Skip to main content
Top

2024 | OriginalPaper | Chapter

9. Sense Amplifier for Spin-Based Cryogenic Memory Cell

Authors : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Published in: Single Flux Quantum Integrated Circuit Design

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the primary drawbacks limiting the use of superconductive electronics is the lack of fast and dense memory capable of operating within a cryogenic environment. Recent research suggests the use of cryogenic spin-based memory—magnetic tunnel junctions and spin valves. In this chapter, a sense amplifier topology for a spin-based cryogenic memory cell is proposed and described. The nanocryotron (nTron) device is used as a driver for a spin-based memory element—the cryogenic orthogonal spin transfer device. A clocked DC-to-SFQ converter is used as a sense amplifier to resolve small differences in the readout current. The sense amplifier produces a variable number of SFQ pulses to represent different analog states by passing or blocking input clock pulses. This clock is derived from the system clock by synchronizing the read pulse to the same clock signal. These output pulses are counted and converted into a binary form. The sense amplifier exploits the specific shape of the nTron output waveform characterized by an L/R time constant to achieve the resolution of low magnetoresistance (MR) memory cells and is adaptable to different nTron sizes, bias currents, and spin-based devices. The dynamic power dissipation and resolution of the sense amplifier can be adjusted by the frequency of the applied clock signal, allowing the resolution to be reduced for high MR devices. The sense amplifier consists of two Josephson junctions, requiring little area, particularly in comparison to a standard nTron device, and can therefore be connected to each column of the memory array.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
23.
go back to reference F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017) F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)
25.
go back to reference K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
44.
go back to reference O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)CrossRef O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)CrossRef
47.
go back to reference T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023) T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)
58.
go back to reference R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
60.
go back to reference T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
97.
go back to reference A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef
98.
go back to reference G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
104.
go back to reference G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018) G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)
110.
go back to reference G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
131.
go back to reference G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
go back to reference G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
146.
go back to reference T. Jabbari, G. Krylov, E.G. Friedman, Logic locking in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5) (2021) T. Jabbari, G. Krylov, E.G. Friedman, Logic locking in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5) (2021)
147.
go back to reference Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
148.
go back to reference T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef
159.
go back to reference G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
178.
go back to reference I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)CrossRef I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)CrossRef
197.
go back to reference L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014) L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014)
285.
go back to reference A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88(11), 111116 (2006) A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88(11), 111116 (2006)
286.
go back to reference Q. Liu, T. Van Duzer, X. Meng, S.R. Whiteley, K. Fujiwara, T. Tomida, K. Tokuda, N. Yoshikawa, Simulation and measurements on a 64-kbit hybrid Josephson-CMOS memory. IEEE Trans. Appl. Supercond. 15(2), 415–418 (2005)CrossRef Q. Liu, T. Van Duzer, X. Meng, S.R. Whiteley, K. Fujiwara, T. Tomida, K. Tokuda, N. Yoshikawa, Simulation and measurements on a 64-kbit hybrid Josephson-CMOS memory. IEEE Trans. Appl. Supercond. 15(2), 415–418 (2005)CrossRef
287.
go back to reference J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007)CrossRef J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007)CrossRef
288.
go back to reference J.R. Clem, V.G. Kogan, Kinetic impedance and depairing in thin and narrow superconducting films. Phys. Rev. B 86, 174521 (2012)CrossRef J.R. Clem, V.G. Kogan, Kinetic impedance and depairing in thin and narrow superconducting films. Phys. Rev. B 86, 174521 (2012)CrossRef
Metadata
Title
Sense Amplifier for Spin-Based Cryogenic Memory Cell
Authors
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_9