Skip to main content

2023 | OriginalPaper | Buchkapitel

13. Environmental Mercury Toxicity and Its Bioremediation

verfasst von : Vikas Menon, Bhairav Prasad, Himani Sharma

Erschienen in: Mercury Toxicity

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mercury (Hg) finds the 80th position in the periodic table and exists in its various physical and chemical states. It is a heavy metal and serves as a global pollutant. It is emitted into the environment from both natural and anthropogenic sources, accumulating in ecosystems and having a negative impact on plants, animals, and people. The fact that this material is harmful and polluting is what causes widespread concern. The brain, central nervous system, and other organs sustain serious damage as a result of its potent neurotoxic effects. From its initial state, mercury goes through substantial changes, changing its chemical forms, traveling across the environment, and eventually settling in soil and sediment deposits. Once it contaminates the soil it is not easy to remove or detoxify. Hg remediation can be achieved by many conventional techniques which include physical, chemical, and combination of both methods. The conventional methods are costly and not enough to detoxify Hg completely as well as time-consuming. On the other hand, the bioremediation of mercury which includes microbial bioremediation and phytoremediation are eye-catching methods used worldwide with potential recovery and detoxification. The bioremediation methods are eco-friendly, cost-effective, and also recognized by environmental regulatory authorities. This chapter emphasizes the Hg toxicity, sources of Hg pollution, and recent developments in the bioremediation of mercury.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2018) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322CrossRef Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2018) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322CrossRef
Zurück zum Zitat Al-Amin A, Parvin F, Chakraborty J, Kim YI (2021) Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability. Environ Technol Rev 10:44–57CrossRef Al-Amin A, Parvin F, Chakraborty J, Kim YI (2021) Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability. Environ Technol Rev 10:44–57CrossRef
Zurück zum Zitat Almeida Â, Cotas J, Pereira L, Carvalho P (2023) Potential Role of Spirogyra sp. and Chlorella sp. in bioremediation of mine drainage: a review. Phycology 3(1):186–201 Almeida Â, Cotas J, Pereira L, Carvalho P (2023) Potential Role of Spirogyra sp. and Chlorella sp. in bioremediation of mine drainage: a review. Phycology 3(1):186–201
Zurück zum Zitat Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. Ind Eng Chem Res 19:1069–1081CrossRef Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. Ind Eng Chem Res 19:1069–1081CrossRef
Zurück zum Zitat Ayele A, Haile S, Alemu D, Kamaraj M (2021) Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. Sci World J Ayele A, Haile S, Alemu D, Kamaraj M (2021) Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. Sci World J
Zurück zum Zitat Azevedo LF, Karpova N, Rocha BA, Barbosa Junior F, Gobe GC, Hornos Carneiro MF (2023) Evidence on neurotoxicity after intrauterine and childhood exposure to organomercurials. Int J Environ Health Res 20(2):1070CrossRef Azevedo LF, Karpova N, Rocha BA, Barbosa Junior F, Gobe GC, Hornos Carneiro MF (2023) Evidence on neurotoxicity after intrauterine and childhood exposure to organomercurials. Int J Environ Health Res 20(2):1070CrossRef
Zurück zum Zitat Bae SJ, Shin KS, Park C, Baek K, Son SY, Sakong J (2023) Risk assessment of heavy metals in tuna from Japanese restaurants in the Republic of Korea. Ann Occup Env Med 35 Bae SJ, Shin KS, Park C, Baek K, Son SY, Sakong J (2023) Risk assessment of heavy metals in tuna from Japanese restaurants in the Republic of Korea. Ann Occup Env Med 35
Zurück zum Zitat Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6(6):2138–2154CrossRef Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6(6):2138–2154CrossRef
Zurück zum Zitat Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M (2022) Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 10(8):484CrossRef Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M (2022) Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 10(8):484CrossRef
Zurück zum Zitat Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J (2018) A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ Health Perspect 126(10):106001CrossRef Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J (2018) A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ Health Perspect 126(10):106001CrossRef
Zurück zum Zitat Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol 47(9):693–794CrossRef Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol 47(9):693–794CrossRef
