Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

26-05-2023 | Original Research Article

Optimization of Epoxy Resin Crosslinking Network Structures and Control of Electron Transport Behavior Using Chloride Ions

Authors: Bin Du, Nanqing Chen, Qian Liu, Yuxiang Mai, Guodong Zhang, Yushun Zhao, Zhengyong Huang

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The presence of chloride ions as impurities significantly affects the physicochemical and insulation properties of epoxy resins. Here, the chloride ion content (60 ppm, 600 ppm, and 2000 ppm) in epoxy composite samples was varied to explore its influence on the structure of epoxy resin crosslinking networks and electron transport behavior. An evaluation of the mechanical properties of the samples showed that, at a chloride ion content of 2000 ppm, the tensile and bending strength of the sample were 26.98% and 16.49% , respectively, lower than that of the sample with a chloride ion content of 60 ppm. Furthermore, an increase in the chloride ion content reduced the crosslinking density of the sample. The crosslinking density of the 2000-ppm sample was 41.96% lower than that of the 60-ppm sample. The energy band and excited state of the three samples were also simulated based on density functional theory (DFT). The DFT calculations show that a reduction in the chloride ion content is beneficial for the optimization of the electron transport in the crosslinked network. This paper outlines a method for optimizing the crosslinking network structure of chloride ion epoxy composites and regulating the electron transport behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.B. Wang, Y. Feng, C.H. Zhang, T.D. Zhang, Q.G. Chi, Q.G. Chen, and Q.Q. Lei, High heat-resistant (250°C) epoxy resin composites with excellent dielectric properties. J. Appl. Polym. Sci. 40, 139 (2022). C.B. Wang, Y. Feng, C.H. Zhang, T.D. Zhang, Q.G. Chi, Q.G. Chen, and Q.Q. Lei, High heat-resistant (250°C) epoxy resin composites with excellent dielectric properties. J. Appl. Polym. Sci. 40, 139 (2022).
2.
go back to reference S.K. Nayak, S. Nayak, and S.K. Mohanty, Thermal, electrical and mechanical properties of expanded graphite and micro-SiC filled hybrid epoxy composite for electronic packaging applications. J. Electron. Mater. 49, 212–225 (2020).CrossRef S.K. Nayak, S. Nayak, and S.K. Mohanty, Thermal, electrical and mechanical properties of expanded graphite and micro-SiC filled hybrid epoxy composite for electronic packaging applications. J. Electron. Mater. 49, 212–225 (2020).CrossRef
3.
go back to reference Z.K. Ren, L.W. Liu, M.Y. Zhang, Y.J. Liu, and J.S. Leng, Dielectric and breakdown properties of MWCNT- and OMMT-reinforced epoxy composites. J. Electron. Mater. 48, 7270–7281 (2019).CrossRef Z.K. Ren, L.W. Liu, M.Y. Zhang, Y.J. Liu, and J.S. Leng, Dielectric and breakdown properties of MWCNT- and OMMT-reinforced epoxy composites. J. Electron. Mater. 48, 7270–7281 (2019).CrossRef
4.
go back to reference M. El-Shahat, A. Huzayyin, and H. Anis, Effect of chemical impurities on charge injection barriers at the interface of copper and polyethylene. IEEE Trans. Dielectr. Electr. Insul. 26, 642–647 (2019).CrossRef M. El-Shahat, A. Huzayyin, and H. Anis, Effect of chemical impurities on charge injection barriers at the interface of copper and polyethylene. IEEE Trans. Dielectr. Electr. Insul. 26, 642–647 (2019).CrossRef
5.
go back to reference B. Qi, Z.D. Yang, X. Yang, M. Huang, C.J. Gao, Y. Zhang, Y. Luo, L.C. Lu, and C.R. Li, The flashover of epoxy initiated by micron metal particles under DC voltage: phenomenon and mechanism. J. Phys. D Appl. Phys. 56, 035201 (2023).CrossRef B. Qi, Z.D. Yang, X. Yang, M. Huang, C.J. Gao, Y. Zhang, Y. Luo, L.C. Lu, and C.R. Li, The flashover of epoxy initiated by micron metal particles under DC voltage: phenomenon and mechanism. J. Phys. D Appl. Phys. 56, 035201 (2023).CrossRef
6.
