Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

01-06-2023 | Topical Collection: Advanced Metal Ion Batteries

Construction of Small FeS2 Nanoparticles Embedded in Porous Nitrogen-Doped Carbon with Enhanced Sodium Ion Storage Properties

Authors: Yi Wen, Qianqian Sun, Jinyi Gao, Jiajia Hu, Zhujun Yao, Tiancun Liu, Shenghui Shen, Yefeng Yang

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron disulfide (FeS2) is a potentially suitable anode material for sodium-ion batteries (SIBs) by virtue of its high theoretical capacity (894 mAh g−1). Unfortunately, the inferior electrical conductivity, sluggish diffusion kinetics, and large volume changes have impeded its practical application. Here, we report a composite material comprising numerous small FeS2 nanoparticles intimately embedded in a porous N-doped carbon framework through high-energy ball milling combined with stepwise post-thermal treatment. The highly porous and robust external carbon framework serves as a conductive substrate and has good strain accommodation for small FeS2 nanoparticles, which can not only boost electron/ion transport ability of the composite but also provide extra active sites for sodium ion storage and maintain the structural integrity of the composite during repeated cycling processes. As a result, the FeS2/PNC electrode achieves high initial Coulombic efficiency of 81%, reversible specific capacities of 530 mA h g−1 with good capacity retentions of 95% after 200 cycles at 1 A g−1 , and a superior rate capability (376 mA h g−1 at 5 A g−1). The promising electrochemical performance and the facile synthesis method make the FeS2/PNC composite a potential candidate material as a SIBs anode for large-scale preparation and application in the future.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H.M. Zhang, Y.X. Huang, H. Ming, G.P. Cao, W.F. Zhang, J. Ming, and R.J. Chen, Recent advances in nanostructured carbon for sodium-ion batteries. J. Mater. Chem. A 8, 1604 (2020).CrossRef H.M. Zhang, Y.X. Huang, H. Ming, G.P. Cao, W.F. Zhang, J. Ming, and R.J. Chen, Recent advances in nanostructured carbon for sodium-ion batteries. J. Mater. Chem. A 8, 1604 (2020).CrossRef
2.
go back to reference Q.D. Wang, C.L. Zhao, Y.X. Lu, Y.M. Li, Y.H. Zheng, Y.R. Qi, X.H. Rong, L.W. Jiang, X.G. Qi, Y.J. Shao, D. Pan, B.H. Li, Y.S. Hu, and L.Q. Chen, Advanced nanostructured anode materials for sodium-ion batteries. Small 13, 1701835 (2017).CrossRef Q.D. Wang, C.L. Zhao, Y.X. Lu, Y.M. Li, Y.H. Zheng, Y.R. Qi, X.H. Rong, L.W. Jiang, X.G. Qi, Y.J. Shao, D. Pan, B.H. Li, Y.S. Hu, and L.Q. Chen, Advanced nanostructured anode materials for sodium-ion batteries. Small 13, 1701835 (2017).CrossRef
3.
go back to reference H.S. Hirsh, Y.X. Li, D.H. Tan, M.H. Zhang, E.Y. Zhao, and Y.S. Meng, Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10, 2001274 (2020).CrossRef H.S. Hirsh, Y.X. Li, D.H. Tan, M.H. Zhang, E.Y. Zhao, and Y.S. Meng, Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10, 2001274 (2020).CrossRef
4.
go back to reference T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, and M.I. Shahzad, Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020).CrossRef T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, and M.I. Shahzad, Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020).CrossRef
5.
go back to reference L.B. Fang, N. Bahlawane, W.P. Sun, H.G. Pan, B.B. Xu, M. Yan, and Y.Z. Jiang, Conversion-alloying anode materials for sodium ion batteries. Small 17, 2101137 (2021).CrossRef L.B. Fang, N. Bahlawane, W.P. Sun, H.G. Pan, B.B. Xu, M. Yan, and Y.Z. Jiang, Conversion-alloying anode materials for sodium ion batteries. Small 17, 2101137 (2021).CrossRef
6.