Zurück zum Zitat Bellinger DC, Daniel D, Trachtenberg F, Tavares M, McKinlay S (2007) Dental amalgam restorations and children’s neuropsychological function: the New England Children’s Amalgam Trial. Environ Health Perspect 115(3):440–446CrossRef Bellinger DC, Daniel D, Trachtenberg F, Tavares M, McKinlay S (2007) Dental amalgam restorations and children’s neuropsychological function: the New England Children’s Amalgam Trial. Environ Health Perspect 115(3):440–446CrossRef
Zurück zum Zitat Bello TC, Buralli RJ, Cunha MP, Dórea JG, Diaz-Quijano FA, Guimarães JR, Marques RC (2023) Mercury exposure in women of reproductive age in Rondônia state, Amazon Region, Brazil. Int J Environ Health Res 20(6):5225CrossRef Bello TC, Buralli RJ, Cunha MP, Dórea JG, Diaz-Quijano FA, Guimarães JR, Marques RC (2023) Mercury exposure in women of reproductive age in Rondônia state, Amazon Region, Brazil. Int J Environ Health Res 20(6):5225CrossRef
Zurück zum Zitat Cai L, Fu Z, Cui F (2020) Synthesis of carbon dots and their application as turn off–on fluorescent sensor for mercury(II) and glutathione, 11–20 Cai L, Fu Z, Cui F (2020) Synthesis of carbon dots and their application as turn off–on fluorescent sensor for mercury(II) and glutathione, 11–20
Zurück zum Zitat Carrasco-Gil S, Ortega-Villasante C, Sobrino-Plata J, Barón-Sola Á, Millán R, Hernández LE (2023) Attenuation of mercury phytotoxicity with a high nutritional level of nitrate in alfalfa plants grown hydroponically. Plant Stress 100131 Carrasco-Gil S, Ortega-Villasante C, Sobrino-Plata J, Barón-Sola Á, Millán R, Hernández LE (2023) Attenuation of mercury phytotoxicity with a high nutritional level of nitrate in alfalfa plants grown hydroponically. Plant Stress 100131
Zurück zum Zitat Castagna J, Bencardino M, D’Amore F, Esposito G, Pirrone N, Sprovieri F (2018) Atmospheric mercury species measurements across the Western Mediterranean region: behaviour and variability during a 2015 research cruise campaign. Atmos Environ 173:108–126CrossRef Castagna J, Bencardino M, D’Amore F, Esposito G, Pirrone N, Sprovieri F (2018) Atmospheric mercury species measurements across the Western Mediterranean region: behaviour and variability during a 2015 research cruise campaign. Atmos Environ 173:108–126CrossRef
Zurück zum Zitat Chakdar H, Thapa S, Srivastava A, Shukla P (2022) Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J Hazard Mater 424:127609CrossRef Chakdar H, Thapa S, Srivastava A, Shukla P (2022) Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J Hazard Mater 424:127609CrossRef
Zurück zum Zitat Chasanah U, Nuraini Y, Handayanto E (2018) The potential of mercury-resistant bacteria isolated from small-scale gold mine tailings for accumulation of mercury. J Ecol Engg 19(2):236–245CrossRef Chasanah U, Nuraini Y, Handayanto E (2018) The potential of mercury-resistant bacteria isolated from small-scale gold mine tailings for accumulation of mercury. J Ecol Engg 19(2):236–245CrossRef
Zurück zum Zitat Chen D, Lin J, Che Y, Liu X, Lin J (2011) Construction of recombinant mercury resistant Acidithiobacillus caldus. Microbiol Res 166(7):515–520CrossRef Chen D, Lin J, Che Y, Liu X, Lin J (2011) Construction of recombinant mercury resistant Acidithiobacillus caldus. Microbiol Res 166(7):515–520CrossRef
Zurück zum Zitat Chen L, Liang S, Liu M, Yi Y, Mi Z, Zhang Y, Li Y, Qi J, Meng J, Tang X, Zhang H (2019) Trans-provincial health impacts of atmospheric mercury emissions in China. Nat Commun 10(1):1484CrossRef Chen L, Liang S, Liu M, Yi Y, Mi Z, Zhang Y, Li Y, Qi J, Meng J, Tang X, Zhang H (2019) Trans-provincial health impacts of atmospheric mercury emissions in China. Nat Commun 10(1):1484CrossRef
Zurück zum Zitat Cheng Z, Shi C, Gao X, Wang X, Kan G (2022) Biochemical and Metabolomic responses of Antarctic bacterium Planococcus sp. O5 induced by copper ion. Toxics 10(6):302 Cheng Z, Shi C, Gao X, Wang X, Kan G (2022) Biochemical and Metabolomic responses of Antarctic bacterium Planococcus sp. O5 induced by copper ion. Toxics 10(6):302
Zurück zum Zitat Chetelat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2020) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Total Environ 711:135117CrossRef Chetelat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2020) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Total Environ 711:135117CrossRef
Zurück zum Zitat Chugh M, Kumar L, Shah MP, Bharadvaja N (2022) Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 100129 Chugh M, Kumar L, Shah MP, Bharadvaja N (2022) Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 100129
Zurück zum Zitat Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araujo A, Santos-Sacramento L, Yuki Takeda P, Macchi BM, do Nascimento JLM, Maia CSF, Lima RR, Arrifano GP (2021) Mercury: what can we learn from the Amazon? Environ Int 146:106223 Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araujo A, Santos-Sacramento L, Yuki Takeda P, Macchi BM, do Nascimento JLM, Maia CSF, Lima RR, Arrifano GP (2021) Mercury: what can we learn from the Amazon? Environ Int 146:106223
