Skip to main content
Top

2024 | OriginalPaper | Chapter

A Fast Calculation Method for Water Drop Collision Coefficient of Wind Turbine Blades During Icing Process Based on Boundary Element Method

Authors : Caijin Fan, Wei Niu, Lei Liu, Yuan Chen, Min Li, Xianyin Mao, Bin Li, Tingyun Gu

Published in: The Proceedings of the 18th Annual Conference of China Electrotechnical Society

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The simulation of icing on fan blades primarily involves three processes: water droplet collision, capturing, and freezing. The calculation of local collision coefficient of water droplets is of utmost importance. This article presents a simulation calculation model for the flow field of a fan blade airfoil based on the boundary element method. It derives a criterion for water droplet collision on the blade surface and achieves rapid tracking and collision assessment of water droplet trajectories. Furthermore, a method is proposed to calculate the local collision coefficient of water droplets based on the collision velocity of water droplets and the normal vector of the blade boundary. Based on this methodology, simulation calculations were conducted to determine the collision coefficients of water droplets on both clean and icing fan blades. The results of these calculations were compared with those obtained using the finite element method. The findings indicate that the calculation method for the local collision coefficient of water droplets on fan blades, based on the boundary element method outlined in this paper, exhibits high accuracy and can be employed for the rapid calculation of water droplet collision coefficients in the simulation process of fan blade icing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Y.: Analysis of current situation and development trend of wind power generation. Electr. Power Equip. Manag. 11, 21–22 (2020). (in Chinese) Wang, Y.: Analysis of current situation and development trend of wind power generation. Electr. Power Equip. Manag. 11, 21–22 (2020). (in Chinese)
2.
go back to reference Wang, M., Zhou, S., Yang, M., et al.: Evaluation method of acceptable installed capacity of offshore wind power taking into account thermal characteristics of submarine cable. Autom. Electr. Power Syst. 45(6), 195–202 (2021). (in Chinese) Wang, M., Zhou, S., Yang, M., et al.: Evaluation method of acceptable installed capacity of offshore wind power taking into account thermal characteristics of submarine cable. Autom. Electr. Power Syst. 45(6), 195–202 (2021). (in Chinese)
3.
go back to reference Qin, H., Yang, X., Mei, B., et al.: Analysis of threshold power density for anti-icing and de-icing of wind turbine blade. Proc. CSEE. 35(19), 4997–5002 (2015). (in Chinese) Qin, H., Yang, X., Mei, B., et al.: Analysis of threshold power density for anti-icing and de-icing of wind turbine blade. Proc. CSEE. 35(19), 4997–5002 (2015). (in Chinese)
4.
go back to reference Zhang, Y., Guo, W., Li, Y., et al.: An experimental study of icing distribution on a symmetrical airfoil for wind turbine blade in the offshore environmental condition. Ocean Eng. 273, 113960 (2023)CrossRef Zhang, Y., Guo, W., Li, Y., et al.: An experimental study of icing distribution on a symmetrical airfoil for wind turbine blade in the offshore environmental condition. Ocean Eng. 273, 113960 (2023)CrossRef
5.
go back to reference Hu, Q., Wang, H., Qiu, G., et al.: Quantitative analysis of wind turbine blade Icing and its application. Trans. China Electrotechnical Soc. 37(21), 5607–5616 (2022). (in Chinese) Hu, Q., Wang, H., Qiu, G., et al.: Quantitative analysis of wind turbine blade Icing and its application. Trans. China Electrotechnical Soc. 37(21), 5607–5616 (2022). (in Chinese)
6.
