Skip to main content
Top

16-05-2024 | Original Article

Study on engineering properties of bamboo fiber/biochar reinforced epoxy composites rod

Authors: B. Sriram Prasad, A. Balaji

Published in: Biomass Conversion and Biorefinery

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, natural fibers have gained more significance in a variety of civil and industrial applications, such as concrete, beams, and slabs. In addition to producing bamboo fiber reinforced epoxy 16 mm diameter biocomposites rod and biochar filler reinforced epoxy biocomposites, this study used compressive molding. Using the stacking sequence RC, RFC, R1-C, R2-C, and R3-C, five different composite rods were created with 35 weight percent (wt%) BF and BC wt% levels of 1%, 3%, and 5% biochar filler substituted with 65% epoxy. Accordingly, studies on bamboo biocomposite rods using various weight-to-content ratios of biochar filler and fiber have been conducted. To further assess the biocomposites rod, mechanical, physical morphology, and water absorption tests were performed. The results demonstrated that the rod morphologies (SEM) of the filler-reinforced biocomposites rod enhanced the fiber-to-resin bonding, which enhanced the mechanical and physical properties. Compared to the other four biocomposites, the R2-C biocomposite, which contains 3 wt% biochar filler and 35 wt% bamboo fiber, exhibits superior mechanical qualities, including outstanding compressive (84.62 N/mm2), tensile (37.1 MPa) and flexural (62.5 MPa) strength. The density results also showed that R2-C biocomposite had the highest density (1.26 g/cc). This investigation recommended the possibility of introducing bio-fiber obtained from waste agricultural residues into biocomposite rods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar KR, Shyamala G, Awoyera PO, Vedhasakthi K, Olalusi OB (2021) Cleaner production of self-compacting concrete with selected industrial rejects-an overview. Silicon 13:2809–2820CrossRef Kumar KR, Shyamala G, Awoyera PO, Vedhasakthi K, Olalusi OB (2021) Cleaner production of self-compacting concrete with selected industrial rejects-an overview. Silicon 13:2809–2820CrossRef
2.
go back to reference Tiberti G, Germano F, Mudadu A, Plizzari GA (2018) An overview of the flexural post-cracking behavior of steel fiber reinforced concrete. Struct Concr 19(3):695–718CrossRef Tiberti G, Germano F, Mudadu A, Plizzari GA (2018) An overview of the flexural post-cracking behavior of steel fiber reinforced concrete. Struct Concr 19(3):695–718CrossRef
3.
go back to reference Empelmann M, Oettel V, Cramer J (2020) Berechnung der Rissbreite von mit Stahlfasern und Betonstahl bewehrten Betonbauteilen. Beton-und Stahlbetonbau 115(2):136–145CrossRef Empelmann M, Oettel V, Cramer J (2020) Berechnung der Rissbreite von mit Stahlfasern und Betonstahl bewehrten Betonbauteilen. Beton-und Stahlbetonbau 115(2):136–145CrossRef
4.
go back to reference Oettel V, Schulz M, Haist M (2022) Empirical approach for the residual flexural tensile strength of steel fiber-reinforced concrete based on notched three-point bending tests. Struct Concr 23(2):993–1004CrossRef Oettel V, Schulz M, Haist M (2022) Empirical approach for the residual flexural tensile strength of steel fiber-reinforced concrete based on notched three-point bending tests. Struct Concr 23(2):993–1004CrossRef
5.
go back to reference Mohmod AL, Ariffin WTW, Ahmad F (1990) Anatomical features and mechanical properties of three Malaysian bamboos. J Trop For Sci 23(2):227–234 Mohmod AL, Ariffin WTW, Ahmad F (1990) Anatomical features and mechanical properties of three Malaysian bamboos. J Trop For Sci 23(2):227–234
6.
go back to reference McClure FA (1966) The bamboos: a fresh perspective. Harvard University PressCrossRef McClure FA (1966) The bamboos: a fresh perspective. Harvard University PressCrossRef
7.
go back to reference Terai M, Minami K (2012) Basic study on mechanical properties of bamboo fiber reinforced concrete. Global Think Struct Eng: Recent Achiev 8:17–24 Terai M, Minami K (2012) Basic study on mechanical properties of bamboo fiber reinforced concrete. Global Think Struct Eng: Recent Achiev 8:17–24
8.
go back to reference Hebel D, Heisel F, Javadian A (2013) Engineering Bamboo: The new composite reinforcement. In: Proceedings of the annual international conference on architecture and civil engineering (ACE 2013). Global Science and Technology Forum, pp 94–100 Hebel D, Heisel F, Javadian A (2013) Engineering Bamboo: The new composite reinforcement. In: Proceedings of the annual international conference on architecture and civil engineering (ACE 2013). Global Science and Technology Forum, pp 94–100
9.
