Skip to main content
Top

08-05-2024 | Regular Paper

Selective ensemble of doubly weighted fuzzy extreme learning machine for tumor classification

Author: Yang Wang

Published in: Progress in Artificial Intelligence

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Malignant epithelial cell tumor also known as cancer is a deadly disease requiring a very costly and complex treatment. Early and accurate diagnosis of tumor plays an important role in reducing the mortality rate. With the rapid development of gene chip technology, gene expression data based tumor classification is helpful for accurate decision-making and has achieved great attention of researchers. Due to gene expression data having the properties of multi-class imbalance, high noise and high-dimensional small samples, in this paper, selective ensemble of doubly weighted fuzzy extreme learning machine (SEN-DWFELM) is presented for tumor classification. In view of good generalization performance of extreme learning machine (ELM), feature weighted fuzzy membership is embedded in ELM for eliminating classification error from noise samples. It considers the influence of feature importance on classification to acquire more accurate fuzzy membership. Simultaneously, by removing features with smaller weights it reduces the dimensionality of samples to improve training efficiency. Considering imbalanced learning, the weighted scheme is also introduced to enhance the effect of minority class samples on classification. Furthermore, doubly weighted fuzzy extreme learning machine (DWFELM) based selective ensemble algorithm is proposed to make classification performance more robust. Partial-based DWFELMs are selected using binary version of an improved whale optimization algorithm, and the selected base DWFELMs are integrated by majority voting. Finally, the proposed SEN-DWFELM is compared with conventional ensemble methods and variants of SEN-DWFELM on various gene expression data. Experimental results show that SEN-DWFELM remarkably outperforms other competitors in accordance with classification performance and can effectively deal with tumor diagnosis problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, W., Sun, K., Zeng, R., et al.: Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res. 30(1), 1–12 (2018)CrossRef Chen, W., Sun, K., Zeng, R., et al.: Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res. 30(1), 1–12 (2018)CrossRef
2.
go back to reference Kar, S., Sharma, K.D., Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)CrossRef Kar, S., Sharma, K.D., Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)CrossRef
3.
go back to reference Sun, L., Zhang, X.Y., Qian, Y.H., Xu, J.C., Zhang, S.G.: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification. Inf. Sci. 502, 18–41 (2019)MathSciNetCrossRef Sun, L., Zhang, X.Y., Qian, Y.H., Xu, J.C., Zhang, S.G.: Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification. Inf. Sci. 502, 18–41 (2019)MathSciNetCrossRef
4.
go back to reference Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef
5.
go back to reference Wu, C., Li, Y.Q., Zhao, Z.B., Liu, B.: Extreme learning machine with autoencoding receptive fields for image classification. Neural Comput. Appl. 32, 8157–8173 (2020)CrossRef Wu, C., Li, Y.Q., Zhao, Z.B., Liu, B.: Extreme learning machine with autoencoding receptive fields for image classification. Neural Comput. Appl. 32, 8157–8173 (2020)CrossRef
6.
go back to reference Wong, P.K., Huang, W., Vong, C.M., Yang, Z.X.: Adaptive neural tracking control for automotive engine idle speed regulation using extreme learning machine. Neural Comput. Appl. 32, 14399–14409 (2020)CrossRef Wong, P.K., Huang, W., Vong, C.M., Yang, Z.X.: Adaptive neural tracking control for automotive engine idle speed regulation using extreme learning machine. Neural Comput. Appl. 32, 14399–14409 (2020)CrossRef
7.
go back to reference Mohammed, A.A., Minhas, R., Wu, Q.M.J., Sid-Ahmed, M.A.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 44(10), 2588–2597 (2012) Mohammed, A.A., Minhas, R., Wu, Q.M.J., Sid-Ahmed, M.A.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit. 44(10), 2588–2597 (2012)
8.
go back to reference Kaya, Y., Uyar, M.: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease. Appl. Soft Comput. 13(8), 3429–3438 (2013)CrossRef Kaya, Y., Uyar, M.: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease. Appl. Soft Comput. 13(8), 3429–3438 (2013)CrossRef
9.
go back to reference Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72(13), 3391–3395 (2009)CrossRef Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72(13), 3391–3395 (2009)CrossRef
10.
go back to reference Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)MathSciNetCrossRef Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)MathSciNetCrossRef
11.
go back to reference Shigei, N., Miyajima, H., Maeda, M., et al.: Bagging and AdaBoost algorithms for vector quantization. Neurocomputing 73(1), 106–114 (2009)CrossRef Shigei, N., Miyajima, H., Maeda, M., et al.: Bagging and AdaBoost algorithms for vector quantization. Neurocomputing 73(1), 106–114 (2009)CrossRef
12.