go back to reference Villalpando, F., Reggio, M., Ilinca, A.: Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 114, 1041–1052 (2016)CrossRef Villalpando, F., Reggio, M., Ilinca, A.: Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 114, 1041–1052 (2016)CrossRef
7.
go back to reference Shu, L., Liang, J., Hu, Q., et al.: Study on small wind turbine icing and its performance. Cold Reg. Sci. Technol. 134, 11–19 (2017)CrossRef Shu, L., Liang, J., Hu, Q., et al.: Study on small wind turbine icing and its performance. Cold Reg. Sci. Technol. 134, 11–19 (2017)CrossRef
8.
go back to reference Jin, J., Virk, M.: Experimental study of ice accretion on S826 & S832 wind turbine blade profiles. Cold Reg. Sci. Technol. 169, 102913 (2020)CrossRef Jin, J., Virk, M.: Experimental study of ice accretion on S826 & S832 wind turbine blade profiles. Cold Reg. Sci. Technol. 169, 102913 (2020)CrossRef
9.
go back to reference Ibrahim, G., Pope, K., Naterer, G.: Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade. J. Wind Eng. Ind. Aerodyn. 232, 105247 (2023)CrossRef Ibrahim, G., Pope, K., Naterer, G.: Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade. J. Wind Eng. Ind. Aerodyn. 232, 105247 (2023)CrossRef
10.
go back to reference Wang, Q., Yi, X., Liu, Y., et al.: Simulation and analysis of wind turbine ice accretion under yaw condition via an improved multi-shot icing computational model. Renew. Energy 162, 1854–1873 (2020)CrossRef Wang, Q., Yi, X., Liu, Y., et al.: Simulation and analysis of wind turbine ice accretion under yaw condition via an improved multi-shot icing computational model. Renew. Energy 162, 1854–1873 (2020)CrossRef
11.
go back to reference Son, C., Kim, T.: Development of an icing simulation code for rotating wind turbines. J. Wind Eng. Ind. Aerodyn. 203, 104239 (2020)CrossRef Son, C., Kim, T.: Development of an icing simulation code for rotating wind turbines. J. Wind Eng. Ind. Aerodyn. 203, 104239 (2020)CrossRef
12.
go back to reference Shu, L., Ren, X., Hu, Q., et al.: Influences of environmental parameters on icing characteristics and output power of small wind turbine. Proc. CSEE. 36(21), 5873–5878 (2016). (in Chinese) Shu, L., Ren, X., Hu, Q., et al.: Influences of environmental parameters on icing characteristics and output power of small wind turbine. Proc. CSEE. 36(21), 5873–5878 (2016). (in Chinese)
13.
go back to reference Shu, L., Li, H., Hu, Q., et al.: Effects of ice degree of blades on power losses of wind turbines at natural environments. Proc. CSEE. 38(18), 5599–5605 (2018). (in Chinese) Shu, L., Li, H., Hu, Q., et al.: Effects of ice degree of blades on power losses of wind turbines at natural environments. Proc. CSEE. 38(18), 5599–5605 (2018). (in Chinese)
14.
go back to reference Hu, Q., Yang, D., Jiang, X., et al.: Experimental study on the effect of blade simulated icing on power characteristics of wind turbine. Trans. China Electrotechnical Soc. 35(22), 4807–4815 (2020). (in Chinese) Hu, Q., Yang, D., Jiang, X., et al.: Experimental study on the effect of blade simulated icing on power characteristics of wind turbine. Trans. China Electrotechnical Soc. 35(22), 4807–4815 (2020). (in Chinese)
15.
go back to reference Li, H., Shu, L., Hu, Q., et al.: Numerical simulation of wind turbine blades aerodynamic performance based on ice roughness effect. Trans. China Electrotechnical Soc. 33(10), 2253–2260 (2018). (in Chinese) Li, H., Shu, L., Hu, Q., et al.: Numerical simulation of wind turbine blades aerodynamic performance based on ice roughness effect. Trans. China Electrotechnical Soc. 33(10), 2253–2260 (2018). (in Chinese)
Metadata
Title
A Fast Calculation Method for Water Drop Collision Coefficient of Wind Turbine Blades During Icing Process Based on Boundary Element Method
Authors
Caijin Fan
Wei Niu
Lei Liu
Yuan Chen
Min Li
Xianyin Mao
Bin Li
Tingyun Gu
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1420-9_7