Skip to main content
Top

17-05-2024 | Research Article-Computer Engineering and Computer Science

Quantized Orthogonal Experimentation SSA (QOX-SSA): A Hybrid Technique for Feature Selection (FS) and Neural Network Training

Authors: Ajit Kumar Mahapatra, Nibedan Panda, Binod Kumar Pattanayak

Published in: Arabian Journal for Science and Engineering

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The standard metaheuristics are commonly based on a single metaphorical model miming a particular animal group's food-searching behaviour. As a result, the contributions of such approaches are becoming inadequate in dealing with the evolving complexities of optimizing objective functions. Salp Swarm Algorithm (SSA) is one of them, a new swarm intelligence-based technique relying on a lone metaphor introduced for tackling global optimization issues. Nonetheless, SSA has garnered substantial acknowledgement and attraction among the research community because it is easy to implement and requires few control parameters to fine-tune. However, the typical SSA encounters confinement issues in local optima and an insufficient convergence pace when confronted with more intricate scenarios due to deficient population diversity, local exploitation, and global exploration. Therefore, this research integrates a Quantized Orthogonal Experimentation (QOX) operator to enhance population variety and intensify SSA's local exploitation and global explorative potential. The resulting hybrid approach is named QOX-SSA. QOX-SSA's optimization skill is demonstrated using 14 fundamental and 30 advanced benchmark problems of IEEE-CEC-2014 and comparing its effectiveness to some contemporary metaheuristics. Three nonparametric tests are conducted to verify the statistical importance of QOX-SSA's results. Furthermore, the applicability of QOX-SSA is examined by implementing it to train the Radial Basis Function Neural Network to classify data and resolve problems related to optimal feature selection. Experimental outcomes of QOX-SSA over different optimization issues confirm its superior performance compared to SSA and the alternate metaheuristics used for comparative analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Singh, R.; Kaur, R.: A novel archimedes optimization algorithm with levy flight for designing microstrip patch antenna. Arab. J. Sci. Eng. 47(3), 3683–3706 (2022)CrossRef Singh, R.; Kaur, R.: A novel archimedes optimization algorithm with levy flight for designing microstrip patch antenna. Arab. J. Sci. Eng. 47(3), 3683–3706 (2022)CrossRef
2.
go back to reference Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J.: A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 55(1), 1–52 (2021) Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J.: A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 55(1), 1–52 (2021)
3.
go back to reference Neiger, V.; Pernet, C.: Deterministic computation of the characteristic polynomial in the time of matrix multiplication. J. Complex. 67, 101572 (2021)MathSciNetCrossRef Neiger, V.; Pernet, C.: Deterministic computation of the characteristic polynomial in the time of matrix multiplication. J. Complex. 67, 101572 (2021)MathSciNetCrossRef
4.
go back to reference Acevedo, J.; Pistikopoulos, E.N.: Stochastic optimization based algorithms for process synthesis under uncertainty. Comput. Chem. Eng. 22(4–5), 647–671 (1998)CrossRef Acevedo, J.; Pistikopoulos, E.N.: Stochastic optimization based algorithms for process synthesis under uncertainty. Comput. Chem. Eng. 22(4–5), 647–671 (1998)CrossRef
5.
go back to reference Li, C.; Grossmann, I.E.: A review of stochastic programming methods for optimization of process systems under uncertainty. Frontiers in Chemical Engineering 2, 34 (2021)CrossRef Li, C.; Grossmann, I.E.: A review of stochastic programming methods for optimization of process systems under uncertainty. Frontiers in Chemical Engineering 2, 34 (2021)CrossRef
6.
go back to reference Kennedy, J; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE. (1995) Kennedy, J; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE. (1995)
7.
go back to reference Storn, R.: Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report. International Computer Science Institute, 11. (1995) Storn, R.: Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report. International Computer Science Institute, 11. (1995)
8.
go back to reference Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRef Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRef
9.
go back to reference Panda, N.; Majhi, S.K.; Pradhan, R.: A hybrid approach of spotted hyena optimization integrated with quadratic approximation for training wavelet neural network. Arab. J. Sci. Eng. 47(8), 1–17 (2022)CrossRef Panda, N.; Majhi, S.K.; Pradhan, R.: A hybrid approach of spotted hyena optimization integrated with quadratic approximation for training wavelet neural network. Arab. J. Sci. Eng. 47(8), 1–17 (2022)CrossRef
10.
