Skip to main content
Top

31-03-2024 | ORIGINAL PAPER

Development of commercially viable and high-performance upcycled plastic waste nanocomposites for automotive and electrical industry

Authors: Yasir Qayyum Gill, Faiqua Jabeen, Farhan Saeed, Muhammad Wasif, Zarq-Ullah Javed, Umer Mehmood

Published in: Polymer Bulletin

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Waste management has become a major concern due to the extensive use of commodity polymers. Nowadays, one of the most widely used commodity polymers is nonwoven PP. The extensive utilization of polypropylene produces a large amount of waste, making their upcycling and recycling the biggest challenge. This research aims to develop an economical nanocomposite by upcycling nonwoven waste for utilization in the automotive and electronic sectors. A two-step melt blending technique was used to prepare polypropylene waste/silica nanocomposites. The nanocomposites formed were characterized by their morphological, mechanical, thermal, rheological, chemical, and electrical properties. From the results, it was concluded that the optimum mechanical, thermal, and chemical resistance properties were achieved for PP-01 formulation showing a 9.95% increase in heat deflection temperature, a 27.57% decrease in the rate of burning, a 5.4% increase in shore D hardness, 26.09% increase in flexural strength, 11.6% increase in melt flow index, and 66.25% increase in solvent resistance as compared to waste polypropylene. At the same time, the best electrical results were obtained at 0.5 wt.% with a 5.36% increase in the breakdown strength. The resistance value increases from 4.67 × 1012 Ω to 2 × 1013 Ω. The overall research shows that optimum mechanical and thermal properties were achieved at 1 wt.% so that the PP-01 formulation can be used effectively for automotive applications. In contrast, maximum electrical resistance was achieved at the PP-0.5 formulation so that this formulation could be effectively used for electrical insulation applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yalcin I, Sadikoglu TG, Berkalp OB et al (2013) Utilization of various non-woven waste forms as reinforcement in polymeric composites. Text Res J 83:1551–1562CrossRef Yalcin I, Sadikoglu TG, Berkalp OB et al (2013) Utilization of various non-woven waste forms as reinforcement in polymeric composites. Text Res J 83:1551–1562CrossRef
4.
go back to reference Qayyum Gill Y, Khurshid M, Mehmood U, et al (2022) Upscale recycling of nonwoven polypropylene waste using a novel blending method. J Appl Polymer Sci 139(39) Qayyum Gill Y, Khurshid M, Mehmood U, et al (2022) Upscale recycling of nonwoven polypropylene waste using a novel blending method. J Appl Polymer Sci 139(39)
5.
go back to reference Lou C-W, Lin J-H, Su K-H (2005) Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites. Text Res J 75:390–394CrossRef Lou C-W, Lin J-H, Su K-H (2005) Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites. Text Res J 75:390–394CrossRef
6.
go back to reference Quintana-Gallardo A, Del Rey R, González-Conca S et al (2023) The Environmental Impacts of Disposable Nonwoven Fabrics during the COVID-19 Pandemic: Case Study on the Francesc de Borja Hospital. Polymers 15:1130PubMedPubMedCentralCrossRef Quintana-Gallardo A, Del Rey R, González-Conca S et al (2023) The Environmental Impacts of Disposable Nonwoven Fabrics during the COVID-19 Pandemic: Case Study on the Francesc de Borja Hospital. Polymers 15:1130PubMedPubMedCentralCrossRef
7.
go back to reference Overcash M (2012) A comparison of reusable and disposable perioperative textiles: sustainability state-of-the-art 2012. Anesth Analg 114:1055–1066PubMedCrossRef Overcash M (2012) A comparison of reusable and disposable perioperative textiles: sustainability state-of-the-art 2012. Anesth Analg 114:1055–1066PubMedCrossRef
9.
