Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 5/2024

14-08-2023 | Research Article-Electrical Engineering

Power Quality Analysis of Interleaved Cuk Configuration-Based Interval Type-2 Fuzzy Logic Controller for Battery Charging in Electric Vehicles

Authors: S. Narthana, J. Gnanavadivel

Published in: Arabian Journal for Science and Engineering | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electric vehicles with proper battery charging mechanism are essential to achieve superior performance with good dynamic response and high efficiency. This paper comes up with the analysis of interval type-2 fuzzy logic controller (IT2FLC) for interleaved Cuk converter for battery charging in electric vehicles. The key intention of this paper is to obtain excellent controller parameters such as improved accuracy and stability with good power quality attributes of less harmonic distortion and unity power factor at the supply side using a robust and intelligent control approach. IT2FLC is developed effectively to acquire the optimal proportional integral (PI) parameters for the constant current and constant voltage charging controllers to enrich the operation of the battery charging system. This in turn achieves excellent transient parameters with less settling time of 0.01 s, reduced overshoot of 1% and efficiency of about 93.85%. The so-called interval type-2 (IT2) controller is therefore accomplished to alleviate uncertainties and improvise the dynamic stability of the charging solution. The behavioural traits of the intelligent controller are examined and compared with Ziegler–Nicholas tuned PI and T1FL-based PI using MATLAB/Simulink. A hardware prototype of 350 W, 48 V/5 A charger is built and verified with dsPIC33F to evaluate the working principle of the converter using IT2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H.: A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(5), 13866–13890 (2018)CrossRef Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H.: A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6(5), 13866–13890 (2018)CrossRef
2.
go back to reference Gomez, J.C.; Morcos, M.M.: Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans. Power Deliv. 18(3), 975–981 (2003)CrossRef Gomez, J.C.; Morcos, M.M.: Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans. Power Deliv. 18(3), 975–981 (2003)CrossRef
3.
go back to reference Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P.: A review of single-phase improved power quality AC–DC converters. IEEE Trans. Ind. Electron. 50(5), 962–981 (2003)CrossRef Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P.: A review of single-phase improved power quality AC–DC converters. IEEE Trans. Ind. Electron. 50(5), 962–981 (2003)CrossRef
4.
go back to reference Vlatkovic, V.; Borojevic, D.; Lee, F.C.: Input filter design for power factor correction circuits. IEEE Trans. Power Electron. 11(1), 199–205 (1996)CrossRef Vlatkovic, V.; Borojevic, D.; Lee, F.C.: Input filter design for power factor correction circuits. IEEE Trans. Power Electron. 11(1), 199–205 (1996)CrossRef
5.
go back to reference Turksoy, O.; Yilmaz, U.; Teke, A.: Efficient AC-DC power factor corrected boost converter design for battery charger in electric vehicles. Energy 221, 1–18 (2021)CrossRef Turksoy, O.; Yilmaz, U.; Teke, A.: Efficient AC-DC power factor corrected boost converter design for battery charger in electric vehicles. Energy 221, 1–18 (2021)CrossRef
6.
go back to reference Gupta, J.; Maurya, R.; Arya, S.R.: On-board electric vehicle battery charger with improved power quality and reduced switching stress. IET Power Electron. 13(13), 2885–2894 (2020)CrossRef Gupta, J.; Maurya, R.; Arya, S.R.: On-board electric vehicle battery charger with improved power quality and reduced switching stress. IET Power Electron. 13(13), 2885–2894 (2020)CrossRef
7.