go back to reference Ramana, B.V.; Panda, N.S.; Mohapatra, H.; Dalai, A.K.; Majhi, S.K.: Improved chaotic grey wolf optimization for training neural networks. J. Sci. Ind. Res. 82(11), 1193–1207 (2023) Ramana, B.V.; Panda, N.S.; Mohapatra, H.; Dalai, A.K.; Majhi, S.K.: Improved chaotic grey wolf optimization for training neural networks. J. Sci. Ind. Res. 82(11), 1193–1207 (2023)
11.
go back to reference Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H.: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)CrossRef Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H.: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)CrossRef
12.
go back to reference Lazić, L.J.U.B.O.M.I.R.: Use of orthogonal arrays and design of experiments via Taguchi methods in software testing. Recent Adv. Appl. Theor. Math. 23(2), 256–267 (2013) Lazić, L.J.U.B.O.M.I.R.: Use of orthogonal arrays and design of experiments via Taguchi methods in software testing. Recent Adv. Appl. Theor. Math. 23(2), 256–267 (2013)
13.
go back to reference Tang, A.; Gong, P.; Huang, Y.; Xiong, R.; Hu, Y.; Feng, R.: Orthogonal design based pulse preheating strategy for cold lithium-ion batteries. Appl. Energy 355, 122277 (2024)CrossRef Tang, A.; Gong, P.; Huang, Y.; Xiong, R.; Hu, Y.; Feng, R.: Orthogonal design based pulse preheating strategy for cold lithium-ion batteries. Appl. Energy 355, 122277 (2024)CrossRef
14.
go back to reference Liang, J.J.; Qu, B.Y.; Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635, p 490. (2013) Liang, J.J.; Qu, B.Y.; Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635, p 490. (2013)
15.
go back to reference Oyang, Y.J.; Hwang, S.C.; Ou, Y.Y.; Chen, C.Y.; Chen, Z.W.: Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans. Neural Networks 16(1), 225–236 (2005)CrossRef Oyang, Y.J.; Hwang, S.C.; Ou, Y.Y.; Chen, C.Y.; Chen, Z.W.: Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans. Neural Networks 16(1), 225–236 (2005)CrossRef
16.
go back to reference Chandrashekar, G.; Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef Chandrashekar, G.; Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef
17.
go back to reference Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRef Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRef
18.
go back to reference Singh, N.; Houssein, E.H.; Singh, S.B.; Dhiman, G.: HSSAHHO: a novel hybrid Salp swarm-Harris hawks optimization algorithm for complex engineering problems. J. Ambient. Intell. Humaniz. Comput. 14(9), 11569–11605 (2023)CrossRef Singh, N.; Houssein, E.H.; Singh, S.B.; Dhiman, G.: HSSAHHO: a novel hybrid Salp swarm-Harris hawks optimization algorithm for complex engineering problems. J. Ambient. Intell. Humaniz. Comput. 14(9), 11569–11605 (2023)CrossRef
19.
go back to reference Mohamed, A.A.; Abdellatif, A.D.; Alburaikan, A.; Khalifa, H.A.E.W.; Elaziz, M.A.; Abualigah, L.; AbdelMouty, A.M.: A novel hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing. Soft. Comput. 27(9), 5769–5780 (2023)CrossRef Mohamed, A.A.; Abdellatif, A.D.; Alburaikan, A.; Khalifa, H.A.E.W.; Elaziz, M.A.; Abualigah, L.; AbdelMouty, A.M.: A novel hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing. Soft. Comput. 27(9), 5769–5780 (2023)CrossRef
20.
go back to reference Alkoffash, M.S.; Awadallah, M.A.; Alweshah, M.; Zitar, R.A.; Assaleh, K.; Al-Betar, M.A.: A non-convex economic load dispatch using hybrid salp swarm algorithm. Arab. J. Sci. Eng. 46(9), 8721–8740 (2021)CrossRef Alkoffash, M.S.; Awadallah, M.A.; Alweshah, M.; Zitar, R.A.; Assaleh, K.; Al-Betar, M.A.: A non-convex economic load dispatch using hybrid salp swarm algorithm. Arab. J. Sci. Eng. 46(9), 8721–8740 (2021)CrossRef
21.
go back to reference Kundu, T.; Jain, P.K.: A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl. Intell. 52(11), 1–38 (2022)CrossRef Kundu, T.; Jain, P.K.: A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl. Intell. 52(11), 1–38 (2022)CrossRef
22.
go back to reference Kamel, S.; Ebeed, M.; Jurado, F.: An improved version of salp swarm algorithm for solving optimal power flow problem. Soft. Comput. 25(5), 4027–4052 (2021)CrossRef Kamel, S.; Ebeed, M.; Jurado, F.: An improved version of salp swarm algorithm for solving optimal power flow problem. Soft. Comput. 25(5), 4027–4052 (2021)CrossRef
23.