go back to reference J.F. Mao, C. Ye, S.L. Zhang, F.X. Xie, R. Zeng, K. Davey, Z.P. Guo, and S.Z. Qiao, Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy Environ. Sci. 15, 2732 (2022).CrossRef J.F. Mao, C. Ye, S.L. Zhang, F.X. Xie, R. Zeng, K. Davey, Z.P. Guo, and S.Z. Qiao, Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy Environ. Sci. 15, 2732 (2022).CrossRef
7.
go back to reference J.Y. Hwang, S.T. Myung, and Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017).CrossRef J.Y. Hwang, S.T. Myung, and Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017).CrossRef
8.
go back to reference C. Wu, S.X. Dou, and Y. Yu, The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018).CrossRef C. Wu, S.X. Dou, and Y. Yu, The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14, 1703671 (2018).CrossRef
9.
go back to reference C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).CrossRef C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).CrossRef
10.
go back to reference T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022). T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).
11.
go back to reference H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, and X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017).CrossRef H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, and X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017).CrossRef
12.
go back to reference Z. Hu, Q.N. Liu, S.L. Chou, and S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 1700606 (2017). CrossRef Z. Hu, Q.N. Liu, S.L. Chou, and S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 1700606 (2017). CrossRef
13.
go back to reference Y.J. Fang, D.Y. Luan, and X.W. Lou, Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 32, 2002976 (2020).CrossRef Y.J. Fang, D.Y. Luan, and X.W. Lou, Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 32, 2002976 (2020).CrossRef
14.
go back to reference F.B. Wang, G.D. Li, X.G. Meng, Y.X. Li, Q.F. Gao, Y.Q. Xu, and W.F. Cui, FeS2 nanosheets encapsulated in 3D porous carbon spheres for excellent Na storage in sodium-ion batteries. Inorg. Chem. Front. 5, 2462 (2018).CrossRef F.B. Wang, G.D. Li, X.G. Meng, Y.X. Li, Q.F. Gao, Y.Q. Xu, and W.F. Cui, FeS2 nanosheets encapsulated in 3D porous carbon spheres for excellent Na storage in sodium-ion batteries. Inorg. Chem. Front. 5, 2462 (2018).CrossRef
15.
go back to reference J.W. Je, H.J. Lim, H.W. Jung, and S.O. Kim, Ultrafast and ultrastable heteroarchitectured porous nanocube anode composed of CuS/FeS2 embedded in nitrogen-doped carbon for use in sodium-ion batteries. Small 18, 2105310 (2022).CrossRef J.W. Je, H.J. Lim, H.W. Jung, and S.O. Kim, Ultrafast and ultrastable heteroarchitectured porous nanocube anode composed of CuS/FeS2 embedded in nitrogen-doped carbon for use in sodium-ion batteries. Small 18, 2105310 (2022).CrossRef
16.
go back to reference S.H. Qi, B.L. Xu, V.T. Tiong, J. Hu, and J.M. Ma, Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem. Eng. J. 379, 122261 (2020).CrossRef S.H. Qi, B.L. Xu, V.T. Tiong, J. Hu, and J.M. Ma, Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem. Eng. J. 379, 122261 (2020).CrossRef
17.
go back to reference H.T. Tan, D. Chen, X.H. Rui, and Y. Yu, Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv. Funct. Mater. 29, 1808745 (2019).CrossRef H.T. Tan, D. Chen, X.H. Rui, and Y. Yu, Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv. Funct. Mater. 29, 1808745 (2019).CrossRef
18.
go back to reference Q.F. Li, D. Yang, H.L. Chen, X. Lv, Y. Jiang, Y.Z. Feng, X.H. Rui, and Y. Yu, Advances in metal phosphides for sodium-ion batteries. SusMat 1, 359 (2021).CrossRef Q.F. Li, D. Yang, H.L. Chen, X. Lv, Y. Jiang, Y.Z. Feng, X.H. Rui, and Y. Yu, Advances in metal phosphides for sodium-ion batteries. SusMat 1, 359 (2021).CrossRef
19.