go back to reference Z.D. Yang, B. Qi, X. Yang, C.J. Gao, Y. Zhang, Y. Luo, C.X. Sun, and C.G. Li, Insulation degradation affected by micron metal particles attached on epoxy surface: charge accumulation and flashover voltage. J. Phys. D Appl. Phys. 55, 425201 (2022).CrossRef Z.D. Yang, B. Qi, X. Yang, C.J. Gao, Y. Zhang, Y. Luo, C.X. Sun, and C.G. Li, Insulation degradation affected by micron metal particles attached on epoxy surface: charge accumulation and flashover voltage. J. Phys. D Appl. Phys. 55, 425201 (2022).CrossRef
7.
go back to reference Y. Gao, H. Wang, X.C. Yuan, H.C. Zhao, and Z.Y. Li, Surface charge accumulation on a real size epoxy insulator with bouncing metal particle under DC voltage. IEEE Trans. Plasma Sci. 49, 2166–2175 (2021).CrossRef Y. Gao, H. Wang, X.C. Yuan, H.C. Zhao, and Z.Y. Li, Surface charge accumulation on a real size epoxy insulator with bouncing metal particle under DC voltage. IEEE Trans. Plasma Sci. 49, 2166–2175 (2021).CrossRef
8.
go back to reference N. Boumedienne, Y. Faska, A. Maaroufi, G. Pinto, L. Vicente, and R. Benavente, Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites. J. Phys. Chem. Solids. 104, 185–191 (2017).CrossRef N. Boumedienne, Y. Faska, A. Maaroufi, G. Pinto, L. Vicente, and R. Benavente, Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites. J. Phys. Chem. Solids. 104, 185–191 (2017).CrossRef
9.
go back to reference Q. Liu, D. Bin, Y.X. Mai, and Y.S. Zhao, Study of the effects of doping alkali metal ions on crosslinked network of epoxy resins and analysis of insulation properties. J. Electron. Mater. 51, 3141–3149 (2022).CrossRef Q. Liu, D. Bin, Y.X. Mai, and Y.S. Zhao, Study of the effects of doping alkali metal ions on crosslinked network of epoxy resins and analysis of insulation properties. J. Electron. Mater. 51, 3141–3149 (2022).CrossRef
10.
go back to reference Y.X. Mai, D. Bin, Q. Liu, and Y.S. Zhao, Modulation of epoxy polymer trapping energy levels by fluorinated diluents to improve insulation properties. IEEE Trans. Dielectr. Electr. Insul. 29, 1062–1069 (2022).CrossRef Y.X. Mai, D. Bin, Q. Liu, and Y.S. Zhao, Modulation of epoxy polymer trapping energy levels by fluorinated diluents to improve insulation properties. IEEE Trans. Dielectr. Electr. Insul. 29, 1062–1069 (2022).CrossRef
11.
go back to reference H. Maka, T. Spychaj, and R. Pilawka, Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym. Lett 8, 723–732 (2014).CrossRef H. Maka, T. Spychaj, and R. Pilawka, Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym. Lett 8, 723–732 (2014).CrossRef
12.
go back to reference S.N. Wang, S.Y. Yang, and J.P. Yang, Effect of chlorine content on properties of hardened bisphenol A epoxy resin. Insul. Mater. 5, 6–14 (1982). S.N. Wang, S.Y. Yang, and J.P. Yang, Effect of chlorine content on properties of hardened bisphenol A epoxy resin. Insul. Mater. 5, 6–14 (1982).
13.
go back to reference Selection guide of epoxy resin compounds for casting high voltage basin insulators, T/CEC 522—2021. Selection guide of epoxy resin compounds for casting high voltage basin insulators, T/CEC 522—2021.
14.
go back to reference Y.X. Mai, B. Du, Q. Liu, Y.S. Zhao, W. Yang, and B.Y. Yan, Influence of micro@Nano-Al2O3 structure on mechanical properties, thermal conductivity, and electrical properties of epoxy resin composites. J. Electron. Mater 51, 232–242 (2022).CrossRef Y.X. Mai, B. Du, Q. Liu, Y.S. Zhao, W. Yang, and B.Y. Yan, Influence of micro@Nano-Al2O3 structure on mechanical properties, thermal conductivity, and electrical properties of epoxy resin composites. J. Electron. Mater 51, 232–242 (2022).CrossRef
15.
go back to reference Y.S. Zhao, Y.F. Xu, Y.H. He, K. Wang, and Y. Chen, Effects of methyl and carbon-carbon double bond in anhydride molecule on dielectric properties of epoxy/Al2O3 composite. IEEE Trans. Dielectr. Electr. Insul. 28, 1531–1538 (2021).CrossRef Y.S. Zhao, Y.F. Xu, Y.H. He, K. Wang, and Y. Chen, Effects of methyl and carbon-carbon double bond in anhydride molecule on dielectric properties of epoxy/Al2O3 composite. IEEE Trans. Dielectr. Electr. Insul. 28, 1531–1538 (2021).CrossRef
16.
