Skip to main content
Top

2024 | OriginalPaper | Chapter

Design of Compact Patch Antenna for TPMS Applications

Authors : MD. Ataur Safi Rahaman Laskar, Khan Masood Parvez, SK. Moinul Haque

Published in: Evolution in Signal Processing and Telecommunication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present and analyze the design process for a compact, low-profile patch antenna on an FR-4 glass epoxy microwave substrate. The Tire Pressure Monitoring System, or TPMS, is a system that monitors tire pressure for each individual wheel on a vehicle to ensure optimal tire performance and safety. The system has significantly reduced the number of accidents caused by tire deflation, resulting in the saving of hundreds of lives and billions of dollars. The antenna is the main component that sends the tire pressure information to the driver's dashboard, and the driver can monitor the tire pressure constantly through wireless networks. Through a compact antenna, the driver is aware of the pressure on a moving tire. In this paper, a compact microstrip patch antenna is proposed for TPMS applications. The simulated resonant frequency of this antenna is 433.86 MHz, which is applicable for the European Union standard TPMS RF band. The corresponding bandwidth (10 dB) of this antenna is 10.09%. This antenna's reduction in resonant frequency is 81.21% in comparison with the reference antenna. Design details of each proposed topology and the results of both simulations and experiments are outlined and discussed with a parametric study. The radiation characteristics, input impedance, and efficiency are also depicted with a relatively stable measured response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ghosh B, Haque SKM, Mitra D, Ghosh S (2010) A loop loading technique for the miniaturization of non-planar and planar antennas’. IEEE Trans Antennas Propag 58(6):2116–2121CrossRef Ghosh B, Haque SKM, Mitra D, Ghosh S (2010) A loop loading technique for the miniaturization of non-planar and planar antennas’. IEEE Trans Antennas Propag 58(6):2116–2121CrossRef
2.
go back to reference Haque SKM, Parvez KM (2017) Slot antenna miniaturization using Slit ,Strip and Loop loading techniques. IEEE Trans Antennas Propag 65(5):2215–2221 Haque SKM, Parvez KM (2017) Slot antenna miniaturization using Slit ,Strip and Loop loading techniques. IEEE Trans Antennas Propag 65(5):2215–2221
3.
go back to reference He S, Xie J (2008) A novel compact printed antenna used in TPMS or other complex and variable environments. IEEE Trans Antennas Propag 56(1):24–30CrossRef He S, Xie J (2008) A novel compact printed antenna used in TPMS or other complex and variable environments. IEEE Trans Antennas Propag 56(1):24–30CrossRef
4.
go back to reference Zhang Z-Y, Fu G, Zuo S-L (2009) A miniature sleeve meander antenna for TPMS application. J Electromagn Waves Appl 23(14–15):1835–1842CrossRef Zhang Z-Y, Fu G, Zuo S-L (2009) A miniature sleeve meander antenna for TPMS application. J Electromagn Waves Appl 23(14–15):1835–1842CrossRef
5.
go back to reference Zeng H, Hubing T (2012) Investigation of loop and whip antennas in tire pressure monitoring systems. IEEE Vehic Technol Conf (VTC Fall) 2012:1–5 Zeng H, Hubing T (2012) Investigation of loop and whip antennas in tire pressure monitoring systems. IEEE Vehic Technol Conf (VTC Fall) 2012:1–5
6.
go back to reference Peng C-M (2014) Compact antenna design for TPMS receiver in variable environment applications. IEICE Commun Express 3(7):223–228CrossRef Peng C-M (2014) Compact antenna design for TPMS receiver in variable environment applications. IEICE Commun Express 3(7):223–228CrossRef
7.
go back to reference Duc PT, Dinh Thuyen H (2017) Proposal structure of very small helical antenna using parasitic element for TPMS. In: 2017 7th ınternational conference on ıntegrated circuits, design, and verification (ICDV), pp 127–132 Duc PT, Dinh Thuyen H (2017) Proposal structure of very small helical antenna using parasitic element for TPMS. In: 2017 7th ınternational conference on ıntegrated circuits, design, and verification (ICDV), pp 127–132
8.