go back to reference L.B. Yao, W.W. Xia, H.T. Zhang, H. Dong, H.L. Xin, P. Gao, R. Cai, C.Y. Zhu, Y. Wu, M. Nie, S.Y. Lei, L.T. Sun, and F. Xu, In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano Energy 60, 424 (2019).CrossRef L.B. Yao, W.W. Xia, H.T. Zhang, H. Dong, H.L. Xin, P. Gao, R. Cai, C.Y. Zhu, Y. Wu, M. Nie, S.Y. Lei, L.T. Sun, and F. Xu, In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano Energy 60, 424 (2019).CrossRef
20.
go back to reference S. Kandula, B.S. Youn, J.H. Cho, H.K. Lim, and J.G. Son, FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439, 135678 (2022).CrossRef S. Kandula, B.S. Youn, J.H. Cho, H.K. Lim, and J.G. Son, FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439, 135678 (2022).CrossRef
21.
go back to reference Y. Zhang, Q. Zhou, J.X. Zhu, Q.Y. Yan, S.X. Dou, and W.P. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27, 1702317 (2017).CrossRef Y. Zhang, Q. Zhou, J.X. Zhu, Q.Y. Yan, S.X. Dou, and W.P. Sun, Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27, 1702317 (2017).CrossRef
22.
go back to reference S.H. Qi, L.W. Mi, K.M. Song, K.W. Yang, J.M. Ma, X.M. Feng, J.M. Zhang, and W.H. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123, 2775 (2019).CrossRef S.H. Qi, L.W. Mi, K.M. Song, K.W. Yang, J.M. Ma, X.M. Feng, J.M. Zhang, and W.H. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123, 2775 (2019).CrossRef
23.
go back to reference J. Huang, J.Z. Zhang, F.C. Han, J. Cai, Y.X. Chen, and H.B. Liu, An in situ solid-electrolyte interphase strategy to inhibit polysulfide shuttles of FeS2-based cathode material. Chem. Eng. J. 427, 131765 (2022).CrossRef J. Huang, J.Z. Zhang, F.C. Han, J. Cai, Y.X. Chen, and H.B. Liu, An in situ solid-electrolyte interphase strategy to inhibit polysulfide shuttles of FeS2-based cathode material. Chem. Eng. J. 427, 131765 (2022).CrossRef
24.
go back to reference J.Q. Deng, W.B. Luo, S.L. Chou, H.K. Liu, and S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8, 1701428 (2018).CrossRef J.Q. Deng, W.B. Luo, S.L. Chou, H.K. Liu, and S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8, 1701428 (2018).CrossRef
25.
go back to reference Y.Y. Chen, X.D. Hu, B. Evanko, X.H. Sun, X. Li, T.Y. Hou, S. Cai, C.M. Zheng, W.B. Hu, and G.D. Stucky, High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46, 117 (2018).CrossRef Y.Y. Chen, X.D. Hu, B. Evanko, X.H. Sun, X. Li, T.Y. Hou, S. Cai, C.M. Zheng, W.B. Hu, and G.D. Stucky, High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46, 117 (2018).CrossRef
26.
go back to reference L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, and Z.P. Sun, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries. J. Power Sources 491, 229627 (2021).CrossRef L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, and Z.P. Sun, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries. J. Power Sources 491, 229627 (2021).CrossRef
27.
go back to reference J.C. Ren, Y.L. Huang, H. Zhu, B.H. Zhang, H.K. Zhu, S.H. Shen, G.Q. Tan, F. Wu, H. He, S. Lan, X.H. Xia, and Q. Liu, Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2, 176 (2020).CrossRef J.C. Ren, Y.L. Huang, H. Zhu, B.H. Zhang, H.K. Zhu, S.H. Shen, G.Q. Tan, F. Wu, H. He, S. Lan, X.H. Xia, and Q. Liu, Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2, 176 (2020).CrossRef
28.
go back to reference Z.M. Man, P. Li, D. Zhou, Y.Z. Wang, X.H. Liang, R. Zang, P.X. Li, Y.Q. Zuo, Y.M. Lam, and G.X. Wang, Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20, 3769 (2020).CrossRef Z.M. Man, P. Li, D. Zhou, Y.Z. Wang, X.H. Liang, R. Zang, P.X. Li, Y.Q. Zuo, Y.M. Lam, and G.X. Wang, Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20, 3769 (2020).CrossRef
29.