10.
go back to reference Ramasamy R, Subramanian RB (2023) Recycling of disposable single-use face masks to mitigate microfiber pollution. Environ Sci Pollut Res 30:50938–50951CrossRef Ramasamy R, Subramanian RB (2023) Recycling of disposable single-use face masks to mitigate microfiber pollution. Environ Sci Pollut Res 30:50938–50951CrossRef
11.
go back to reference Prata JC, Silva AL, Walker TR et al (2020) COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol 54:7760–7765PubMedCrossRef Prata JC, Silva AL, Walker TR et al (2020) COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol 54:7760–7765PubMedCrossRef
12.
go back to reference Silva ALP, Prata JC, Duarte AC et al (2021) An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: pollution prevention and technological (Bio) remediation solutions. Chem Eng J 426:131201CrossRef Silva ALP, Prata JC, Duarte AC et al (2021) An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: pollution prevention and technological (Bio) remediation solutions. Chem Eng J 426:131201CrossRef
13.
go back to reference Lou CW, Lin C-M, Hsing W-H et al (2011) Manufacturing techniques and electrical properties of conductive fabrics with recycled polypropylene nonwoven selvage. Text Res J 81:1331–1343CrossRef Lou CW, Lin C-M, Hsing W-H et al (2011) Manufacturing techniques and electrical properties of conductive fabrics with recycled polypropylene nonwoven selvage. Text Res J 81:1331–1343CrossRef
14.
go back to reference Echeverria CA, Pahlevani F, Sahajwalla V (2020) Valorisation of discarded nonwoven polypropylene as potential matrix-phase for thermoplastic-lignocellulose hybrid material engineered for building applications. J Clean Prod 258:120730CrossRef Echeverria CA, Pahlevani F, Sahajwalla V (2020) Valorisation of discarded nonwoven polypropylene as potential matrix-phase for thermoplastic-lignocellulose hybrid material engineered for building applications. J Clean Prod 258:120730CrossRef
15.
go back to reference Nafady A, Albaqami MD and Alotaibi AM (2023) Recycled polypropylene waste as abundant source for antimicrobial, superhydrophobic and electroconductive nonwoven fabrics comprising polyaniline/silver nanoparticles. J Inorg Organ Polymers Mater 1–11 Nafady A, Albaqami MD and Alotaibi AM (2023) Recycled polypropylene waste as abundant source for antimicrobial, superhydrophobic and electroconductive nonwoven fabrics comprising polyaniline/silver nanoparticles. J Inorg Organ Polymers Mater 1–11
16.
go back to reference Singsatit P, Pimpan V (2009) Recycling of medical gown nonwoven fabric manufacturing waste as a filler for high density polyethylene. J Metals Mater Min 19 Singsatit P, Pimpan V (2009) Recycling of medical gown nonwoven fabric manufacturing waste as a filler for high density polyethylene. J Metals Mater Min 19
17.
18.
go back to reference Lin JH, Lin CM, Kuo CY, et al (2010) Manufacture technology of novel reinforcing composite geotextile made of recycled nonwoven selvages. In: Advanced materials research. Trans Tech Publ, pp 137–140 Lin JH, Lin CM, Kuo CY, et al (2010) Manufacture technology of novel reinforcing composite geotextile made of recycled nonwoven selvages. In: Advanced materials research. Trans Tech Publ, pp 137–140
19.
go back to reference Kansal H (2016) Experimental investigation of properties of polypropylene and non-woven spunbond fabric. IOSR J Polymer Text Eng 3:8–14 Kansal H (2016) Experimental investigation of properties of polypropylene and non-woven spunbond fabric. IOSR J Polymer Text Eng 3:8–14
20.
go back to reference Betiha MA, Moustafa YM, Mansour AS et al (2020) Nontoxic polyvinylpyrrolidone-propylmethacrylate-silica nanocomposite for efficient adsorption of lead, copper, and nickel cations from contaminated wastewater. J Mol Liquids 314:113656CrossRef Betiha MA, Moustafa YM, Mansour AS et al (2020) Nontoxic polyvinylpyrrolidone-propylmethacrylate-silica nanocomposite for efficient adsorption of lead, copper, and nickel cations from contaminated wastewater. J Mol Liquids 314:113656CrossRef
21.
go back to reference Cobley AJ, Mason TJ, Alarjah M et al (2011) The effect of ultrasound on the gold plating of silica nanoparticles for use in composite solders. Ultrason Sonochem 18(1):37–41PubMedCrossRef Cobley AJ, Mason TJ, Alarjah M et al (2011) The effect of ultrasound on the gold plating of silica nanoparticles for use in composite solders. Ultrason Sonochem 18(1):37–41PubMedCrossRef
22.