Zurück zum Zitat Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araújo A, Santos-Sacramento L, Souza-Monteiro JR, da Rocha FF, Arrifano GDP (2022) Mercury neurotoxicity in gold miners. In: Advances in neurotoxicology. Academic Press, Cambridge, MA, USA Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araújo A, Santos-Sacramento L, Souza-Monteiro JR, da Rocha FF, Arrifano GDP (2022) Mercury neurotoxicity in gold miners. In: Advances in neurotoxicology. Academic Press, Cambridge, MA, USA
Zurück zum Zitat Cusset F, Reynolds SJ, Carravieri A, Amouroux D, Asensio O, Dickey RC, Fort J, Hughes BJ, Paiva VH, Ramos JA, Shearer L (2023) A century of mercury: Ecosystem-wide changes drive increasing contamination of a tropical seabird species in the South Atlantic Ocean. Environ Poll 323:121187CrossRef Cusset F, Reynolds SJ, Carravieri A, Amouroux D, Asensio O, Dickey RC, Fort J, Hughes BJ, Paiva VH, Ramos JA, Shearer L (2023) A century of mercury: Ecosystem-wide changes drive increasing contamination of a tropical seabird species in the South Atlantic Ocean. Environ Poll 323:121187CrossRef
Zurück zum Zitat da Silva SF, de Oliveira Lima M (2020) Mercury in fish marketed in the Amazon triple frontier and health risk assessment. Chemosphere 248:125989CrossRef da Silva SF, de Oliveira Lima M (2020) Mercury in fish marketed in the Amazon triple frontier and health risk assessment. Chemosphere 248:125989CrossRef
Zurück zum Zitat Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7(7):e07609CrossRef Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7(7):e07609CrossRef
Zurück zum Zitat Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRef Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRef
Zurück zum Zitat De J, Dash HR, Das S (2014) Mercury pollution and bioremediation—a case study on biosorption by a mercury-resistant marine bacterium. In: Microbial biodegradation and bioremediation. Elsevier, pp 137–166 De J, Dash HR, Das S (2014) Mercury pollution and bioremediation—a case study on biosorption by a mercury-resistant marine bacterium. In: Microbial biodegradation and bioremediation. Elsevier, pp 137–166
Zurück zum Zitat Deng X, Wilson D (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol 56:276–279CrossRef Deng X, Wilson D (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol 56:276–279CrossRef
Zurück zum Zitat Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Micro 56:247–264CrossRef Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Micro 56:247–264CrossRef
Zurück zum Zitat Du B, Li P, Feng X, Yin R, Zhou J, Maurice L (2021) Monthly variations in mercury exposure of school children and adults in an industrial area of southwestern China. Environ Res 196:110362 Du B, Li P, Feng X, Yin R, Zhou J, Maurice L (2021) Monthly variations in mercury exposure of school children and adults in an industrial area of southwestern China. Environ Res 196:110362
Zurück zum Zitat Durand A, Maillard F, Foulon J, Chalot M (2020) Interactions between Hg and soil microbes: microbial diversity and mechanisms, with an emphasis on fungal processes. App Microbiol Biotechnol 104:9855–9876CrossRef Durand A, Maillard F, Foulon J, Chalot M (2020) Interactions between Hg and soil microbes: microbial diversity and mechanisms, with an emphasis on fungal processes. App Microbiol Biotechnol 104:9855–9876CrossRef
Zurück zum Zitat Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199 Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199
Zurück zum Zitat Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation, pp 672–674 Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation, pp 672–674
Zurück zum Zitat Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A (2017) Mercury exposure and heart diseases. Int J Environ Health Res 14(1):74CrossRef Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A (2017) Mercury exposure and heart diseases. Int J Environ Health Res 14(1):74CrossRef
Zurück zum Zitat Ginting RCB, Solihat N, Hafsari AR (2021) Potential bacteria capable of remediating mercury contaminated soils. In IOP conference series. Earth Environ Sci 648:012136 Ginting RCB, Solihat N, Hafsari AR (2021) Potential bacteria capable of remediating mercury contaminated soils. In IOP conference series. Earth Environ Sci 648:012136
Zurück zum Zitat Gupta RK, Choudhary KK, Kumar M, Negi A, Rai H (2012) Bioremediation and cyanobacteria an overview. BioNano Front 9:190–196 Gupta RK, Choudhary KK, Kumar M, Negi A, Rai H (2012) Bioremediation and cyanobacteria an overview. BioNano Front 9:190–196