go back to reference K. Zhang, M. Park, L. Zhou, G.H. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, and Y.M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 12822 (2016).CrossRef K. Zhang, M. Park, L. Zhou, G.H. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, and Y.M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 12822 (2016).CrossRef
30.
go back to reference J. Yuan, B.H. Qu, Q.F. Zhang, W. He, Q.S. Xie, and D.L. Peng, Ion reservoir enabled by hierarchical bimetallic sulfides nanocages toward highly effective sodium storage. Small 16, 1907261 (2020).CrossRef J. Yuan, B.H. Qu, Q.F. Zhang, W. He, Q.S. Xie, and D.L. Peng, Ion reservoir enabled by hierarchical bimetallic sulfides nanocages toward highly effective sodium storage. Small 16, 1907261 (2020).CrossRef
31.
go back to reference L. Cao, X.W. Gao, B. Zhang, X. Ou, J.F. Zhang, and W.B. Luo, Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610 (2020).CrossRef L. Cao, X.W. Gao, B. Zhang, X. Ou, J.F. Zhang, and W.B. Luo, Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610 (2020).CrossRef
32.
go back to reference W.H. Chen, S.H. Qi, M.M. Yu, X.M. Feng, S.Z. Cui, J.M. Zhang, and L.W. Mi, Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochim. Acta 230, 1 (2017).CrossRef W.H. Chen, S.H. Qi, M.M. Yu, X.M. Feng, S.Z. Cui, J.M. Zhang, and L.W. Mi, Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochim. Acta 230, 1 (2017).CrossRef
33.
go back to reference X.Y. Jiang, T. Cao, F. Zhang, J.H. Zhang, K. Qin, H.M. Liu, and Y.Y. Xia, Nitrogen-doped porous carbon framework supports ultrafine FeS2 nanoparticles as advanced performance anode materials for sodium-ion batteries. ACS Appl. Energy Mater. 4, 6874 (2021).CrossRef X.Y. Jiang, T. Cao, F. Zhang, J.H. Zhang, K. Qin, H.M. Liu, and Y.Y. Xia, Nitrogen-doped porous carbon framework supports ultrafine FeS2 nanoparticles as advanced performance anode materials for sodium-ion batteries. ACS Appl. Energy Mater. 4, 6874 (2021).CrossRef
34.
go back to reference Y. Ding, P.Y. Zeng, and Z. Fang, Spindle-shaped FeS2 enwrapped with N/S Co-doped carbon for high-rate sodium storage. J. Power Sources 450, 227688 (2020).CrossRef Y. Ding, P.Y. Zeng, and Z. Fang, Spindle-shaped FeS2 enwrapped with N/S Co-doped carbon for high-rate sodium storage. J. Power Sources 450, 227688 (2020).CrossRef
35.
go back to reference P. Jing, Q. Wang, B.Y. Wang, X. Gao, Y. Zhang, and H. Wu, Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159, 366 (2020).CrossRef P. Jing, Q. Wang, B.Y. Wang, X. Gao, Y. Zhang, and H. Wu, Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159, 366 (2020).CrossRef
36.
go back to reference X.G. Liu, Y.J. Li, L. Zeng, X. Li, N. Chen, S.B. Bai, H.N. He, Q. Wang, and C.H. Zhang, A review on mechanochemistry: approaching advanced energy materials with greener force. Adv. Mater. 34, 2108327 (2022).CrossRef X.G. Liu, Y.J. Li, L. Zeng, X. Li, N. Chen, S.B. Bai, H.N. He, Q. Wang, and C.H. Zhang, A review on mechanochemistry: approaching advanced energy materials with greener force. Adv. Mater. 34, 2108327 (2022).CrossRef
37.
go back to reference B. Szczęśniak, S. Borysiuk, J. Choma, and M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7, 1457 (2020).CrossRef B. Szczęśniak, S. Borysiuk, J. Choma, and M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7, 1457 (2020).CrossRef
38.