go back to reference Li, K., Kong, X., Lu, Z., Liu, W., Yin, J.: Boosting weighted ELM for imbalanced learning. Neurocomputing 128, 15–21 (2014)CrossRef Li, K., Kong, X., Lu, Z., Liu, W., Yin, J.: Boosting weighted ELM for imbalanced learning. Neurocomputing 128, 15–21 (2014)CrossRef
13.
go back to reference Cao, J.W., Lin, Z.P., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)MathSciNetCrossRef Cao, J.W., Lin, Z.P., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)MathSciNetCrossRef
14.
go back to reference Lu, H.J., An, C.L., Zheng, E.H., Lu, Y.: Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128, 22–30 (2014)CrossRef Lu, H.J., An, C.L., Zheng, E.H., Lu, Y.: Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128, 22–30 (2014)CrossRef
15.
go back to reference Zhang, W.B., Ji, H.B.: Fuzzy extreme learning machine for classification. Electron. Lett. 49(7), 448–449 (2013)CrossRef Zhang, W.B., Ji, H.B.: Fuzzy extreme learning machine for classification. Electron. Lett. 49(7), 448–449 (2013)CrossRef
16.
go back to reference He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef
17.
go back to reference Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)CrossRef Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)CrossRef
18.
go back to reference Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39(2), 539–550 (2009)CrossRef Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39(2), 539–550 (2009)CrossRef
19.
go back to reference Gupta, U., Gupta, D.: Bipolar fuzzy based least squares twin bounded support vector machine. Fuzzy Set. Syst. 449, 120–161 (2022)MathSciNetCrossRef Gupta, U., Gupta, D.: Bipolar fuzzy based least squares twin bounded support vector machine. Fuzzy Set. Syst. 449, 120–161 (2022)MathSciNetCrossRef
20.
go back to reference Hazarika, B.B., Gupta, D.: Density-weighted support vector machines for binary class imbalance learning. Neural Comput. Appl. 33(9), 4243–4261 (2021)CrossRef Hazarika, B.B., Gupta, D.: Density-weighted support vector machines for binary class imbalance learning. Neural Comput. Appl. 33(9), 4243–4261 (2021)CrossRef
21.
go back to reference Gupta, D.: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization. Appl. Intell. 47(3), 962–991 (2017)CrossRef Gupta, D.: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization. Appl. Intell. 47(3), 962–991 (2017)CrossRef
22.
go back to reference Hazarika, B.B., Gupta, D.: Density weighted twin support vector machines for binary class imbalance learning. Neural Process. Lett. 54(2), 1091–1130 (2022)CrossRef Hazarika, B.B., Gupta, D.: Density weighted twin support vector machines for binary class imbalance learning. Neural Process. Lett. 54(2), 1091–1130 (2022)CrossRef
23.
go back to reference Hancer, E., Xue, B., Zhang, M.J.: Differential evolution for filter feature selection based on information theory and feature ranking. Knowl.-based Syst. 140, 103–119 (2018)CrossRef Hancer, E., Xue, B., Zhang, M.J.: Differential evolution for filter feature selection based on information theory and feature ranking. Knowl.-based Syst. 140, 103–119 (2018)CrossRef
24.
go back to reference Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRef
25.
go back to reference Yan, Z.P., Zhang, J.Z., Zeng, J., Tang, J.L.: Nature-inspired approach: an enhanced whale optimization algorithm for global optimization. Math. Comput. Simul. 185, 17–46 (2021)MathSciNetCrossRef Yan, Z.P., Zhang, J.Z., Zeng, J., Tang, J.L.: Nature-inspired approach: an enhanced whale optimization algorithm for global optimization. Math. Comput. Simul. 185, 17–46 (2021)MathSciNetCrossRef
26.
go back to reference Sun, Y.J., Wang, X.L., Chen, Y.H., Liu, Z.J.: A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst. Appl. 114, 563–577 (2018)CrossRef Sun, Y.J., Wang, X.L., Chen, Y.H., Liu, Z.J.: A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst. Appl. 114, 563–577 (2018)CrossRef
27.
go back to reference Fan, Q., Chen, Z.J., Li, Z., Xia, Z.H., Yu, J.Y., Wang, D.Z.: A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Eng. Comput. 37(3), 1851–1878 (2021)CrossRef Fan, Q., Chen, Z.J., Li, Z., Xia, Z.H., Yu, J.Y., Wang, D.Z.: A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Eng. Comput. 37(3), 1851–1878 (2021)CrossRef
28.
go back to reference Wang, J.Z., Du, P., Niu, T., Yang, W.D.: A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Appl. Energy 208, 344–360 (2017)CrossRef Wang, J.Z., Du, P., Niu, T., Yang, W.D.: A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Appl. Energy 208, 344–360 (2017)CrossRef
29.
go back to reference Aziz, M.A.E., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)CrossRef Aziz, M.A.E., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)CrossRef
30.
go back to reference Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017)CrossRef Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017)CrossRef
31.
go back to reference Gao, L.Y., Ye, M.Q., Lu, X.J., Huang, D.B.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genom. Proteom. Bioinf. 15(6), 389–395 (2017)CrossRef Gao, L.Y., Ye, M.Q., Lu, X.J., Huang, D.B.: Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genom. Proteom. Bioinf. 15(6), 389–395 (2017)CrossRef
32.
go back to reference Rani, M.J., Devaraj, D.: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification. J. Med. Syst. 43(8), 235 (2019)CrossRef Rani, M.J., Devaraj, D.: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification. J. Med. Syst. 43(8), 235 (2019)CrossRef