Zurück zum Zitat Gustin MS, Bank MS, Bishop K, Bowman K, Branfireun B, Chételat J, Eckley CS, Hammerschmidt CR, Lamborg C, Lyman S, Martínez-Cortizas A (2020) Mercury biogeochemical cycling: a synthesis of recent scientific advances. Sci Total Environ 737:139619CrossRef Gustin MS, Bank MS, Bishop K, Bowman K, Branfireun B, Chételat J, Eckley CS, Hammerschmidt CR, Lamborg C, Lyman S, Martínez-Cortizas A (2020) Mercury biogeochemical cycling: a synthesis of recent scientific advances. Sci Total Environ 737:139619CrossRef
Zurück zum Zitat Hafeez A, Rasheed R, Ashraf MA, Qureshi FF, Hussain I, Iqbal M (2023) Effect of heavy metals on growth, physiological and biochemical responses of plants. In: Plants and their interaction to environmental pollution. Elsevier, pp 139–159 Hafeez A, Rasheed R, Ashraf MA, Qureshi FF, Hussain I, Iqbal M (2023) Effect of heavy metals on growth, physiological and biochemical responses of plants. In: Plants and their interaction to environmental pollution. Elsevier, pp 139–159
Zurück zum Zitat Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24CrossRef Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24CrossRef
Zurück zum Zitat Hassan JM, Ali Raza M, Ur Rehman S, Ansar M, Gitari H, Khan I, Wajid M, Ahmed M, Abbas Shah G, Peng Y, Li Z (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9(11):1575 Hassan JM, Ali Raza M, Ur Rehman S, Ansar M, Gitari H, Khan I, Wajid M, Ahmed M, Abbas Shah G, Peng Y, Li Z (2020) Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9(11):1575
Zurück zum Zitat He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res 22:8124–8147CrossRef He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res 22:8124–8147CrossRef
Zurück zum Zitat Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJ, Duarte ADC, Pardal MA, Pereira E (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770CrossRef Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJ, Duarte ADC, Pardal MA, Pereira E (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770CrossRef
Zurück zum Zitat Hu L, Liu B, Li SZ, Zhong H, He ZZ (2021a) Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 269:128741CrossRef Hu L, Liu B, Li SZ, Zhong H, He ZZ (2021a) Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 269:128741CrossRef
Zurück zum Zitat Hu XF, Lowe M, Chan HM (2021b) Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis. Environ Res 193:110538CrossRef Hu XF, Lowe M, Chan HM (2021b) Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis. Environ Res 193:110538CrossRef
Zurück zum Zitat Imani S, Rezaei-Zarchi S, Hashemi M, Borna H, Javid A, Zand AM, Abarghouei HB (2011) Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. J Med Plants Res 5(13):2775–2780 Imani S, Rezaei-Zarchi S, Hashemi M, Borna H, Javid A, Zand AM, Abarghouei HB (2011) Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. J Med Plants Res 5(13):2775–2780
Zurück zum Zitat Imron MF, Kurniawan SB, Abdullah SRS (2021) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res 31:1–13CrossRef Imron MF, Kurniawan SB, Abdullah SRS (2021) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res 31:1–13CrossRef
Zurück zum Zitat Jackson TA (1998) Mercury in aquatic ecosystems. Springer US, pp 77–158 Jackson TA (1998) Mercury in aquatic ecosystems. Springer US, pp 77–158
Zurück zum Zitat Jafari M, Abdollahi H, Shafaei SZ, Gharabaghi M, Jafari H, Akcil A, Panda S (2019) Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency. Min Proc Ext Met Rev 40:87–107CrossRef Jafari M, Abdollahi H, Shafaei SZ, Gharabaghi M, Jafari H, Akcil A, Panda S (2019) Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency. Min Proc Ext Met Rev 40:87–107CrossRef
Zurück zum Zitat Jain S, Gupta I, Walia P, Swami S (2022) Application of actinobacteria in agriculture, nanotechnology, and bioremediation. In: Actinobacteria-diversity, applications and medical aspects. IntechOpen Jain S, Gupta I, Walia P, Swami S (2022) Application of actinobacteria in agriculture, nanotechnology, and bioremediation. In: Actinobacteria-diversity, applications and medical aspects. IntechOpen
Zurück zum Zitat Jariyal M, Yadav M, Singh NK, Yadav S, Sharma I, Dahiya S, Thanki A (2020) Microbial remediation progress and future prospects. In: Bioremediation of pollutants. Elsevier, Amsterdam, The Netherlands, pp 187–214 Jariyal M, Yadav M, Singh NK, Yadav S, Sharma I, Dahiya S, Thanki A (2020) Microbial remediation progress and future prospects. In: Bioremediation of pollutants. Elsevier, Amsterdam, The Netherlands, pp 187–214
Zurück zum Zitat Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28(4) Jeyakumar P, Debnath C, Vijayaraghavan R, Muthuraj M (2023) Trends in bioremediation of heavy metal contaminations. Environ Eng Res 28(4)