go back to reference H.H. Li, R.Y. Xu, Y.P. Wang, B.B. Qian, H.B. Wang, L. Chen, H.B. Jiang, Y.L. Yang, and Y.Y. Xu, In situ synthesis of hierarchical mesoporous Fe3O4@C nanowires derived from coordination polymers for high-performance lithium-ion batteries. RSC Adv. 4, 51960 (2014).CrossRef H.H. Li, R.Y. Xu, Y.P. Wang, B.B. Qian, H.B. Wang, L. Chen, H.B. Jiang, Y.L. Yang, and Y.Y. Xu, In situ synthesis of hierarchical mesoporous Fe3O4@C nanowires derived from coordination polymers for high-performance lithium-ion batteries. RSC Adv. 4, 51960 (2014).CrossRef
39.
go back to reference K. Wieczorek-Ciurowa and A. Kozak, The thermal decomposition of Fe (NO3)3·9H2O. J. Therm. Anal. Calorim. 58, 647 (1999).CrossRef K. Wieczorek-Ciurowa and A. Kozak, The thermal decomposition of Fe (NO3)3·9H2O. J. Therm. Anal. Calorim. 58, 647 (1999).CrossRef
40.
go back to reference W.H. Chen, S.H. Qi, L.Q. Guan, C.T. Liu, S.Z. Cui, C.Y. Shen, and L.W. Mi, Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J. Mater. Chem. A 5, 5332 (2017).CrossRef W.H. Chen, S.H. Qi, L.Q. Guan, C.T. Liu, S.Z. Cui, C.Y. Shen, and L.W. Mi, Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J. Mater. Chem. A 5, 5332 (2017).CrossRef
41.
go back to reference Q. Li, D.X. Yuan, X.X. Wang, H.J. Xue, F. Liang, D.M. Yin, and L.M. Wang, Facile synthesis of metal disulfides nanoparticles encapsulated by amorphous carbon composites as high-performance electrode materials for lithium storage. J. Alloys Compd. 773, 97 (2019).CrossRef Q. Li, D.X. Yuan, X.X. Wang, H.J. Xue, F. Liang, D.M. Yin, and L.M. Wang, Facile synthesis of metal disulfides nanoparticles encapsulated by amorphous carbon composites as high-performance electrode materials for lithium storage. J. Alloys Compd. 773, 97 (2019).CrossRef
42.
go back to reference C.Z. Zhang, D.H. Wei, F. Wang, G.H. Zhang, J.F. Duan, F. Han, H.G. Duan, and J.S. Liu, Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 53, 26 (2021).CrossRef C.Z. Zhang, D.H. Wei, F. Wang, G.H. Zhang, J.F. Duan, F. Han, H.G. Duan, and J.S. Liu, Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 53, 26 (2021).CrossRef
43.
go back to reference R. Zang, P.X. Li, X. Guo, Z.M. Man, S.T. Zhang, C.Y. Wang, and G.X. Wang, Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 7, 14051 (2019).CrossRef R. Zang, P.X. Li, X. Guo, Z.M. Man, S.T. Zhang, C.Y. Wang, and G.X. Wang, Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 7, 14051 (2019).CrossRef
44.
go back to reference W.H. Chen, X.X. Zhang, L.W. Mi, C.T. Liu, J.M. Zhang, S.Z. Cui, X.M. Feng, Y.L. Cao, and C.Y. Shen, High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31, 1806664 (2019).CrossRef W.H. Chen, X.X. Zhang, L.W. Mi, C.T. Liu, J.M. Zhang, S.Z. Cui, X.M. Feng, Y.L. Cao, and C.Y. Shen, High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31, 1806664 (2019).CrossRef
45.
go back to reference S. Kandula, B.S. Youn, J. Cho, H.-K. Lim, and J.G. Son, FeS2@NC nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439, 135678 (2022).CrossRef S. Kandula, B.S. Youn, J. Cho, H.-K. Lim, and J.G. Son, FeS2@NC nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439, 135678 (2022).CrossRef
46.