go back to reference Gupta, S.; Deep, K.; Heidari, A.A.; Moayedi, H.; Chen, H.: Harmonized salp chain-built optimization. Eng. Comput. 37(2), 1049–1079 (2021)CrossRef Gupta, S.; Deep, K.; Heidari, A.A.; Moayedi, H.; Chen, H.: Harmonized salp chain-built optimization. Eng. Comput. 37(2), 1049–1079 (2021)CrossRef
24.
go back to reference Panda, N.; Majhi, S.K.: Improved salp swarm algorithm with space transformation search for training neural network. Arab. J. Sci. Eng. 45(4), 2743–2761 (2020)CrossRef Panda, N.; Majhi, S.K.: Improved salp swarm algorithm with space transformation search for training neural network. Arab. J. Sci. Eng. 45(4), 2743–2761 (2020)CrossRef
25.
go back to reference Zhang, Q.; Leung, Y.W.: An orthogonal genetic algorithm for multimedia multicast routing. IEEE Trans. Evol. Comput. 3(1), 53–62 (1999)CrossRef Zhang, Q.; Leung, Y.W.: An orthogonal genetic algorithm for multimedia multicast routing. IEEE Trans. Evol. Comput. 3(1), 53–62 (1999)CrossRef
26.
go back to reference Leung, Y.W.; Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)CrossRef Leung, Y.W.; Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)CrossRef
27.
go back to reference Zhan, Z.H.; Zhang, J.; Li, Y.; Shi, Y.H.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2010)CrossRef Zhan, Z.H.; Zhang, J.; Li, Y.; Shi, Y.H.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2010)CrossRef
28.
go back to reference Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Quantized salp swarm algorithm (QSSA) for optimal feature selection. Int. J. Inf. Technol. 15(2), 725–734 (2023) Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Quantized salp swarm algorithm (QSSA) for optimal feature selection. Int. J. Inf. Technol. 15(2), 725–734 (2023)
29.
go back to reference Alsubai, S.; Dutta, A.K.; Alkhayyat, A.H.; Jaber, M.M.; Abbas, A.H.; Kumar, A.: Hybrid deep learning with improved salp swarm optimization based multi-class grape disease classification model. Comput. Electr. Eng. 108, 108733 (2023)CrossRef Alsubai, S.; Dutta, A.K.; Alkhayyat, A.H.; Jaber, M.M.; Abbas, A.H.; Kumar, A.: Hybrid deep learning with improved salp swarm optimization based multi-class grape disease classification model. Comput. Electr. Eng. 108, 108733 (2023)CrossRef
30.
go back to reference Qaraad, M.; Amjad, S.; Hussein, N.K.; Elhosseini, M.A.: Large scale salp-based grey wolf optimization for feature selection and global optimization. Neural Comput. Appl. 34(11), 8989–9014 (2022)CrossRef Qaraad, M.; Amjad, S.; Hussein, N.K.; Elhosseini, M.A.: Large scale salp-based grey wolf optimization for feature selection and global optimization. Neural Comput. Appl. 34(11), 8989–9014 (2022)CrossRef
31.
go back to reference Alsaleh, A.; Binsaeedan, W.: The influence of salp swarm algorithm-based feature selection on network anomaly intrusion detection. IEEE Access 9, 112466–112477 (2021)CrossRef Alsaleh, A.; Binsaeedan, W.: The influence of salp swarm algorithm-based feature selection on network anomaly intrusion detection. IEEE Access 9, 112466–112477 (2021)CrossRef
32.
go back to reference Tubishat, M.; Ja’afar, S.; Alswaitti, M.; Mirjalili, S.; Idris, N.; Ismail, M.A.; Omar, M.S.: Dynamic salp swarm algorithm for feature selection. Expert Syst. Appl. 164, 113873 (2021)CrossRef Tubishat, M.; Ja’afar, S.; Alswaitti, M.; Mirjalili, S.; Idris, N.; Ismail, M.A.; Omar, M.S.: Dynamic salp swarm algorithm for feature selection. Expert Syst. Appl. 164, 113873 (2021)CrossRef
33.
go back to reference Shekhawat, S.S.; Sharma, H.; Kumar, S.; Nayyar, A.; Qureshi, B.: bSSA: binary salp swarm algorithm with hybrid data transformation for feature selection. IEEE Access 9, 14867–14882 (2021)CrossRef Shekhawat, S.S.; Sharma, H.; Kumar, S.; Nayyar, A.; Qureshi, B.: bSSA: binary salp swarm algorithm with hybrid data transformation for feature selection. IEEE Access 9, 14867–14882 (2021)CrossRef
34.