Zurück zum Zitat Johnson JM, Bock SL, Smaga CR, Lambert MR, Rainwater TR, Wilkinson PM, Parrott BB (2023) Relationships between maternally-transferred mercury and hatchling development, behavior, and survival in the American alligator (Alligator mississippiensis). Sci Total Environ 870:162010CrossRef Johnson JM, Bock SL, Smaga CR, Lambert MR, Rainwater TR, Wilkinson PM, Parrott BB (2023) Relationships between maternally-transferred mercury and hatchling development, behavior, and survival in the American alligator (Alligator mississippiensis). Sci Total Environ 870:162010CrossRef
Zurück zum Zitat Kannabiran K (2017) Actinobacteria are better bioremediating agents for removal of toxic heavy metals: an overview. Int J Environ Tech Manage 20(3–4):129–138 Kannabiran K (2017) Actinobacteria are better bioremediating agents for removal of toxic heavy metals: an overview. Int J Environ Tech Manage 20(3–4):129–138
Zurück zum Zitat Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativalow silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):1–13CrossRef Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativalow silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):1–13CrossRef
Zurück zum Zitat Kim K, Park H (2023) Association of mercury exposure with the serum high-sensitivity C-reactive protein level in Korean adults. Front Public Health 11 Kim K, Park H (2023) Association of mercury exposure with the serum high-sensitivity C-reactive protein level in Korean adults. Front Public Health 11
Zurück zum Zitat Kotwal DR, Shewale NB, Tambat US, Thakare MJ, Bholay AD (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinform Pharm Chem Sci 4(2) Kotwal DR, Shewale NB, Tambat US, Thakare MJ, Bholay AD (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinform Pharm Chem Sci 4(2)
Zurück zum Zitat Kowalczyk A, Wilińska M, Chyc M, Bojko M, Latowski D (2016) Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil. In: E3S web of conferences, p 10 Kowalczyk A, Wilińska M, Chyc M, Bojko M, Latowski D (2016) Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil. In: E3S web of conferences, p 10
Zurück zum Zitat Kumar M, Singh AK, Sikandar M (2020) Biosorption of Hg(II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon 6(1):e03321CrossRef Kumar M, Singh AK, Sikandar M (2020) Biosorption of Hg(II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon 6(1):e03321CrossRef
Zurück zum Zitat Kumar A, Sidharth S, Kandasubramanian B (2023) A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models. Environ Sci Pollut Res 30(14):39474–39493CrossRef Kumar A, Sidharth S, Kandasubramanian B (2023) A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models. Environ Sci Pollut Res 30(14):39474–39493CrossRef
Zurück zum Zitat Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26(6):1223–1231CrossRef Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26(6):1223–1231CrossRef
Zurück zum Zitat Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. App Environ Micro 73(1):243–249CrossRef Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. App Environ Micro 73(1):243–249CrossRef
Zurück zum Zitat Leudo AM, Cruz Y, Montoya-Ruiz C, Delgado MDP, Saldarriaga JF (2020) Mercury phytoremediation with Lolium perenne-Mycorrhizae in contaminated soils. Sustainability 12(9):3795 Leudo AM, Cruz Y, Montoya-Ruiz C, Delgado MDP, Saldarriaga JF (2020) Mercury phytoremediation with Lolium perenne-Mycorrhizae in contaminated soils. Sustainability 12(9):3795
Zurück zum Zitat Li DB, Li XJ, Tao Y, Yan ZN, Ao YS (2022) Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf 229:113062CrossRef Li DB, Li XJ, Tao Y, Yan ZN, Ao YS (2022) Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf 229:113062CrossRef
Zurück zum Zitat Liu Z, Wang LA, Xu J, Ding S, Feng X, Xiao H (2017) Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol Eng 106:273–278CrossRef Liu Z, Wang LA, Xu J, Ding S, Feng X, Xiao H (2017) Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol Eng 106:273–278CrossRef
Zurück zum Zitat Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L (2020) A review on phytoremediation of mercury contaminated soils. J Hazard Mater 400:123138CrossRef Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L (2020) A review on phytoremediation of mercury contaminated soils. J Hazard Mater 400:123138CrossRef
Zurück zum Zitat Liu JL, Liu YP, Duan DD, Peng GG, Li P, Lei P, Zhong H, Tsui MT, Pan K (2022) Effects and mechanisms of organic matter regulating the methylmercury dynamics in mangrove sediments. J Hazard Mater 432:128690CrossRef Liu JL, Liu YP, Duan DD, Peng GG, Li P, Lei P, Zhong H, Tsui MT, Pan K (2022) Effects and mechanisms of organic matter regulating the methylmercury dynamics in mangrove sediments. J Hazard Mater 432:128690CrossRef
Zurück zum Zitat Lv S, Yang B, Kou Y, Zeng J, Wang R, Xiao Y, Li F, Lu Y, Mu Y, Zhao C (2018) Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke). Peer J 6:e4325 Lv S, Yang B, Kou Y, Zeng J, Wang R, Xiao Y, Li F, Lu Y, Mu Y, Zhao C (2018) Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke). Peer J 6:e4325
