Tsukuda T (2019) Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J Phys Chem Lett 10:6892–6896CrossRef
Zurück zum Zitat Jaramillo T (2014) Electrocatalysis 101 | GCEP Symposium Jaramillo T (2014) Electrocatalysis 101 | GCEP Symposium
Zurück zum Zitat Jiao L, Wang Y, Jiang H-L, Xu Q (2017) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30(37):1703663CrossRef Jiao L, Wang Y, Jiang H-L, Xu Q (2017) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30(37):1703663CrossRef
Zurück zum Zitat Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362CrossRef Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362CrossRef
Zurück zum Zitat Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413CrossRef Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413CrossRef
Zurück zum Zitat Kang X, Li Y, Zhu M, Jin R (2020) Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 49:6443–6514CrossRef Kang X, Li Y, Zhu M, Jin R (2020) Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 49:6443–6514CrossRef
Zurück zum Zitat Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. AngewandteChemie Int Ed 53(14):3558–3586 Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. AngewandteChemie Int Ed 53(14):3558–3586
Zurück zum Zitat Koper MTM (2011) Structure sensitivity and nanoscale effects in electro-catalysis. Nanoscale R Soc Chem 3(5):2054–2073CrossRef Koper MTM (2011) Structure sensitivity and nanoscale effects in electro-catalysis. Nanoscale R Soc Chem 3(5):2054–2073CrossRef
Zurück zum Zitat Kotrel S, BrUninger S (2008) Industrial electrocatalysis. Handbook of Heterogeneous Catalysis Kotrel S, BrUninger S (2008) Industrial electrocatalysis. Handbook of Heterogeneous Catalysis
Zurück zum Zitat Lenne Q, Retout M, Gosselin B, Bruylants G, Jabin I, Hamon J, Lagrost C, Leroux YR (2020) Highly stable silver nanohybrid electrocatalysts for the oxygen reduction reaction. Chem Commun 58:3334–3337CrossRef Lenne Q, Retout M, Gosselin B, Bruylants G, Jabin I, Hamon J, Lagrost C, Leroux YR (2020) Highly stable silver nanohybrid electrocatalysts for the oxygen reduction reaction. Chem Commun 58:3334–3337CrossRef
Zurück zum Zitat Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda A, Bushnell KRD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2982CrossRef Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda A, Bushnell KRD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2982CrossRef
Zurück zum Zitat Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J (2021) Electrocatalysis of gold-based nanoparticles and nanoclusters. Mater Horiz 8:1657–1682CrossRef Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J (2021) Electrocatalysis of gold-based nanoparticles and nanoclusters. Mater Horiz 8:1657–1682CrossRef
Zurück zum Zitat Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079CrossRef Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079CrossRef
Zurück zum Zitat Lu Y, Jiang Y, Gao X, Chen W (2014) Charge state-dependent catalytic activity of [Au 25 (SC 12 H 25) 18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem Commun 50:8464–8467CrossRef Lu Y, Jiang Y, Gao X, Chen W (2014) Charge state-dependent catalytic activity of [Au 25 (SC 12 H 25) 18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem Commun 50:8464–8467CrossRef
Zurück zum Zitat Luo M, Guo S (2017) Strain-controlled electro-catalysis on multimetallic nanomaterials. Nat Rev Mater 2(11):17059MathSciNetCrossRef Luo M, Guo S (2017) Strain-controlled electro-catalysis on multimetallic nanomaterials. Nat Rev Mater 2(11):17059MathSciNetCrossRef
Zurück zum Zitat McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687CrossRef McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687CrossRef
Zurück zum Zitat Met Z (2009) Reversible switching of magnetism in thiolate-protected Au25 superatom. J Am Chem Soc 131:2490–2492CrossRef Met Z (2009) Reversible switching of magnetism in thiolate-protected Au25 superatom. J Am Chem Soc 131:2490–2492CrossRef
Zurück zum Zitat Milton RD, Minteer SD (2019) Nitrogenase bioelectrochemistry for synthesis applications. Acc Chem Res 52(12):3351–3360CrossRef Milton RD, Minteer SD (2019) Nitrogenase bioelectrochemistry for synthesis applications. Acc Chem Res 52(12):3351–3360CrossRef
Zurück zum Zitat Mistry H, Varela AS, Strasser P, Cuenya BR (2016) Nanostructured electro-catalysts with tunable activity and selectivity. Nat Rev Mater 1(4):1–14CrossRef Mistry H, Varela AS, Strasser P, Cuenya BR (2016) Nanostructured electro-catalysts with tunable activity and selectivity. Nat Rev Mater 1(4):1–14CrossRef
Zurück zum Zitat Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3(5):544CrossRef Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3(5):544CrossRef
Zurück zum Zitat Seh Zhi W, Kibsgaard J, Dickens Colin F, Chorkendorff I, Norskov Jens K, Jaramillo Thomas F (2017) Combining theory and experiment in electrocatalysis: insights intomaterials design. Science 355(6321):eaad4998 Seh Zhi W, Kibsgaard J, Dickens Colin F, Chorkendorff I, Norskov Jens K, Jaramillo Thomas F (2017) Combining theory and experiment in electrocatalysis: insights intomaterials design. Science 355(6321):eaad4998
Zurück zum Zitat Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767CrossRef Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767CrossRef
Zurück zum Zitat Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horizons 7(2):411–454CrossRef Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horizons 7(2):411–454CrossRef