go back to reference Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Hybrid PSO (SGPSO) with the Incorporation of discretization operator for training RBF neural network and optimal feature selection. Arab. J. Sci. Eng. 48(8), 9991–10019 (2023)CrossRef Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Hybrid PSO (SGPSO) with the Incorporation of discretization operator for training RBF neural network and optimal feature selection. Arab. J. Sci. Eng. 48(8), 9991–10019 (2023)CrossRef
35.
go back to reference Yang, X.; Li, Y.; Sun, Y.; Long, T.; Sarkar, T.K.: Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation. IEEE Trans. Antennas Propag. 66(6), 3097–3107 (2018) Yang, X.; Li, Y.; Sun, Y.; Long, T.; Sarkar, T.K.: Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation. IEEE Trans. Antennas Propag. 66(6), 3097–3107 (2018)
36.
go back to reference Li, T.; Liu, X.; Lin, Z.; Morrison, R.: Ensemble offshore wind turbine power curve modelling–an integration of isolation forest, fast radial basis function neural network, and metaheuristic algorithm. Energy 239, 122340 (2022)CrossRef Li, T.; Liu, X.; Lin, Z.; Morrison, R.: Ensemble offshore wind turbine power curve modelling–an integration of isolation forest, fast radial basis function neural network, and metaheuristic algorithm. Energy 239, 122340 (2022)CrossRef
37.
go back to reference Kaur, A.; Pal, S.K.; Singh, A.P.: Hybridization of K-means and firefly algorithm for intrusion detection system. Int. J. Syst. Assur. Eng. Manag. 9(4), 901–910 (2018)CrossRef Kaur, A.; Pal, S.K.; Singh, A.P.: Hybridization of K-means and firefly algorithm for intrusion detection system. Int. J. Syst. Assur. Eng. Manag. 9(4), 901–910 (2018)CrossRef
38.
go back to reference Taguchi, G.; Konishi, S.: Orthogonal arrays and linear graphs. American Supplier Institute, Dearborn (1986) Taguchi, G.; Konishi, S.: Orthogonal arrays and linear graphs. American Supplier Institute, Dearborn (1986)
39.
go back to reference Kacker, R.N.; Lagergren, E.S.; Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Nat. Inst. Stand. Technol. 96(5), 577 (1991)CrossRef Kacker, R.N.; Lagergren, E.S.; Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Nat. Inst. Stand. Technol. 96(5), 577 (1991)CrossRef
40.
go back to reference Mongomery, D.C.: Montgomery: design and analysis of experiments. John Willy Sons (2017) Mongomery, D.C.: Montgomery: design and analysis of experiments. John Willy Sons (2017)
41.
go back to reference Hicks, C.R.: Fundamental concepts in the design of experiments. (1964) Hicks, C.R.: Fundamental concepts in the design of experiments. (1964)
42.
go back to reference Hedayat, A.S.; Sloane, N.J.A.; Stufken, J.: Orthogonal arrays: theory and applications. Springer (2012) Hedayat, A.S.; Sloane, N.J.A.; Stufken, J.: Orthogonal arrays: theory and applications. Springer (2012)
43.
go back to reference Bari, A.; Zhao, R.; Pothineni, J.S.; Saravanan, D.: Swarm Intelligence Algorithms and Applications: An Experimental Survey. In: International Conference on Swarm Intelligence (pp. 3–17). Cham: Springer Nature Switzerland. (2023) Bari, A.; Zhao, R.; Pothineni, J.S.; Saravanan, D.: Swarm Intelligence Algorithms and Applications: An Experimental Survey. In: International Conference on Swarm Intelligence (pp. 3–17). Cham: Springer Nature Switzerland. (2023)
44.
go back to reference Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q.: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol. Comput. 77, 101248 (2023)CrossRef Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q.: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol. Comput. 77, 101248 (2023)CrossRef
45.
go back to reference Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef
46.
go back to reference Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRef Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRef
47.
go back to reference Yang, X.S.; Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010) Yang, X.S.; Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)
48.
go back to reference Yang, X.S.: Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-insp. Comput. 2(2), 78–84 (2010)CrossRef Yang, X.S.: Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-insp. Comput. 2(2), 78–84 (2010)CrossRef
49.
go back to reference Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)CrossRef Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)CrossRef
50.
go back to reference Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)CrossRef Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)CrossRef
51.
go back to reference Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetCrossRef Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetCrossRef
54.