go back to reference Danhua Xie, Yulong Jiang, Renjie Xu, et al (2023) Preparation of ethanol-gels as hand sanitizers formed from chitosan and silica nanoparticles. J Mol Liquids 122276 Danhua Xie, Yulong Jiang, Renjie Xu, et al (2023) Preparation of ethanol-gels as hand sanitizers formed from chitosan and silica nanoparticles. J Mol Liquids 122276
23.
go back to reference Shirshahi V, Soltani M (2015) Solid silica nanoparticles: applications in molecular imaging. Contrast Media Mol Imaging 10:1–17PubMedCrossRef Shirshahi V, Soltani M (2015) Solid silica nanoparticles: applications in molecular imaging. Contrast Media Mol Imaging 10:1–17PubMedCrossRef
24.
go back to reference Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34:173–184 Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34:173–184
25.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63CrossRef
26.
go back to reference Cho J, Paul D (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRef Cho J, Paul D (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRef
27.
go back to reference LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef
28.
go back to reference Tung J, Gupta RK, Simon GP et al (2005) Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer 46:10405–10418CrossRef Tung J, Gupta RK, Simon GP et al (2005) Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer 46:10405–10418CrossRef
29.
go back to reference Madaleno L, Schjødt-Thomsen J, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+ melt compounding. Compos Sci Technol 70:804–814CrossRef Madaleno L, Schjødt-Thomsen J, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+ melt compounding. Compos Sci Technol 70:804–814CrossRef
30.
go back to reference Dlamini D, Mishra S, Mishra A et al (2011) Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods. J Compos Mater 45:2211–2216CrossRef Dlamini D, Mishra S, Mishra A et al (2011) Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods. J Compos Mater 45:2211–2216CrossRef
31.
go back to reference Lim KS, Mariatti M, Kamarol M et al (2019) Properties of nanofillers/crosslinked polyethylene composites for cable insulation. J Vinyl Add Tech 25:E147–E154CrossRef Lim KS, Mariatti M, Kamarol M et al (2019) Properties of nanofillers/crosslinked polyethylene composites for cable insulation. J Vinyl Add Tech 25:E147–E154CrossRef
32.
go back to reference Hirschl C, Biebl-Rydlo M, DeBiasio M et al (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study. Sol Energy Mater Sol Cells 116:203–218CrossRef Hirschl C, Biebl-Rydlo M, DeBiasio M et al (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study. Sol Energy Mater Sol Cells 116:203–218CrossRef
33.
go back to reference Rashid IA, Tariq A, Shakir HF et al (2022) Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications. J Reinf Plast Compos 41:34–45CrossRef Rashid IA, Tariq A, Shakir HF et al (2022) Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications. J Reinf Plast Compos 41:34–45CrossRef
35.
go back to reference Fang J, Zhang L, Sutton D et al (2012) Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater 2012:1–9CrossRef Fang J, Zhang L, Sutton D et al (2012) Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater 2012:1–9CrossRef
36.
go back to reference Jung S, Lee S, Dou X et al (2021) Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem Eng J 405:126658PubMedCrossRef Jung S, Lee S, Dou X et al (2021) Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem Eng J 405:126658PubMedCrossRef
37.
go back to reference Ajorloo M, Ghodrat M, Kang W-H (2021) Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. J Polym Environ 29:1298–1309CrossRef Ajorloo M, Ghodrat M, Kang W-H (2021) Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. J Polym Environ 29:1298–1309CrossRef
38.
go back to reference Tan X, Xu Y, Cai N et al (2009) Polypropylene/silica nanocomposites prepared by in-situ melt ultrasonication. Polym Compos 30:835–840CrossRef Tan X, Xu Y, Cai N et al (2009) Polypropylene/silica nanocomposites prepared by in-situ melt ultrasonication. Polym Compos 30:835–840CrossRef
39.
go back to reference Zoukrami F, Haddaoui N, Sclavons M et al (2018) Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process. Polym Bull 75:5551–5566CrossRef Zoukrami F, Haddaoui N, Sclavons M et al (2018) Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process. Polym Bull 75:5551–5566CrossRef
40.