Zurück zum Zitat She ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electro-catalysis: insights into materials design. Science 355:eaad4998 She ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electro-catalysis: insights into materials design. Science 355:eaad4998
Zurück zum Zitat Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y (2021) Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev 121(2):649–735CrossRef Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y (2021) Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev 121(2):649–735CrossRef
Zurück zum Zitat Sumner L, Sakthivel NA, Schrock H, Artyushkova K, Dass A, Chakraborty S (2018) Electrocatalytic oxygen reduction activities of thiol-protected nanomolecules ranging in size from Au28(SR)20 to Au279(SR)84. J Phys Chem C 122:24809–24817CrossRef Sumner L, Sakthivel NA, Schrock H, Artyushkova K, Dass A, Chakraborty S (2018) Electrocatalytic oxygen reduction activities of thiol-protected nanomolecules ranging in size from Au28(SR)20 to Au279(SR)84. J Phys Chem C 122:24809–24817CrossRef
Zurück zum Zitat Tang Q, Lee Y, Li D-Y, Choi W, Liu CW, Lee D, Jiang D-E (2017) Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc 139:9728–9736CrossRef Tang Q, Lee Y, Li D-Y, Choi W, Liu CW, Lee D, Jiang D-E (2017) Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc 139:9728–9736CrossRef
Zurück zum Zitat Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36CrossRef Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36CrossRef
Zurück zum Zitat Tian S, Liao L, Yuan J, Yao C, Chen J, Yang J, Wu Z (2016) Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanoclusters. Chem Commun 52:9873–9876CrossRef Tian S, Liao L, Yuan J, Yao C, Chen J, Yang J, Wu Z (2016) Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanoclusters. Chem Commun 52:9873–9876CrossRef
Zurück zum Zitat Walter M (2008) A unified view of ligand-protected gold clusters as super atom complexes. Proc Natl Acad Sci USA 105:9157–9162CrossRef Walter M (2008) A unified view of ligand-protected gold clusters as super atom complexes. Proc Natl Acad Sci USA 105:9157–9162CrossRef
Zurück zum Zitat Wang X (2009) CNTs tuned to provide electro-catalyst support. Nanotechweb.org. Archived from the original on 22 2009 Wang X (2009) CNTs tuned to provide electro-catalyst support. Nanotechweb.org. Archived from the original on 22 2009
Zurück zum Zitat Wang S, Yu H, Zhu M (2015) [PDF] Noble and valuable: atomically precise gold nanoclusters. Sci China: Chem 59:206–208CrossRef Wang S, Yu H, Zhu M (2015) [PDF] Noble and valuable: atomically precise gold nanoclusters. Sci China: Chem 59:206–208CrossRef
Zurück zum Zitat Wang L, Tang Z, Yan W, Yang H, Wang Q, Chen S (2016a) Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl Mater Interfaces 8:20635–20641CrossRef Wang L, Tang Z, Yan W, Yang H, Wang Q, Chen S (2016a) Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl Mater Interfaces 8:20635–20641CrossRef
Zurück zum Zitat Wang Q, Wang L, Tang Z, Wang F, Yan W, Yang H, Zhou W, Li L, Kang X, Chen S (2016b) Hybrid nanomaterials based on graphene and gold nanoclusters for efficient electrocatalytic reduction of oxygen. Nanoscale 8:6629–6635CrossRef Wang Q, Wang L, Tang Z, Wang F, Yan W, Yang H, Zhou W, Li L, Kang X, Chen S (2016b) Hybrid nanomaterials based on graphene and gold nanoclusters for efficient electrocatalytic reduction of oxygen. Nanoscale 8:6629–6635CrossRef
Zurück zum Zitat Wildgoose GG, Banks CE, Leventis HC, Compton RG (2005) Chemically modified carbon nanotubes for use in electroanalysis. Microchimica Acta 152(3–4):187–214 Wildgoose GG, Banks CE, Leventis HC, Compton RG (2005) Chemically modified carbon nanotubes for use in electroanalysis. Microchimica Acta 152(3–4):187–214
Zurück zum Zitat Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816–824CrossRef Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816–824CrossRef
Zurück zum Zitat Yang JY, Kerr TA, Wang XS, Barlow JM (2020) Reducing co2 to hco2–at mild potentials: lessons from formate dehydrogenase. J Am Chem Soc 142(46):19438–19445CrossRef Yang JY, Kerr TA, Wang XS, Barlow JM (2020) Reducing co2 to hco2–at mild potentials: lessons from formate dehydrogenase. J Am Chem Soc 142(46):19438–19445CrossRef
Zurück zum Zitat Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. J Am Chem Soc 135:10011–10013CrossRef Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. J Am Chem Soc 135:10011–10013CrossRef
Zurück zum Zitat Zhang Q, Zhang X, Wang J, Wang C (2021) Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology 32(3):032001CrossRef Zhang Q, Zhang X, Wang J, Wang C (2021) Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology 32(3):032001CrossRef
Zurück zum Zitat Zheng W, Liu M, Lee LYS (2020) Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal 10(1):81–92CrossRef Zheng W, Liu M, Lee LYS (2020) Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal 10(1):81–92CrossRef
Zurück zum Zitat Zhu X, Chen L, Liu Y (2023) Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: progress and perspectives. Polyoxometalates 2(4):9140031CrossRef Zhu X, Chen L, Liu Y (2023) Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: progress and perspectives. Polyoxometalates 2(4):9140031CrossRef
Metadaten
Titel
Electrocatalytic Properties of Atomically Precise Electrocatalysts
verfasst von
Kalaiarasi Senthurpandi
Kirupagaran Ramar
Karpagavinayagam Petchimuthu
Vedhi Chinnapaiyan
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54622-8_4