33.
go back to reference Tavasoli, N., Rezaee, K., Momenzadeh, M., Sehhati, M.: An ensemble soft weighted gene selection-based approach and cancer classification using modified metaheuristic learning. J. Comput. Des. Eng. 8(4), 1172–1189 (2021) Tavasoli, N., Rezaee, K., Momenzadeh, M., Sehhati, M.: An ensemble soft weighted gene selection-based approach and cancer classification using modified metaheuristic learning. J. Comput. Des. Eng. 8(4), 1172–1189 (2021)
34.
go back to reference Lu, H.J., Chen, J.Y., Yan, K., Jin, Q., Xue, Y., Gao, Z.G.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)CrossRef Lu, H.J., Chen, J.Y., Yan, K., Jin, Q., Xue, Y., Gao, Z.G.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)CrossRef
35.
go back to reference Mondal, M., Semwal, R., Raj, U., Aier, I., Varadwaj, P.K.: An entropy-based classification of breast cancerous genes using microarray data. Neural Comput. Appl. 32(7), 2397–2404 (2020)CrossRef Mondal, M., Semwal, R., Raj, U., Aier, I., Varadwaj, P.K.: An entropy-based classification of breast cancerous genes using microarray data. Neural Comput. Appl. 32(7), 2397–2404 (2020)CrossRef
36.
go back to reference Shukla, A.K., Singh, P., Vardhan, M.: Gene selection for cancer types classification using novel hybrid metaheuristics approach. Swarm Evol. Comput. 54, 100661 (2020)CrossRef Shukla, A.K., Singh, P., Vardhan, M.: Gene selection for cancer types classification using novel hybrid metaheuristics approach. Swarm Evol. Comput. 54, 100661 (2020)CrossRef
37.
go back to reference Dabba, A., Tari, A., Meftali, S., Mokhtari, R.: Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst. Appl. 166, 114012 (2021)CrossRef Dabba, A., Tari, A., Meftali, S., Mokhtari, R.: Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst. Appl. 166, 114012 (2021)CrossRef
38.
go back to reference Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: Enhanced kernel-based multilayer fuzzy weighted extreme learning machines. IEEE Access 8, 166246–166260 (2020)CrossRef Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: Enhanced kernel-based multilayer fuzzy weighted extreme learning machines. IEEE Access 8, 166246–166260 (2020)CrossRef
39.
go back to reference Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease. Biomed. Signal Process. Control 38, 400–410 (2017)CrossRef Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease. Biomed. Signal Process. Control 38, 400–410 (2017)CrossRef
40.
go back to reference Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2), 525–536 (1998)MathSciNetCrossRef Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2), 525–536 (1998)MathSciNetCrossRef
41.
go back to reference Zong, W.W., Huang, G.B., Chen, Y.Q.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101(3), 229–242 (2013)CrossRef Zong, W.W., Huang, G.B., Chen, Y.Q.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101(3), 229–242 (2013)CrossRef
42.
go back to reference Palma-Mendoza, R.J., Rodriguez, D., De-Marcos, L.: Distributed ReliefF-based feature selection in spark. Knowl. Inf. Syst. 57(1), 1–20 (2018)CrossRef Palma-Mendoza, R.J., Rodriguez, D., De-Marcos, L.: Distributed ReliefF-based feature selection in spark. Knowl. Inf. Syst. 57(1), 1–20 (2018)CrossRef
43.
go back to reference Alotaibi, A.S.: Hybrid model based on ReliefF algorithm and k-nearest neighbor for erythemato-squamous diseases forecasting. Arab. J. Sci. Eng. 47(2), 1299–1307 (2022)CrossRef Alotaibi, A.S.: Hybrid model based on ReliefF algorithm and k-nearest neighbor for erythemato-squamous diseases forecasting. Arab. J. Sci. Eng. 47(2), 1299–1307 (2022)CrossRef
44.
go back to reference Tizhoosh, R.H.: Opposition-based learning: A new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 695–701 (2005) Tizhoosh, R.H.: Opposition-based learning: A new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 695–701 (2005)
45.
go back to reference Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2229-2236 (2007) Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2229-2236 (2007)
46.
go back to reference Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Network, pp. 1942–1948 (1995) Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Network, pp. 1942–1948 (1995)
47.
go back to reference Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 4104–4108 (1997) Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 4104–4108 (1997)
49.
go back to reference Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: Ensemble based fuzzy weighted extreme learning machine for gene expression classification. Appl. Intell. 49, 1161–1171 (2019)CrossRef Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: Ensemble based fuzzy weighted extreme learning machine for gene expression classification. Appl. Intell. 49, 1161–1171 (2019)CrossRef
Metadata
Title
Selective ensemble of doubly weighted fuzzy extreme learning machine for tumor classification
Author
Yang Wang
Publication date
08-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Progress in Artificial Intelligence
Print ISSN: 2192-6352
Electronic ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-024-00319-y

Premium Partner