go back to reference Oh T, Choi CK (2010) Comparison between Si–O–C thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using Fourier transform infrared spectroscopy. J Korean Phys Soc 56(4):1150–1155CrossRef Oh T, Choi CK (2010) Comparison between Si–O–C thin films fabricated by using plasma enhance chemical vapor deposition and SiO2 thin films by using Fourier transform infrared spectroscopy. J Korean Phys Soc 56(4):1150–1155CrossRef
41.
go back to reference Al-Shawi SA, Alansari LS, Diwan AA, et al (2021) Enhancement tensile strength, creep resistance and hardness of an epoxy resin by adding SiO2 nanoparticles. In: IOP Conference Series: Materials Science and Engineering 2021. IOP Publishing, p 012142 Al-Shawi SA, Alansari LS, Diwan AA, et al (2021) Enhancement tensile strength, creep resistance and hardness of an epoxy resin by adding SiO2 nanoparticles. In: IOP Conference Series: Materials Science and Engineering 2021. IOP Publishing, p 012142
42.
go back to reference Luyt A, Messori M, Fabbri P et al (2011) Polycarbonate reinforced with silica nanoparticles. Polym Bull 66:991–1004CrossRef Luyt A, Messori M, Fabbri P et al (2011) Polycarbonate reinforced with silica nanoparticles. Polym Bull 66:991–1004CrossRef
43.
go back to reference Ai NA, Hussein S, Jawad M et al (2015) Effect of Al2O3 and SiO2 nanopartical on wear, hardness and impact behavior of epoxy composites. Chem Mater Res 7:34–40 Ai NA, Hussein S, Jawad M et al (2015) Effect of Al2O3 and SiO2 nanopartical on wear, hardness and impact behavior of epoxy composites. Chem Mater Res 7:34–40
44.
go back to reference Gustin J, Freeman B, Stone J et al (2005) Low-velocity impact of nanocomposite and polymer plates. J Appl Polym Sci 96:2309–2315CrossRef Gustin J, Freeman B, Stone J et al (2005) Low-velocity impact of nanocomposite and polymer plates. J Appl Polym Sci 96:2309–2315CrossRef
45.
go back to reference Sui Y, Cui Y, Cong C, et al (2022) Rheological and mechanical properties of automobile polypropylene/silica (PP/SiO2) nanocomposites. In: Journal of Physics: Conference Series. IOP Publishing, p 012004 Sui Y, Cui Y, Cong C, et al (2022) Rheological and mechanical properties of automobile polypropylene/silica (PP/SiO2) nanocomposites. In: Journal of Physics: Conference Series. IOP Publishing, p 012004
46.
go back to reference Yang F, Ou Y, Yu Z (1998) Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69:355–361CrossRef Yang F, Ou Y, Yu Z (1998) Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69:355–361CrossRef
47.
go back to reference Sapiai N, Jumahat A, Jawaid M et al (2020) Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers 12:2733PubMedPubMedCentralCrossRef Sapiai N, Jumahat A, Jawaid M et al (2020) Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers 12:2733PubMedPubMedCentralCrossRef
48.
go back to reference Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957PubMedCrossRef Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957PubMedCrossRef
49.
go back to reference Motahari S, Motlagh GH, Moharramzadeh A (2015) Thermal and flammability properties of polypropylene/silica aerogel composites. J Macromol Sci B 54:1081–1091CrossRef Motahari S, Motlagh GH, Moharramzadeh A (2015) Thermal and flammability properties of polypropylene/silica aerogel composites. J Macromol Sci B 54:1081–1091CrossRef
50.
go back to reference Jakubowska P, Osińska-Broniarz M, Martyla A et al (2016) Thermal properties of PP-SiO2 composites filled with Stöber silica. Compos Theory Pract 6:161–166 Jakubowska P, Osińska-Broniarz M, Martyla A et al (2016) Thermal properties of PP-SiO2 composites filled with Stöber silica. Compos Theory Pract 6:161–166
51.
go back to reference Gill YQ, Ehsan H, Mehmood U et al (2022) A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites. Polym Bull 79:10077–10093CrossRef Gill YQ, Ehsan H, Mehmood U et al (2022) A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites. Polym Bull 79:10077–10093CrossRef
52.
go back to reference Srisawat N, Nithitanakul M, Srikulkit K (2009) Characterizations of fibers produced from polypropylene/silica composite. J Metals Mater Miner 19 Srisawat N, Nithitanakul M, Srikulkit K (2009) Characterizations of fibers produced from polypropylene/silica composite. J Metals Mater Miner 19
53.