Zurück zum Zitat Mahbub KR, Krishnan K, Naidu R, Megharaj M (2016) Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environ Technol Innov 6:94–104CrossRef Mahbub KR, Krishnan K, Naidu R, Megharaj M (2016) Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environ Technol Innov 6:94–104CrossRef
Zurück zum Zitat Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M (2017a) Bioremediation of mercury: not properly exploited in contaminated soils! App Micro Biotech 101:963–976CrossRef Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M (2017a) Bioremediation of mercury: not properly exploited in contaminated soils! App Micro Biotech 101:963–976CrossRef
Zurück zum Zitat Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017b) Mercury toxicity to terrestrial biota. Ecol Indic 74:451–462CrossRef Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017b) Mercury toxicity to terrestrial biota. Ecol Indic 74:451–462CrossRef
Zurück zum Zitat Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 7:1495–1521CrossRef Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 7:1495–1521CrossRef
Zurück zum Zitat Manikandan A, Suresh Babu P, Shyamalagowri S, Kamaraj M, Muthukumaran P, Aravind J (2022) Emerging role of microalgae in heavy metal bioremediation. J Basic Micro 62(3–4):330–347CrossRef Manikandan A, Suresh Babu P, Shyamalagowri S, Kamaraj M, Muthukumaran P, Aravind J (2022) Emerging role of microalgae in heavy metal bioremediation. J Basic Micro 62(3–4):330–347CrossRef
Zurück zum Zitat Martínez-Juárez VM, Cárdenas-González JF, Torre-Bouscoulet ME, Acosta-Rodríguez I (2021) Biosorption of mercury(II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2012(2012):156190 Martínez-Juárez VM, Cárdenas-González JF, Torre-Bouscoulet ME, Acosta-Rodríguez I (2021) Biosorption of mercury(II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2012(2012):156190
Zurück zum Zitat Mello IS, Targanski S, Pietro-Souza W, Stachack FFF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Saf 202:110818CrossRef Mello IS, Targanski S, Pietro-Souza W, Stachack FFF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Saf 202:110818CrossRef
Zurück zum Zitat Miao J, Feng S, Dou S, Ma Y, Yang L, Yan L, Yu P, Wu Y, Ye T, Wen B, Lu P (2023) Association between mercury exposure and lung function in young adults: a prospective cohort study in Shandong, China. Sci Total Environ 878:162759CrossRef Miao J, Feng S, Dou S, Ma Y, Yang L, Yan L, Yu P, Wu Y, Ye T, Wen B, Lu P (2023) Association between mercury exposure and lung function in young adults: a prospective cohort study in Shandong, China. Sci Total Environ 878:162759CrossRef
Zurück zum Zitat Mohammadi S, Pourakbar L, Moghaddam SS, Popović-Djordjević J (2021) The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Ecotoxicol Environ Saf 208:111607 Mohammadi S, Pourakbar L, Moghaddam SS, Popović-Djordjević J (2021) The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Ecotoxicol Environ Saf 208:111607
Zurück zum Zitat Moreno FN, Sígolo JB, Anderson CW, Stewart RB, Meech JA, Robinson BH (2005) Phytoremediation of mercury contaminated mine wastes. Massey University, New Zealand Moreno FN, Sígolo JB, Anderson CW, Stewart RB, Meech JA, Robinson BH (2005) Phytoremediation of mercury contaminated mine wastes. Massey University, New Zealand
Zurück zum Zitat Mosa A, Duffin J (2017) The interwoven history of mercury poisoning in Ontario and Japan. CMAJ 189(5):E213–E215CrossRef Mosa A, Duffin J (2017) The interwoven history of mercury poisoning in Ontario and Japan. CMAJ 189(5):E213–E215CrossRef
Zurück zum Zitat Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci 1(3):27–32 Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci 1(3):27–32
Zurück zum Zitat Nagata T, Kiyono M, Pan-Hou H (2006) Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Appl Microbiol Biotechnol 72:777–782CrossRef Nagata T, Kiyono M, Pan-Hou H (2006) Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Appl Microbiol Biotechnol 72:777–782CrossRef
Zurück zum Zitat Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF (2019) Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol 65(4):308–321CrossRef Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF (2019) Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol 65(4):308–321CrossRef
Zurück zum Zitat Naguib MM, El-Gendy AO, Khairalla AS (2018) Microbial diversity of operon genes and their potential rules in mercury bioremediation and resistance. Open Biotechnol J 12(1) Naguib MM, El-Gendy AO, Khairalla AS (2018) Microbial diversity of operon genes and their potential rules in mercury bioremediation and resistance. Open Biotechnol J 12(1)