go back to reference Bittner CM, Oettel V (2022) Fiber reinforced concrete with natural plant fibers—investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability 14(19):12011CrossRef Bittner CM, Oettel V (2022) Fiber reinforced concrete with natural plant fibers—investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability 14(19):12011CrossRef
10.
go back to reference Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77(3):288–295CrossRef Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77(3):288–295CrossRef
11.
go back to reference Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC PressCrossRef Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC PressCrossRef
12.
go back to reference Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRef Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRef
13.
go back to reference Baccouch W, Ghith A, Yalcin-Enis I, Sezgin H, Miled W, Legrand X, Faten F (2020) Enhancement of fiber-matrix interface of recycled cotton fibers reinforced epoxy composite for improved mechanical properties. Mater Res Express 7(1):015340CrossRef Baccouch W, Ghith A, Yalcin-Enis I, Sezgin H, Miled W, Legrand X, Faten F (2020) Enhancement of fiber-matrix interface of recycled cotton fibers reinforced epoxy composite for improved mechanical properties. Mater Res Express 7(1):015340CrossRef
14.
go back to reference Muñoz E, García-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:390275 Muñoz E, García-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:390275
15.
go back to reference Wang H, Memon H, Hassan AM, E., Miah, M.S. and Ali, M.A. (2019) Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials 12(8):1226CrossRef Wang H, Memon H, Hassan AM, E., Miah, M.S. and Ali, M.A. (2019) Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials 12(8):1226CrossRef
16.
go back to reference Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater Des 64:194–202CrossRef Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater Des 64:194–202CrossRef
17.
go back to reference Balaji A, Sivaramakrishnan K, Karthikeyan B, Purushothaman R, Swaminathan J, Kannan S, Udhayasankar R, Haja Madieen A (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J Braz Soc Mech Sci Eng 41:1–10CrossRef Balaji A, Sivaramakrishnan K, Karthikeyan B, Purushothaman R, Swaminathan J, Kannan S, Udhayasankar R, Haja Madieen A (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J Braz Soc Mech Sci Eng 41:1–10CrossRef
18.
go back to reference Balaji A, Kannan S, Purushothaman R, Mohanakannan S, Maideen AH, Swaminathan J, Karthikeyan B, Premkumar P (2022) Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Convers Biorefin 14:7835–7845 Balaji A, Kannan S, Purushothaman R, Mohanakannan S, Maideen AH, Swaminathan J, Karthikeyan B, Premkumar P (2022) Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Convers Biorefin 14:7835–7845
19.
go back to reference Nopparut A, Amornsakchai T (2016) Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polym Testing 52:141–149CrossRef Nopparut A, Amornsakchai T (2016) Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polym Testing 52:141–149CrossRef
20.
go back to reference Pan NC, Chattopadhyay SN, Day A (2004) Pseudo single-bath process for alkali treatment and bleaching of jute at ambient temperature. Indian J FiberText 29:79–84 Pan NC, Chattopadhyay SN, Day A (2004) Pseudo single-bath process for alkali treatment and bleaching of jute at ambient temperature. Indian J FiberText 29:79–84
21.
go back to reference AP A, Kaliappan S, Patil PP (2022) Mechanical, fracture toughness, and Dynamic Mechanical properties of twill weaved bamboo fiber-reinforced Artocarpus heterophyllus seed husk biochar epoxy composite. Polym Compos 43(11):8388–8395CrossRef AP A, Kaliappan S, Patil PP (2022) Mechanical, fracture toughness, and Dynamic Mechanical properties of twill weaved bamboo fiber-reinforced Artocarpus heterophyllus seed husk biochar epoxy composite. Polym Compos 43(11):8388–8395CrossRef
22.
go back to reference Zhang Q, Li K, Fang Y, Guo Z, Wei Y, Sheng K (2022) Conversion from bamboo waste derived biochar to cleaner composites: Synergistic effects of aramid fiber and silica. J Clean Prod 347:131336CrossRef Zhang Q, Li K, Fang Y, Guo Z, Wei Y, Sheng K (2022) Conversion from bamboo waste derived biochar to cleaner composites: Synergistic effects of aramid fiber and silica. J Clean Prod 347:131336CrossRef
23.
go back to reference Pantyukhov P, Kolesnikova N, Popov A (2016) Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polym Compos 37(5):1461–1472CrossRef Pantyukhov P, Kolesnikova N, Popov A (2016) Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polym Compos 37(5):1461–1472CrossRef
24.