go back to reference Sun D, Zhang R, Liu Z et al (2005) Polypropylene/silica nanocomposites prepared by in-situ sol−gel reaction with the aid of CO2. Macromolecules 38:5617–5624CrossRef Sun D, Zhang R, Liu Z et al (2005) Polypropylene/silica nanocomposites prepared by in-situ sol−gel reaction with the aid of CO2. Macromolecules 38:5617–5624CrossRef
54.
go back to reference Wong A-Y (2003) Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Compos B Eng 34:199–208CrossRef Wong A-Y (2003) Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Compos B Eng 34:199–208CrossRef
55.
go back to reference Dorigato A, Pegoretti A (2014) Reprocessing effects on polypropylene/silica nanocomposites. J Appl Polymer Sci 131 Dorigato A, Pegoretti A (2014) Reprocessing effects on polypropylene/silica nanocomposites. J Appl Polymer Sci 131
56.
go back to reference Perez-Guerrero A, Lisperguer J, Orellana F (2011) Influence of silica nanoparticles on the thermomechanical properties of recycled polystyrene. J Chil Chem Soc 56:907–910CrossRef Perez-Guerrero A, Lisperguer J, Orellana F (2011) Influence of silica nanoparticles on the thermomechanical properties of recycled polystyrene. J Chil Chem Soc 56:907–910CrossRef
57.
go back to reference Hwang S-s, Hsu pp (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383CrossRef Hwang S-s, Hsu pp (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383CrossRef
58.
go back to reference Kumar A, Patham B, Mohanty S et al (2020) Polypropylene–nano-silica nanocomposite foams: mechanisms underlying foamability, and foam microstructure, crystallinity and mechanical properties. Polym Int 69:373–386CrossRef Kumar A, Patham B, Mohanty S et al (2020) Polypropylene–nano-silica nanocomposite foams: mechanisms underlying foamability, and foam microstructure, crystallinity and mechanical properties. Polym Int 69:373–386CrossRef
59.
go back to reference Ahmed T, Mamat O (2011) The development and properties of polypropylene-silica sand nanoparticles composites. In: 2011 IEEE Colloquium on Humanities, Science and Engineering. IEEE, pp 172–177 Ahmed T, Mamat O (2011) The development and properties of polypropylene-silica sand nanoparticles composites. In: 2011 IEEE Colloquium on Humanities, Science and Engineering. IEEE, pp 172–177
60.
go back to reference Hadi NJ and Mohamed DJ (2017) Study the relation between flow, thermal and mechanical properties of waste polypropylene filled silica nanoparticles. In: Key engineering materials. Trans Tech Publ, pp 28–38 Hadi NJ and Mohamed DJ (2017) Study the relation between flow, thermal and mechanical properties of waste polypropylene filled silica nanoparticles. In: Key engineering materials. Trans Tech Publ, pp 28–38
61.
go back to reference Abdul Razak NI, Yusoff NISM, Ahmad MH et al (2023) Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers. Polymers 15:1702PubMedPubMedCentralCrossRef Abdul Razak NI, Yusoff NISM, Ahmad MH et al (2023) Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers. Polymers 15:1702PubMedPubMedCentralCrossRef
62.
go back to reference Rytöluoto I, Ritamäki M, Lahti K, et al (2018) Compounding, structure and dielectric properties of silica-BOPP nanocomposite films. In: 2018 IEEE 2nd International Conference on Dielectrics (ICD) 1–5 July 2018, pp 1–4 Rytöluoto I, Ritamäki M, Lahti K, et al (2018) Compounding, structure and dielectric properties of silica-BOPP nanocomposite films. In: 2018 IEEE 2nd International Conference on Dielectrics (ICD) 1–5 July 2018, pp 1–4
Metadata
Title
Development of commercially viable and high-performance upcycled plastic waste nanocomposites for automotive and electrical industry
Authors
Yasir Qayyum Gill
Faiqua Jabeen
Farhan Saeed
Muhammad Wasif
Zarq-Ullah Javed
Umer Mehmood
Publication date
31-03-2024
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-024-05239-4

Premium Partners