go back to reference T.Y. Hou, S.Y. Yue, X.H. Sun, A.R. Fan, Y.Y. Chen, M.J. Wang, S. Cai, C.M. Zheng, B. Liao, and J. Zhao, Nitrogen-doped graphene coated FeS2 microsphere composite as high-performance anode materials for sodium-ion batteries enhanced by the chemical and structural synergistic effect. Appl. Surf. Sci. 505, 144633 (2020).CrossRef T.Y. Hou, S.Y. Yue, X.H. Sun, A.R. Fan, Y.Y. Chen, M.J. Wang, S. Cai, C.M. Zheng, B. Liao, and J. Zhao, Nitrogen-doped graphene coated FeS2 microsphere composite as high-performance anode materials for sodium-ion batteries enhanced by the chemical and structural synergistic effect. Appl. Surf. Sci. 505, 144633 (2020).CrossRef
47.
go back to reference R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, and A. Matsuda, Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47 (2020).CrossRef R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, and A. Matsuda, Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47 (2020).CrossRef
48.
go back to reference M. Shao, Y.Y. Cheng, T. Zhang, S. Li, W.N. Zhang, B. Zheng, J.S. Wu, W.W. Xiong, F.W. Huo, and J. Lu, Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Appl. Mater. Interfaces 10, 33097 (2018).CrossRef M. Shao, Y.Y. Cheng, T. Zhang, S. Li, W.N. Zhang, B. Zheng, J.S. Wu, W.W. Xiong, F.W. Huo, and J. Lu, Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Appl. Mater. Interfaces 10, 33097 (2018).CrossRef
49.
go back to reference Y.F. Peng, R. Zhang, B.B. Fan, W.J. Li, Z. Chen, H. Liu, P. Gao, S.B. Ni, J.L. Liu, and X.H. Chen, Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16, 2003724 (2020).CrossRef Y.F. Peng, R. Zhang, B.B. Fan, W.J. Li, Z. Chen, H. Liu, P. Gao, S.B. Ni, J.L. Liu, and X.H. Chen, Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16, 2003724 (2020).CrossRef
50.
go back to reference W.S. Weng, J.Y. Xu, C.L. Lai, Z.H. Xu, Y.C. Du, J. Lin, and X.S. Zhou, Uniform yolk-shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali metal ions. J. Alloys Compd. 817, 152732 (2020).CrossRef W.S. Weng, J.Y. Xu, C.L. Lai, Z.H. Xu, Y.C. Du, J. Lin, and X.S. Zhou, Uniform yolk-shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali metal ions. J. Alloys Compd. 817, 152732 (2020).CrossRef
51.
go back to reference L.Y. Yao, B.W. Wang, Y.C. Yang, X. Chen, J.H. Hu, D. Yang, and A.G. Dong, In situ confined-synthesis of mesoporous FeS2@C superparticles and their enhanced sodium-ion storage properties. Chem. Commun. 55, 1229 (2019).CrossRef L.Y. Yao, B.W. Wang, Y.C. Yang, X. Chen, J.H. Hu, D. Yang, and A.G. Dong, In situ confined-synthesis of mesoporous FeS2@C superparticles and their enhanced sodium-ion storage properties. Chem. Commun. 55, 1229 (2019).CrossRef
52.
go back to reference F. Wang, W.L. Zhang, H.H. Zhou, H. Chen, Z.Y. Huang, Z.H. Yan, R.J. Jiang, C.Q. Wang, Z. Tan, and Y.F. Kuang, Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem. Eng. J. 380, 122549 (2020).CrossRef F. Wang, W.L. Zhang, H.H. Zhou, H. Chen, Z.Y. Huang, Z.H. Yan, R.J. Jiang, C.Q. Wang, Z. Tan, and Y.F. Kuang, Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem. Eng. J. 380, 122549 (2020).CrossRef
53.