go back to reference Pandey, R.; Singh, B.: A cuk converter and resonant LLC converter-based E-bike charger for wide output voltage variations. IEEE Trans. Ind. Appl. 57(3), 2682–2691 (2021)CrossRef Pandey, R.; Singh, B.: A cuk converter and resonant LLC converter-based E-bike charger for wide output voltage variations. IEEE Trans. Ind. Appl. 57(3), 2682–2691 (2021)CrossRef
8.
go back to reference Lee, I.-O.; Cho, S.-Y.; Moon, G.-W.: Interleaved buck converter having low switching losses and improved step-down conversion ratio. IEEE Trans. Power Electron. 27(8), 3664–3674 (2012)CrossRef Lee, I.-O.; Cho, S.-Y.; Moon, G.-W.: Interleaved buck converter having low switching losses and improved step-down conversion ratio. IEEE Trans. Power Electron. 27(8), 3664–3674 (2012)CrossRef
9.
go back to reference Genc, N.; Iskender, I.: An improved soft switched PWM interleaved boost AC-DC converter. Energy Convers. Manag. 52, 403–413 (2011)CrossRef Genc, N.; Iskender, I.: An improved soft switched PWM interleaved boost AC-DC converter. Energy Convers. Manag. 52, 403–413 (2011)CrossRef
10.
go back to reference Samavatian, V.; Radan, A.: A novel low-ripple interleaved buck–boost converter with high efficiency and low oscillation for fuel-cell applications. Electr. Power Energy Syst. 63, 446–454 (2014)CrossRef Samavatian, V.; Radan, A.: A novel low-ripple interleaved buck–boost converter with high efficiency and low oscillation for fuel-cell applications. Electr. Power Energy Syst. 63, 446–454 (2014)CrossRef
11.
go back to reference Joseph, K.D.; Daniel, A.E.; Unnikrishnan, A.: Interleaved cuk converter with improved transient performance and reduced current ripple. J. Eng. 2017(7), 362–369 (2017) Joseph, K.D.; Daniel, A.E.; Unnikrishnan, A.: Interleaved cuk converter with improved transient performance and reduced current ripple. J. Eng. 2017(7), 362–369 (2017)
12.
go back to reference Kushwaha, R.; Singh, B.: An electric vehicle battery charger with interleaved PFC cuk converter. In: IEEE India International Conference on Power Electron, pp. 1–6 (2018) Kushwaha, R.; Singh, B.: An electric vehicle battery charger with interleaved PFC cuk converter. In: IEEE India International Conference on Power Electron, pp. 1–6 (2018)
13.
go back to reference Singh, B.; Kushwaha, R.: Power factor preregulation in interleaved Luo converter fed electric vehicle battery charger. IEEE Trans. Ind. Appl. 57(3), 2870–2882 (2021)CrossRef Singh, B.; Kushwaha, R.: Power factor preregulation in interleaved Luo converter fed electric vehicle battery charger. IEEE Trans. Ind. Appl. 57(3), 2870–2882 (2021)CrossRef
14.
go back to reference Jothimani, G.; Palanichamy, Y.; Natarajan, S.K.; Rameshkumar, T.: Single-phase front-end modified interleaved Luo power factor correction converter for on-board electric vehicle charger. Int. J. Circ. Theor. Appl. 49(9), 2655–2669 (2021)CrossRef Jothimani, G.; Palanichamy, Y.; Natarajan, S.K.; Rameshkumar, T.: Single-phase front-end modified interleaved Luo power factor correction converter for on-board electric vehicle charger. Int. J. Circ. Theor. Appl. 49(9), 2655–2669 (2021)CrossRef
15.
go back to reference Kessal, A.; Rahmani, L.; Gaubert, J.-P.; Mostefai, M.: Power factor corrector with a fast regulation and constant switching frequency. Arab J. Sci Eng. 38(3), 651–659 (2013)CrossRef Kessal, A.; Rahmani, L.; Gaubert, J.-P.; Mostefai, M.: Power factor corrector with a fast regulation and constant switching frequency. Arab J. Sci Eng. 38(3), 651–659 (2013)CrossRef
16.
go back to reference Chiang, H.C.; Lin, F.J.; Chang, J.K.; Chen, K.F.; Chen, Y.L.; Liu, K.C.: Control method for improving the response of single-phase continuous conduction mode boost power factor correction converter. IET Power Electron. 9(9), 1792–1800 (2016)CrossRef Chiang, H.C.; Lin, F.J.; Chang, J.K.; Chen, K.F.; Chen, Y.L.; Liu, K.C.: Control method for improving the response of single-phase continuous conduction mode boost power factor correction converter. IET Power Electron. 9(9), 1792–1800 (2016)CrossRef