go back to reference Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: An improved pathfinder algorithm (ASDR-PFA) based on adaptation of search dimensional ratio for solving global optimization problems and optimal feature selection. Progress Artif. Intell. 12(4), 323–348 (2023)CrossRef Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: An improved pathfinder algorithm (ASDR-PFA) based on adaptation of search dimensional ratio for solving global optimization problems and optimal feature selection. Progress Artif. Intell. 12(4), 323–348 (2023)CrossRef
55.
go back to reference Broomhead, D.S; Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom). (1988) Broomhead, D.S; Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom). (1988)
56.
go back to reference Ahmed, A.; Hussein, S.E.: Leaf identification using radial basis function neural networks and SSA based support vector machine. PLoS ONE 15(8), e0237645 (2020)CrossRef Ahmed, A.; Hussein, S.E.: Leaf identification using radial basis function neural networks and SSA based support vector machine. PLoS ONE 15(8), e0237645 (2020)CrossRef
57.
go back to reference Qian, X.; Huang, H.; Chen, X.; Huang, T.: Efficient construction of sparse radial basis function neural networks using L1-regularization. Neural Netw. 94, 239–254 (2017)CrossRef Qian, X.; Huang, H.; Chen, X.; Huang, T.: Efficient construction of sparse radial basis function neural networks using L1-regularization. Neural Netw. 94, 239–254 (2017)CrossRef
58.
go back to reference Hu, L.; Li, R.; Xue, T.; Liu, Y.: Neuro-adaptive tracking control of a hypersonic flight vehicle with uncertainties using reinforcement synthesis. Neurocomputing 285, 141–153 (2018)CrossRef Hu, L.; Li, R.; Xue, T.; Liu, Y.: Neuro-adaptive tracking control of a hypersonic flight vehicle with uncertainties using reinforcement synthesis. Neurocomputing 285, 141–153 (2018)CrossRef
59.
go back to reference Qtaish, A.; Braik, M.; Albashish, D.; Alshammari, M.T.; Alreshidi, A.; Alreshidi, E.J.: Optimization of K-means clustering method using hybrid capuchin search algorithm. J. Supercomput. 80(2), 1–60 (2023) Qtaish, A.; Braik, M.; Albashish, D.; Alshammari, M.T.; Alreshidi, A.; Alreshidi, E.J.: Optimization of K-means clustering method using hybrid capuchin search algorithm. J. Supercomput. 80(2), 1–60 (2023)
60.
go back to reference Van der Merwe, D.W.; Engelbrecht, A.P.: December. Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215–220). IEEE. (2003) Van der Merwe, D.W.; Engelbrecht, A.P.: December. Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215–220). IEEE. (2003)
61.
go back to reference Pan, Z.; Wang, Y.; Pan, Y.: A new locally adaptive k-nearest neighbour algorithm based on discrimination class. Knowl.-Based Syst. 204, 106185 (2020)CrossRef Pan, Z.; Wang, Y.; Pan, Y.: A new locally adaptive k-nearest neighbour algorithm based on discrimination class. Knowl.-Based Syst. 204, 106185 (2020)CrossRef
63.
go back to reference Abdelhamid, A.A.; El-Kenawy, E.S.M.; Ibrahim, A.; Eid, M.M.; Khafaga, D.S.; Alhussan, A.A.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Shams, M.Y.: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access. 11, 79750–79776 (2023)CrossRef Abdelhamid, A.A.; El-Kenawy, E.S.M.; Ibrahim, A.; Eid, M.M.; Khafaga, D.S.; Alhussan, A.A.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Shams, M.Y.: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access. 11, 79750–79776 (2023)CrossRef
64.
go back to reference Navazi, F.; Yuan, Y.; Archer, N.: An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Anal. 4, 100227 (2023)CrossRef Navazi, F.; Yuan, Y.; Archer, N.: An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Anal. 4, 100227 (2023)CrossRef
65.
go back to reference Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S.: Feature selection using chaotic salp swarm algorithm for data classification. Arab. J. Sci. Eng. 44(4), 3801–3816 (2019)CrossRef Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S.: Feature selection using chaotic salp swarm algorithm for data classification. Arab. J. Sci. Eng. 44(4), 3801–3816 (2019)CrossRef
Metadata
Title
Quantized Orthogonal Experimentation SSA (QOX-SSA): A Hybrid Technique for Feature Selection (FS) and Neural Network Training
Authors
Ajit Kumar Mahapatra
Nibedan Panda
Binod Kumar Pattanayak
Publication date
17-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-024-09113-3

Premium Partners