go back to reference R.D. Hu, H.G. Zhao, J.L. Zhang, Q.H. Liang, Y.N. Wang, B.L. Guo, R. Dangol, Y. Zheng, Q.Y. Yan, and J.W. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion-sulfurization process for high-capacity sodium-ion batteries. Nanoscale 11, 178 (2019).CrossRef R.D. Hu, H.G. Zhao, J.L. Zhang, Q.H. Liang, Y.N. Wang, B.L. Guo, R. Dangol, Y. Zheng, Q.Y. Yan, and J.W. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion-sulfurization process for high-capacity sodium-ion batteries. Nanoscale 11, 178 (2019).CrossRef
54.
go back to reference Z.X. Lu, Y.J. Zhai, N.N. Wang, Y.H. Zhang, P. Xue, M.Q. Guo, B. Tang, D. Huang, W.X. Wang, Z.C. Bai, and S.X. Dou, FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem. Eng. J. 380, 122455 (2020).CrossRef Z.X. Lu, Y.J. Zhai, N.N. Wang, Y.H. Zhang, P. Xue, M.Q. Guo, B. Tang, D. Huang, W.X. Wang, Z.C. Bai, and S.X. Dou, FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem. Eng. J. 380, 122455 (2020).CrossRef
55.
go back to reference D. Xie, X.H. Xia, W.J. Tang, Y. Zhong, Y.D. Wang, D.H. Wang, X.L. Wang, and J.P. Tu, Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage. J. Mater. Chem. A 5, 7578 (2017).CrossRef D. Xie, X.H. Xia, W.J. Tang, Y. Zhong, Y.D. Wang, D.H. Wang, X.L. Wang, and J.P. Tu, Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage. J. Mater. Chem. A 5, 7578 (2017).CrossRef
56.
go back to reference Z.L. Hu, H.Q. Cui, Y.R. Zhu, G.T. Lei, and Z.H. Li, Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. J. Power Sources 536, 231438 (2022).CrossRef Z.L. Hu, H.Q. Cui, Y.R. Zhu, G.T. Lei, and Z.H. Li, Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. J. Power Sources 536, 231438 (2022).CrossRef
57.
go back to reference P. Lu, Y. Sun, H.F. Xiang, X. Liang, and Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8, 1702434 (2018).CrossRef P. Lu, Y. Sun, H.F. Xiang, X. Liang, and Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8, 1702434 (2018).CrossRef
58.
go back to reference Q.Q. Sun, Y. Wen, S.Q. Jiang, X.Y. Li, Z.J. Yao, T.C. Liu, S.H. Shen, and Y.F. Yang, Coupling of NiSe2 with MoSe2 confined in nitrogen-doped carbon spheres as anodes for fast and durable sodium storage. J. Alloys Compd. 944, 169157 (2023).CrossRef Q.Q. Sun, Y. Wen, S.Q. Jiang, X.Y. Li, Z.J. Yao, T.C. Liu, S.H. Shen, and Y.F. Yang, Coupling of NiSe2 with MoSe2 confined in nitrogen-doped carbon spheres as anodes for fast and durable sodium storage. J. Alloys Compd. 944, 169157 (2023).CrossRef
59.
go back to reference P.J. Wang, J.J. Huang, J. Zhang, L. Wang, P.H. Sun, Y.F. Yang, and Z.J. Yao, Coupling hierarchical iron cobalt selenide arrays with N-doped carbon as advanced anodes for sodium ion storage. J. Mater. Chem. A 9, 7248 (2021).CrossRef P.J. Wang, J.J. Huang, J. Zhang, L. Wang, P.H. Sun, Y.F. Yang, and Z.J. Yao, Coupling hierarchical iron cobalt selenide arrays with N-doped carbon as advanced anodes for sodium ion storage. J. Mater. Chem. A 9, 7248 (2021).CrossRef
60.
go back to reference M.X. Lu, C. Liu, X.Y. Li, S.Q. Jiang, Z.J. Yao, T.C. Liu, and Y.F. Yang, Mixed phase Mo-doped CoSe2 nanosheets encapsulated in N-doped carbon shell with boosted sodium storage performance. J. Alloys Compd. 922, 166265 (2022).CrossRef M.X. Lu, C. Liu, X.Y. Li, S.Q. Jiang, Z.J. Yao, T.C. Liu, and Y.F. Yang, Mixed phase Mo-doped CoSe2 nanosheets encapsulated in N-doped carbon shell with boosted sodium storage performance. J. Alloys Compd. 922, 166265 (2022).CrossRef
61.
