Skip to main content
Top

2024 | OriginalPaper | Chapter

Numerical Study for Steady Natural Convection in a Newtonian Nanofluid-Filled U-Shaped Copper-Water Inside a Square Cavity Using Lattice Boltzmann Method (LBM)

Authors : Amine El Harfouf, Yassine Roboa, Sanaa Hayani Mounir, Hassane Mes-Adi, Walid Abouloifa, Najwa Jbira, Rachid Herbazi, Abderrahim Wakif

Published in: The 17th International Conference Interdisciplinarity in Engineering

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the natural convection phenomenon in a closed square cavity filled with copper-water nanofluid under differential heating. The numerical modeling approach utilized is the lattice Boltzmann method. The cavity is composed of two stiff walls on the right and left sides, while the remaining two walls are adiabatic. Rectangular obstructions of varying heights (20% to 40% of the cavity side length) and fixed widths (10% of the side length) are present on the horizontal walls. Laminar flow of an incompressible fluid is considered in the simulations. A custom Fortran code is developed to solve the governing equations for flow and heat transfer, enabling the calculation of the Nusselt number. The investigation focuses on studying the influence of the volume fraction of the nanofluid (ranging from 0% to 10%) and the length of the fins on heat transfer. The findings reveal enhanced heat transfer when employing nanofluids, highlighting their potential benefits. The lattice Boltzmann method is employed as the numerical approach, facilitating accurate modeling and analysis of natural convection within the investigated cavity configuration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Ingham, D.B., Pop, I., (Eds.) Transport Phenomena in Porous Media, Pergamon, Oxford (1998), vol. II (2002); vol. III (2005) Ingham, D.B., Pop, I., (Eds.) Transport Phenomena in Porous Media, Pergamon, Oxford (1998), vol. II (2002); vol. III (2005)
4.
go back to reference Vafai, K.: Handbook of Porous Media. Marcel Dekker, New York (2000) Vafai, K.: Handbook of Porous Media. Marcel Dekker, New York (2000)
5.
go back to reference Pop, I., Ingham, D.B.: Convective Heat Transfer, Mathematical and Computational Modeling (2001) Pop, I., Ingham, D.B.: Convective Heat Transfer, Mathematical and Computational Modeling (2001)
6.
go back to reference Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds.): Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004) Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds.): Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004)
7.
go back to reference Delavar, M.A., Sedighi, K.: Effect of discrete heater at the vertical wall of the cavity over the heat transfer and entropy generation using Lattice Boltzmann method. Therm. Sci. 15(2), 423–435 (2011)CrossRef Delavar, M.A., Sedighi, K.: Effect of discrete heater at the vertical wall of the cavity over the heat transfer and entropy generation using Lattice Boltzmann method. Therm. Sci. 15(2), 423–435 (2011)CrossRef
8.
go back to reference Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118(2), 329–347 (1995)CrossRef Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118(2), 329–347 (1995)CrossRef
9.
go back to reference An, B., Bergadà, J.M., Sang, W.M.: A simplified new multigrid algorithm of lattice Boltzmann method for steady states. Comput. Math. Appl. 135, 102–110 (2023)MathSciNetCrossRef An, B., Bergadà, J.M., Sang, W.M.: A simplified new multigrid algorithm of lattice Boltzmann method for steady states. Comput. Math. Appl. 135, 102–110 (2023)MathSciNetCrossRef
10.
go back to reference Fatima, N., Rajan, I., Perumal, D., Arumuga, et al.: Simulation of fluid flow in a lid-driven cavity with different wave lengths corrugated walls using Lattice Boltzmann method. J. Taiwan Instit. Chem. Eng. 144, 104748 (2023) Fatima, N., Rajan, I., Perumal, D., Arumuga, et al.: Simulation of fluid flow in a lid-driven cavity with different wave lengths corrugated walls using Lattice Boltzmann method. J. Taiwan Instit. Chem. Eng. 144, 104748 (2023)
11.
go back to reference Lu, J., et al.: Analyses and reconstruction of the lattice Boltzmann flux solver. J. Comput. Phys. 453, 110923 (2022) Lu, J., et al.: Analyses and reconstruction of the lattice Boltzmann flux solver. J. Comput. Phys. 453, 110923 (2022)
12.
go back to reference Lu, J., Lei, H., Dai, C., et al.: Analyses and reconstruction of the lattice Boltzmann flux solver. J. Comput. Phys. 453, 110923 (2022) Lu, J., Lei, H., Dai, C., et al.: Analyses and reconstruction of the lattice Boltzmann flux solver. J. Comput. Phys. 453, 110923 (2022)
13.
go back to reference Dong, Z.-Q., Wang, L.-P., Peng, C., et al.: A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows. Phys. Fluids 34(9), 093608 (2022) Dong, Z.-Q., Wang, L.-P., Peng, C., et al.: A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows. Phys. Fluids 34(9), 093608 (2022)
14.
go back to reference Mousavi, Pedram, S., Jalali, A., Rahimian, M.H.: Numerical simulation of indirect freezing desalination using lattice Boltzmann method. Phys. Fluids 34(7), 073322 (2022) Mousavi, Pedram, S., Jalali, A., Rahimian, M.H.: Numerical simulation of indirect freezing desalination using lattice Boltzmann method. Phys. Fluids 34(7), 073322 (2022)
Metadata
Title
Numerical Study for Steady Natural Convection in a Newtonian Nanofluid-Filled U-Shaped Copper-Water Inside a Square Cavity Using Lattice Boltzmann Method (LBM)
Authors
Amine El Harfouf
Yassine Roboa
Sanaa Hayani Mounir
Hassane Mes-Adi
Walid Abouloifa
Najwa Jbira
Rachid Herbazi
Abderrahim Wakif
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-54674-7_21

Premium Partners