17.
go back to reference Karaarslan, A.; Iskender, I.: A DSP based power factor correction converter to reduce total harmonic distortion of input current for improvement of power quality. Electr. Eng. 93(4), 247–257 (2011)CrossRef Karaarslan, A.; Iskender, I.: A DSP based power factor correction converter to reduce total harmonic distortion of input current for improvement of power quality. Electr. Eng. 93(4), 247–257 (2011)CrossRef
18.
go back to reference Karaarslan, A.: The analysis of average sliding control method applied on sheppard–taylor power factor correction converter. Electr. Eng. 95(3), 255–265 (2013)CrossRef Karaarslan, A.: The analysis of average sliding control method applied on sheppard–taylor power factor correction converter. Electr. Eng. 95(3), 255–265 (2013)CrossRef
19.
go back to reference Ziegler, J.G.; Nichols, N.B.: Optimum setting for automatic controllers. Trans ASME 64, 759–768 (1942) Ziegler, J.G.; Nichols, N.B.: Optimum setting for automatic controllers. Trans ASME 64, 759–768 (1942)
20.
go back to reference Zhao, Y.; Collins, E.G., Jr.: Fuzzy PI control design for an industrial weigh belt feeder. IEEE Trans. Fuzzy Syst. 11(3), 311–319 (2003)CrossRef Zhao, Y.; Collins, E.G., Jr.: Fuzzy PI control design for an industrial weigh belt feeder. IEEE Trans. Fuzzy Syst. 11(3), 311–319 (2003)CrossRef
21.
go back to reference Lazaroiu, G.C.; Roscia, M.: Fuzzy logic strategy for priority control of electric vehicle charging. IEEE Trans. Intell. Transp. Syst. 23(10), 19236–19245 (2022)CrossRef Lazaroiu, G.C.; Roscia, M.: Fuzzy logic strategy for priority control of electric vehicle charging. IEEE Trans. Intell. Transp. Syst. 23(10), 19236–19245 (2022)CrossRef
22.
go back to reference Guo, L.; Hung, J.Y.; Nelms, R.M.: Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res. 81(1), 99–106 (2011)CrossRef Guo, L.; Hung, J.Y.; Nelms, R.M.: Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res. 81(1), 99–106 (2011)CrossRef
23.
go back to reference Liang, Q.; Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRef Liang, Q.; Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRef
24.
go back to reference El-Bardini, M.; El-Nagar, A.M.: Interval type-2 fuzzy PID controller: analytical structures and stability analysis. Arab. J. Sci. Eng. 39(10), 7443–7458 (2014)CrossRef El-Bardini, M.; El-Nagar, A.M.: Interval type-2 fuzzy PID controller: analytical structures and stability analysis. Arab. J. Sci. Eng. 39(10), 7443–7458 (2014)CrossRef
25.
go back to reference Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)CrossRef Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)CrossRef
26.
go back to reference Wu, D.; Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)CrossRef Wu, D.; Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)CrossRef
27.
go back to reference Shi, J.: A unified general type-2 fuzzy PID controller and its comparative with type-1 and interval type-2 fuzzy PID controller. Asian J. Control 24(4), 1808–1824 (2022)MathSciNetCrossRef Shi, J.: A unified general type-2 fuzzy PID controller and its comparative with type-1 and interval type-2 fuzzy PID controller. Asian J. Control 24(4), 1808–1824 (2022)MathSciNetCrossRef
28.
go back to reference Chelladurai, B.; Sundarabalan, C.K.; Santhanam, S.N.; Guerrero, J.M.: Interval type-2 fuzzy logic-controlled shunt converter coupled novel high-quality charging scheme for electric vehicles. IEEE Trans. Ind. Inf. 17(9), 6084–6093 (2021)CrossRef Chelladurai, B.; Sundarabalan, C.K.; Santhanam, S.N.; Guerrero, J.M.: Interval type-2 fuzzy logic-controlled shunt converter coupled novel high-quality charging scheme for electric vehicles. IEEE Trans. Ind. Inf. 17(9), 6084–6093 (2021)CrossRef
29.