go back to reference C. Liu, M.X. Lu, Q.Q. Sun, S.Q. Jiang, X.Y. Li, Z.J. Yao, T.C. Liu, Z.Z. Ye, and Y.F. Yang, NiSe2 nanoparticles decorated on carbon nanosheet arrays as anodes for sodium storage. ACS Appl. Nano Mater. 5, 13498 (2022).CrossRef C. Liu, M.X. Lu, Q.Q. Sun, S.Q. Jiang, X.Y. Li, Z.J. Yao, T.C. Liu, Z.Z. Ye, and Y.F. Yang, NiSe2 nanoparticles decorated on carbon nanosheet arrays as anodes for sodium storage. ACS Appl. Nano Mater. 5, 13498 (2022).CrossRef
62.
go back to reference C.W. Li, J.C. Hou, J.Y. Zhang, X.Y. Li, S.Q. Jiang, G.Q. Zhang, Z.J. Yao, T.C. Liu, S.H. Shen, Z.Q. Liu, X.H. Xia, J. Xiong, and Y.F. Yang, Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China: Chem. 65, 1420 (2022).CrossRef C.W. Li, J.C. Hou, J.Y. Zhang, X.Y. Li, S.Q. Jiang, G.Q. Zhang, Z.J. Yao, T.C. Liu, S.H. Shen, Z.Q. Liu, X.H. Xia, J. Xiong, and Y.F. Yang, Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China: Chem. 65, 1420 (2022).CrossRef
63.
go back to reference J.Y. Zhang, C.W. Li, J.C. Hou, J. Zhang, L. Wang, P.J. Wang, Z.J. Yao, and Y.F. Yang, Bimetallic copper tin sulfide nanosheet arrays encapsulated in nitrogen-doped carbon shells for boosted sodium storage performance. ACS Appl. Energy Mater. 4, 8572 (2021).CrossRef J.Y. Zhang, C.W. Li, J.C. Hou, J. Zhang, L. Wang, P.J. Wang, Z.J. Yao, and Y.F. Yang, Bimetallic copper tin sulfide nanosheet arrays encapsulated in nitrogen-doped carbon shells for boosted sodium storage performance. ACS Appl. Energy Mater. 4, 8572 (2021).CrossRef
64.
go back to reference S.A. He, Z. Cui, Q. Liu, G.J. He, D.J.L. Brett, W. Luo, R.J. Zou, and M.F. Zhu, Enhancing the electrochemical performance of sodium-ion batteries by building optimized NiS2/NiSe2 heterostructures. Small 17, 2104186 (2021).CrossRef S.A. He, Z. Cui, Q. Liu, G.J. He, D.J.L. Brett, W. Luo, R.J. Zou, and M.F. Zhu, Enhancing the electrochemical performance of sodium-ion batteries by building optimized NiS2/NiSe2 heterostructures. Small 17, 2104186 (2021).CrossRef
65.
go back to reference D. Luo, J. Xu, Q.B. Guo, L.Z. Fang, X.H. Zhu, Q.Y. Xia, and H. Xia, Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 28, 1805371 (2018).CrossRef D. Luo, J. Xu, Q.B. Guo, L.Z. Fang, X.H. Zhu, Q.Y. Xia, and H. Xia, Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 28, 1805371 (2018).CrossRef
Metadata
Title
Construction of Small FeS2 Nanoparticles Embedded in Porous Nitrogen-Doped Carbon with Enhanced Sodium Ion Storage Properties
Authors
Yi Wen
Qianqian Sun
Jinyi Gao
Jiajia Hu
Zhujun Yao
Tiancun Liu
Shenghui Shen
Yefeng Yang
Publication date
01-06-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10503-w

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue

Topical Collection: 19th Conference on Defects (DRIP XIX)

Extended Defects in SiC: Selective Etching and Raman Study