go back to reference Minugu OP, Gujjala R, Shakuntala O, Manoj P, Chowdary MS (2021) Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites. Proc Inst Mech Eng C J Mech Eng Sci 235(21):5626–5638CrossRef Minugu OP, Gujjala R, Shakuntala O, Manoj P, Chowdary MS (2021) Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites. Proc Inst Mech Eng C J Mech Eng Sci 235(21):5626–5638CrossRef
25.
go back to reference Qian S, Tao Y, Ruan Y, Lopez CAF, Xu L (2018) Ultrafine bamboo-char as a new reinforcement in poly (lactic acid)/bamboo particle biocomposites: the effects on mechanical, thermal, and morphological properties. J Mater Res 33(22):3870–3879CrossRef Qian S, Tao Y, Ruan Y, Lopez CAF, Xu L (2018) Ultrafine bamboo-char as a new reinforcement in poly (lactic acid)/bamboo particle biocomposites: the effects on mechanical, thermal, and morphological properties. J Mater Res 33(22):3870–3879CrossRef
26.
go back to reference Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A (2019) Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenerg 120:219–223CrossRef Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A (2019) Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenerg 120:219–223CrossRef
27.
go back to reference Wang X, Yu Z, McDonald AG (2019) Effect of different reinforcing fillers on properties, interfacial compatibility and weatherability of wood-plastic composites. J Bionic Eng 16:337–353CrossRef Wang X, Yu Z, McDonald AG (2019) Effect of different reinforcing fillers on properties, interfacial compatibility and weatherability of wood-plastic composites. J Bionic Eng 16:337–353CrossRef
28.
go back to reference Das C, Tamrakar S, Kiziltas A, Xie X (2021) Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers 13(16):2663CrossRef Das C, Tamrakar S, Kiziltas A, Xie X (2021) Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers 13(16):2663CrossRef
29.
go back to reference Dahal RK, Acharya B, Saha G, Bissessur R, Dutta A, Farooque A (2019) Biochar as a filler in glassfiber reinforced composites: experimental study of thermal and mechanical properties. Compos B Eng 175:107169CrossRef Dahal RK, Acharya B, Saha G, Bissessur R, Dutta A, Farooque A (2019) Biochar as a filler in glassfiber reinforced composites: experimental study of thermal and mechanical properties. Compos B Eng 175:107169CrossRef
30.
go back to reference Bartoli M, Arrigo R, Malucelli G, Tagliaferro A, Duraccio D (2022) Recent advances in biochar polymer composites. Polymers 14(12):2506CrossRef Bartoli M, Arrigo R, Malucelli G, Tagliaferro A, Duraccio D (2022) Recent advances in biochar polymer composites. Polymers 14(12):2506CrossRef
31.
go back to reference Canche-Escamilla G, Rodriguez-Laviada J, Cauich-Cupul JI, Mendizabal E, Puig JE, Herrera-Franco PJ (2002) Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Compos A Appl Sci Manuf 33(4):539–549CrossRef Canche-Escamilla G, Rodriguez-Laviada J, Cauich-Cupul JI, Mendizabal E, Puig JE, Herrera-Franco PJ (2002) Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Compos A Appl Sci Manuf 33(4):539–549CrossRef
32.
go back to reference Zouari M, Devallance DB, Marrot L (2022) Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials 15(6):2271CrossRef Zouari M, Devallance DB, Marrot L (2022) Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials 15(6):2271CrossRef
33.
go back to reference Kumar R, Gunjal J, Chauhan S (2021) Effect of carbonization temperature on properties of natural fiber and charcoal filled hybrid polymer composite. Compos B Eng 217:108846CrossRef Kumar R, Gunjal J, Chauhan S (2021) Effect of carbonization temperature on properties of natural fiber and charcoal filled hybrid polymer composite. Compos B Eng 217:108846CrossRef
34.
go back to reference Jawaid M, Khalil HA, Bakar AA, Khanam PN (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32(2):1014–1019CrossRef Jawaid M, Khalil HA, Bakar AA, Khanam PN (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32(2):1014–1019CrossRef
35.
go back to reference Reis PN, Ferreira JA, Antunes FV, Costa J (2007) D: Flexural behavior of hybrid laminated composites. Composites A 38(6):1612–1620CrossRef Reis PN, Ferreira JA, Antunes FV, Costa J (2007) D: Flexural behavior of hybrid laminated composites. Composites A 38(6):1612–1620CrossRef
36.
go back to reference Shibata S, Cao Y, Fukumoto I (2005) Effect of bagasse fiber on the flexural properties of biodegradable composites. Polym Compos 26(5):689–694CrossRef Shibata S, Cao Y, Fukumoto I (2005) Effect of bagasse fiber on the flexural properties of biodegradable composites. Polym Compos 26(5):689–694CrossRef
Metadata
Title
Study on engineering properties of bamboo fiber/biochar reinforced epoxy composites rod
Authors
B. Sriram Prasad
A. Balaji
Publication date
16-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-024-05754-4