go back to reference Beheshtikhoo, A.; Pourghol, M.; Khazaee, I.: Design of type-2 fuzzy logic controller in a smart home energy management system with a combination of renewable energy and an electric vehicle. J. Build. Eng. 68, 106097 (2023)CrossRef Beheshtikhoo, A.; Pourghol, M.; Khazaee, I.: Design of type-2 fuzzy logic controller in a smart home energy management system with a combination of renewable energy and an electric vehicle. J. Build. Eng. 68, 106097 (2023)CrossRef
30.
go back to reference Ghavidel, H.F.; Mousavi, S.M.G.: Modeling analysis, control, and type-2 fuzzy energy management strategy of hybrid fuel cell-battery-supercapacitor systems. J. Energy Storage 51, 104456 (2022)CrossRef Ghavidel, H.F.; Mousavi, S.M.G.: Modeling analysis, control, and type-2 fuzzy energy management strategy of hybrid fuel cell-battery-supercapacitor systems. J. Energy Storage 51, 104456 (2022)CrossRef
31.
go back to reference Kala Rathi, M.; Rathina, P.N.: Interval type-2 fuzzy logic controller-based multi-level shunt active power line conditioner for harmonic mitigation. Int. J. Fuzzy Sys. 21(1), 104–114 (2019)MathSciNetCrossRef Kala Rathi, M.; Rathina, P.N.: Interval type-2 fuzzy logic controller-based multi-level shunt active power line conditioner for harmonic mitigation. Int. J. Fuzzy Sys. 21(1), 104–114 (2019)MathSciNetCrossRef
32.
go back to reference Panda, A.: Interval type-2 fuzzy based photovoltaic distributed generation system with enhanced power quality feature. IETE J. Res. 68(2), 869–882 (2022)CrossRef Panda, A.: Interval type-2 fuzzy based photovoltaic distributed generation system with enhanced power quality feature. IETE J. Res. 68(2), 869–882 (2022)CrossRef
33.
go back to reference Saraswat, R.; Suhag, S.: Type-2 fuzzy logic PID control for efficient power balance in an AC microgrid. Sustain. Energy Technol. Assess. 56, 103048 (2023) Saraswat, R.; Suhag, S.: Type-2 fuzzy logic PID control for efficient power balance in an AC microgrid. Sustain. Energy Technol. Assess. 56, 103048 (2023)
34.
go back to reference Vanaja, N.; Senthil Kumar, N.: Interval type-2 fuzzy controller-based power quality enhancement in HSES grid-Integrated scheme. J. Control Meas. Electr. Comput. Commun. 64(3), 577–592 (2023) Vanaja, N.; Senthil Kumar, N.: Interval type-2 fuzzy controller-based power quality enhancement in HSES grid-Integrated scheme. J. Control Meas. Electr. Comput. Commun. 64(3), 577–592 (2023)
35.
go back to reference Sharma, R.; Kumar, A.: Optimal interval type-2 fuzzy logic control based closed-loop regulation of mean arterial blood pressure using the controlled drug administration. IEEE Sens. J. 22(7), 7195–7207 (2022)CrossRef Sharma, R.; Kumar, A.: Optimal interval type-2 fuzzy logic control based closed-loop regulation of mean arterial blood pressure using the controlled drug administration. IEEE Sens. J. 22(7), 7195–7207 (2022)CrossRef
36.
go back to reference Kelekci, E.; Yaren, T.; Kizir, S.: Design of optimized interval type-2 fuzzy logic controller based on the continuity, monotonicity, and smoothness properties for a cart-pole inverted pendulum system. Trans. Inst. Meas. Control 44(12), 2291–2307 (2022)CrossRef Kelekci, E.; Yaren, T.; Kizir, S.: Design of optimized interval type-2 fuzzy logic controller based on the continuity, monotonicity, and smoothness properties for a cart-pole inverted pendulum system. Trans. Inst. Meas. Control 44(12), 2291–2307 (2022)CrossRef
37.
go back to reference Electromagnetic Compatibility: Limits for Harmonic Current Emissions (Equipment input current ≤ 16A per phase). (2006) Electromagnetic Compatibility: Limits for Harmonic Current Emissions (Equipment input current ≤ 16A per phase). (2006)
Metadata
Title
Power Quality Analysis of Interleaved Cuk Configuration-Based Interval Type-2 Fuzzy Logic Controller for Battery Charging in Electric Vehicles
Authors
S. Narthana
J. Gnanavadivel
Publication date
14-08-2023
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 5/2024
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-08189-7

Other articles of this Issue 5/2024

Arabian Journal for Science and Engineering 5/2024 Go to the issue

Premium Partners