go back to reference Q.Y. Wang, P. Liu, H.D. Tian, G.S. Xie, Z.R. Peng, and X. Wang, Research on the dynamic characteristics of electric field distribution of the ± 1100 kV Ultra high voltage converter transformer valve-side bushing using weakly ionised gas conductance model. High Volt 7, 288–301 (2022).CrossRef Q.Y. Wang, P. Liu, H.D. Tian, G.S. Xie, Z.R. Peng, and X. Wang, Research on the dynamic characteristics of electric field distribution of the ± 1100 kV Ultra high voltage converter transformer valve-side bushing using weakly ionised gas conductance model. High Volt 7, 288–301 (2022).CrossRef
17.
go back to reference L. Lin, H. Zhang, L.I. Yuan, and H. Zhang, Research advances in the measurement for the crosslink density of thermosetting polymer. Thermosetting Resin 27, 60–63 (2012). L. Lin, H. Zhang, L.I. Yuan, and H. Zhang, Research advances in the measurement for the crosslink density of thermosetting polymer. Thermosetting Resin 27, 60–63 (2012).
18.
go back to reference G. Li, P. Hu, W. Luo, J. Zhang, H. Yu, F. Chen, and F. Zhang, Simulation of pyrolysis of crosslinked epoxy resin using ReaxFF molecular dynamics. Comput. Theor. Chem. 1200, 113240 (2021).CrossRef G. Li, P. Hu, W. Luo, J. Zhang, H. Yu, F. Chen, and F. Zhang, Simulation of pyrolysis of crosslinked epoxy resin using ReaxFF molecular dynamics. Comput. Theor. Chem. 1200, 113240 (2021).CrossRef
19.
go back to reference Y. Gao, H.C. Zhao, X.C. Yuan, and H. Wang, Numerical simulation of surface charge inhibition performance on epoxy insulator under DC voltage by flexible coating strategy. High Volt 7, 553–563 (2022).CrossRef Y. Gao, H.C. Zhao, X.C. Yuan, and H. Wang, Numerical simulation of surface charge inhibition performance on epoxy insulator under DC voltage by flexible coating strategy. High Volt 7, 553–563 (2022).CrossRef
20.
go back to reference M.S. Babu, R. Sarathi, N.J. Vasa, and T. Imai, Investigation on space charge and charge trap characteristics of gamma-irradiated epoxy micro–nano composites. High Volt 5, 191–201 (2020).CrossRef M.S. Babu, R. Sarathi, N.J. Vasa, and T. Imai, Investigation on space charge and charge trap characteristics of gamma-irradiated epoxy micro–nano composites. High Volt 5, 191–201 (2020).CrossRef
21.
go back to reference C. Dai, G.Y. Zhu, Y. Tanaka, H. Miyake, K. Sato, X. Chen, and A. Paramane, Space charge performance of epoxy composites with improved thermal property at high temperature under high electric field. J. Appl. Polym. Sci. 5, 13139 (2022). C. Dai, G.Y. Zhu, Y. Tanaka, H. Miyake, K. Sato, X. Chen, and A. Paramane, Space charge performance of epoxy composites with improved thermal property at high temperature under high electric field. J. Appl. Polym. Sci. 5, 13139 (2022).
22.
go back to reference J.R. Xavier, Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. J. Appl. Polym. Sci. 137, 48323 (2020).CrossRef J.R. Xavier, Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. J. Appl. Polym. Sci. 137, 48323 (2020).CrossRef
23.
go back to reference M. Ri, Y. Jang, U. Ri, C. Yu, K. Kim, and S. Kim, Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. J Mater Sci. 53, 4252–4261 (2018).CrossRef M. Ri, Y. Jang, U. Ri, C. Yu, K. Kim, and S. Kim, Ab initio investigation of adsorption characteristics of bisphosphonates on hydroxyapatite (001) surface. J Mater Sci. 53, 4252–4261 (2018).CrossRef
24.
go back to reference T. Lu, and F. Chen, Multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).CrossRef T. Lu, and F. Chen, Multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).CrossRef
Metadata
Title
Optimization of Epoxy Resin Crosslinking Network Structures and Control of Electron Transport Behavior Using Chloride Ions
Authors
Bin Du
Nanqing Chen
Qian Liu
Yuxiang Mai
Guodong Zhang
Yushun Zhao
Zhengyong Huang
Publication date
26-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10488-6

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue

Topical Collection: 19th Conference on Defects (DRIP XIX)

Crystalline Morphology of SiGe Films Grown on Si(110) Substrates