go back to reference Lasser G, Mecklenbräuker CF (2012) Vehicular low-profile dual-band antenna for advanced tyre monitoring systems. In: 2012 IEEE 23rd ınternational symposium on personal, ındoor and mobile radio communications—(PIMRC), pp 1785–1790 Lasser G, Mecklenbräuker CF (2012) Vehicular low-profile dual-band antenna for advanced tyre monitoring systems. In: 2012 IEEE 23rd ınternational symposium on personal, ındoor and mobile radio communications—(PIMRC), pp 1785–1790
9.
go back to reference Hirasawa K, Haneishi M (1992) Analysis, design, and measurement of small and low profile antennas. Artech House, London Hirasawa K, Haneishi M (1992) Analysis, design, and measurement of small and low profile antennas. Artech House, London
10.
go back to reference Dey S, Mittra R (1996) Compact microstrip patch antenna. Microwave Opt Technol Lett 13:12–14CrossRef Dey S, Mittra R (1996) Compact microstrip patch antenna. Microwave Opt Technol Lett 13:12–14CrossRef
11.
go back to reference Kuo JS, Wong KL (2000) A dual-frequency L-shaped patch antenna. Microwave Opt Technol Lett 27 Kuo JS, Wong KL (2000) A dual-frequency L-shaped patch antenna. Microwave Opt Technol Lett 27
12.
go back to reference Song HJ, Hsu HP, Wiese R, Talty T (2004) Modeling signal strength range of TPMS in automobiles. In: IEEE antennas propagation society symposium, vol 3, pp 3167–3170 Song HJ, Hsu HP, Wiese R, Talty T (2004) Modeling signal strength range of TPMS in automobiles. In: IEEE antennas propagation society symposium, vol 3, pp 3167–3170
13.
go back to reference Brzeska M, Chakam G (2007) RF modelling and characterization of a tyre pressure monitoring system. In: The second European conference on antennas and propagation, EuCAP 2007, pp 1–6 Brzeska M, Chakam G (2007) RF modelling and characterization of a tyre pressure monitoring system. In: The second European conference on antennas and propagation, EuCAP 2007, pp 1–6
14.
go back to reference Zeng H, Hubing TH (2012) The effect of the vehicle body on EM propagation in tire pressure monitoring systems. IEEE Trans Antennas Propag 60(8):3941–3949CrossRef Zeng H, Hubing TH (2012) The effect of the vehicle body on EM propagation in tire pressure monitoring systems. IEEE Trans Antennas Propag 60(8):3941–3949CrossRef
15.
go back to reference Rütschlin M, Tallini D (2017) Simulation for antenna design and placement in vehicles. Antenn Propag RF Technol Transp Autonom Platforms 2017:1–5 Rütschlin M, Tallini D (2017) Simulation for antenna design and placement in vehicles. Antenn Propag RF Technol Transp Autonom Platforms 2017:1–5
16.
go back to reference Farahbakhsh A, Zarifi D (2020) Miniaturization of patch antennas by curved edges. AEU Int J Electron Commun 117:153125CrossRef Farahbakhsh A, Zarifi D (2020) Miniaturization of patch antennas by curved edges. AEU Int J Electron Commun 117:153125CrossRef
17.
go back to reference Parvez KM, Ali T, Maiti S (2022) Modified patch and ground plane geometry with reduced resonant frequency. Progr Electromagn Res C 119:135–144CrossRef Parvez KM, Ali T, Maiti S (2022) Modified patch and ground plane geometry with reduced resonant frequency. Progr Electromagn Res C 119:135–144CrossRef
18.
go back to reference Laskar MDASR, Parvez KM, Haque SKM (2023) Design of meandered slot antenna for tire pressure monitoring system. In: Proceedings of second ınternational conference on computational electronics for wireless communications: ICCWC 2022, pp 97–107 Laskar MDASR, Parvez KM, Haque SKM (2023) Design of meandered slot antenna for tire pressure monitoring system. In: Proceedings of second ınternational conference on computational electronics for wireless communications: ICCWC 2022, pp 97–107
19.
go back to reference Ansoft Corporation (2018) Pittsburgh, PA, HFSS ver. 19.2 Ansoft Corporation (2018) Pittsburgh, PA, HFSS ver. 19.2
20.
go back to reference Pozar DM, Kaufman B (1988) Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans Antennas Propag 36:136–139CrossRef Pozar DM, Kaufman B (1988) Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans Antennas Propag 36:136–139CrossRef
Metadata
Title
Design of Compact Patch Antenna for TPMS Applications
Authors
MD. Ataur Safi Rahaman Laskar
Khan Masood Parvez
SK. Moinul Haque
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0644-0_7