Zurück zum Zitat Naseri A, Saadatm S, Noroozi M, Asri Y, Iranbakhsh A (2020) Study the mercury biosorption by unicellular diatom Nitzschia capitellata Hustedt. Mod phytomorphol 14(2) Naseri A, Saadatm S, Noroozi M, Asri Y, Iranbakhsh A (2020) Study the mercury biosorption by unicellular diatom Nitzschia capitellata Hustedt. Mod phytomorphol 14(2)
Zurück zum Zitat NHDES (2019) Mercury: sources, transport, deposition and impacts. New Hemisphere 603:271–3503 NHDES (2019) Mercury: sources, transport, deposition and impacts. New Hemisphere 603:271–3503
Zurück zum Zitat Nunes PB, Ferreira MKM, Ribeiro-Frazão D, Bittencourt LO, Chemelo VS, Silva MCF, Pereira-Neto AL, Albuquerque ARL, Paz SPA, Angélica RS et al. (2022) Effects of inorganic mercury exposure in the alveolar bone of rats: an approach of qualitative and morphological aspects. Peer J 26:e12573 Nunes PB, Ferreira MKM, Ribeiro-Frazão D, Bittencourt LO, Chemelo VS, Silva MCF, Pereira-Neto AL, Albuquerque ARL, Paz SPA, Angélica RS et al. (2022) Effects of inorganic mercury exposure in the alveolar bone of rats: an approach of qualitative and morphological aspects. Peer J 26:e12573
Zurück zum Zitat Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E (2020) Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J Ecol Eng 21(6) Nurfitriani S, Arisoesilaningsih E, Nuraini Y, Handayanto E (2020) Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J Ecol Eng 21(6)
Zurück zum Zitat Palanivel TM, Pracejus B, Novo LA (2023) Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil. Chemosphere 314:137688CrossRef Palanivel TM, Pracejus B, Novo LA (2023) Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil. Chemosphere 314:137688CrossRef
Zurück zum Zitat Pamphlett R, Kum Jew S (2019) Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders. Front Med 6:168CrossRef Pamphlett R, Kum Jew S (2019) Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders. Front Med 6:168CrossRef
Zurück zum Zitat Pan-Hou HS, Imura N (1982) Involvement of mercury methylation in microbial mercury detoxication. Arch Microbiol 131:176–177CrossRef Pan-Hou HS, Imura N (1982) Involvement of mercury methylation in microbial mercury detoxication. Arch Microbiol 131:176–177CrossRef
Zurück zum Zitat Peterson SH, Ackerman JT, Holser RR, McDonald BI, Costa DP, Crocker DE (2023) Mercury bioaccumulation and cortisol interact to influence endocrine and immune biomarkers in a free-ranging marine mammal. Environ Sci Technol 57(14):5678–5692CrossRef Peterson SH, Ackerman JT, Holser RR, McDonald BI, Costa DP, Crocker DE (2023) Mercury bioaccumulation and cortisol interact to influence endocrine and immune biomarkers in a free-ranging marine mammal. Environ Sci Technol 57(14):5678–5692CrossRef
Zurück zum Zitat Pietro-Souza W, de Campos Pereira F, Mello IS, Stachack FFF, Terezo AJ, da Cunha CN, White JF, Li H, Soares MA (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874CrossRef Pietro-Souza W, de Campos Pereira F, Mello IS, Stachack FFF, Terezo AJ, da Cunha CN, White JF, Li H, Soares MA (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874CrossRef
Zurück zum Zitat Pirzadah TB, Malik B, Tahir I, Irfan QM, Rehman RU (2018) Characterization of mercury-induced stress biomarkers in Fagopyrum tataricum plants. Int J Phytoremediation 20(3):225–236CrossRef Pirzadah TB, Malik B, Tahir I, Irfan QM, Rehman RU (2018) Characterization of mercury-induced stress biomarkers in Fagopyrum tataricum plants. Int J Phytoremediation 20(3):225–236CrossRef
Zurück zum Zitat Podar D, Maathuis FJ (2022) The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ 45(3):719–736CrossRef Podar D, Maathuis FJ (2022) The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ 45(3):719–736CrossRef
Zurück zum Zitat Pravin US, Manisha PT, Ravindra MM (2012) Sediment heavy metal contaminants in Vasai Creek of Mumbai: pollution impacts. Am Chem Soc 2(3):171–180 Pravin US, Manisha PT, Ravindra MM (2012) Sediment heavy metal contaminants in Vasai Creek of Mumbai: pollution impacts. Am Chem Soc 2(3):171–180
Zurück zum Zitat Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S (2022) Cellular and genetic mechanisms of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J Hazard Mater 423:126985CrossRef Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S (2022) Cellular and genetic mechanisms of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J Hazard Mater 423:126985CrossRef
Zurück zum Zitat Pushkar B, Sevak P, Singh A (2019) Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. App Water Sci 9:1–10 Pushkar B, Sevak P, Singh A (2019) Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. App Water Sci 9:1–10
Zurück zum Zitat Qi R, Xue NN, Wang SZ, Zhou XB, Zhao L, Song WJ, Yang YY (2022) Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. Environ Res 214:113749CrossRef Qi R, Xue NN, Wang SZ, Zhou XB, Zhao L, Song WJ, Yang YY (2022) Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. Environ Res 214:113749CrossRef
Zurück zum Zitat Rahayu HM, Putri WA, Khasanah AU, Sembiring L, Purwestri YA (2021) Indigeneous Streptomyces spp. isolated from Cyperus rotundus rhizosphere indicate high mercuric reductase activity as a pontential bioremediation agent. Biodivers J Bio Diversity 22(3) Rahayu HM, Putri WA, Khasanah AU, Sembiring L, Purwestri YA (2021) Indigeneous Streptomyces spp. isolated from Cyperus rotundus rhizosphere indicate high mercuric reductase activity as a pontential bioremediation agent. Biodivers J Bio Diversity 22(3)
Zurück zum Zitat Rajadurai M, Reddy ER (2021) Tuning the sensitivity towards mercury via cooperative binding to d-fructose: dual fluorescent chemosensor based on 1, 8-naphthyridine-boronic acid derivative. RSC Adv 11(24):14862–14870CrossRef Rajadurai M, Reddy ER (2021) Tuning the sensitivity towards mercury via cooperative binding to d-fructose: dual fluorescent chemosensor based on 1, 8-naphthyridine-boronic acid derivative. RSC Adv 11(24):14862–14870CrossRef
Zurück zum Zitat Rani L, Srivastav AL, Kaushal J (2021) Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere 280:130654CrossRef Rani L, Srivastav AL, Kaushal J (2021) Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere 280:130654CrossRef
Zurück zum Zitat Ratnawati R (2020) Phytoremediation of mercury contaminated soil with the addition of compost. J Eng Technol Sci 52(1) Ratnawati R (2020) Phytoremediation of mercury contaminated soil with the addition of compost. J Eng Technol Sci 52(1)
Zurück zum Zitat Rauf AU, Mallongi A, Astuti RDP (2020) Mercury and chromium distribution in soil near maros karst ecosystem. Carpathian J Earth Environ Sci 15(2):453–460CrossRef Rauf AU, Mallongi A, Astuti RDP (2020) Mercury and chromium distribution in soil near maros karst ecosystem. Carpathian J Earth Environ Sci 15(2):453–460CrossRef
Zurück zum Zitat Ravel J, Amoroso MJ, Colwell RR, Hill RT (1998) Mercury-resistant actinomycetes from the Chesapeake Bay. FEMS Microbiol Lett 162(1):177–184CrossRef Ravel J, Amoroso MJ, Colwell RR, Hill RT (1998) Mercury-resistant actinomycetes from the Chesapeake Bay. FEMS Microbiol Lett 162(1):177–184CrossRef
Zurück zum Zitat Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74CrossRef Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74CrossRef
Zurück zum Zitat Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. Environ Chem Green Chem Pollut Ecosyst 197–204 Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. Environ Chem Green Chem Pollut Ecosyst 197–204
Zurück zum Zitat Rodríguez Martín-Doimeadios RC, Berzas Nevado JJ, Guzmán Bernardo FJ, Jimenez Moreno M, Arrifano GP, Herculano AM, Do Nascimento JL, Crespo-López ME (2014) Comparative study of mercury speciation in commercial fishes of the Brazilian Amazon. Environ Sci Pollut Res 21:7466–7479 Rodríguez Martín-Doimeadios RC, Berzas Nevado JJ, Guzmán Bernardo FJ, Jimenez Moreno M, Arrifano GP, Herculano AM, Do Nascimento JL, Crespo-López ME (2014) Comparative study of mercury speciation in commercial fishes of the Brazilian Amazon. Environ Sci Pollut Res 21:7466–7479
Zurück zum Zitat Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63:239–248CrossRef Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63:239–248CrossRef
Zurück zum Zitat Rojas-Solis D, Larsen J, Lindig-Cisneros R (2023) Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. PeerJ 11:e14697CrossRef Rojas-Solis D, Larsen J, Lindig-Cisneros R (2023) Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. PeerJ 11:e14697CrossRef
Zurück zum Zitat Rowland FE, Muths E, Eagles-Smith CA, Stricker CA, Kraus JM, Harrington RA, Walters DM (2023) Complex life histories alter patterns of mercury exposure and accumulation in a pond-breeding amphibian. Environ Sci Technol 57(10):4133–4142CrossRef Rowland FE, Muths E, Eagles-Smith CA, Stricker CA, Kraus JM, Harrington RA, Walters DM (2023) Complex life histories alter patterns of mercury exposure and accumulation in a pond-breeding amphibian. Environ Sci Technol 57(10):4133–4142CrossRef
Zurück zum Zitat Ruggieri F, Majorani C, Domanico F, Alimonti A (2017) Mercury in children: current state on exposure through human biomonitoring studies. Int J Environ Res Public Health 14:519CrossRef Ruggieri F, Majorani C, Domanico F, Alimonti A (2017) Mercury in children: current state on exposure through human biomonitoring studies. Int J Environ Res Public Health 14:519CrossRef
Zurück zum Zitat Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9(5):609–617 Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9(5):609–617
Zurück zum Zitat Safari F, Akramian M, Salehi-Arjmand H, Khadivi A (2019) Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol Environ Saf 183:109542 Safari F, Akramian M, Salehi-Arjmand H, Khadivi A (2019) Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol Environ Saf 183:109542
Zurück zum Zitat Sakamoto M, Tatsuta N, Izumo K, Phan PT, Vu LD, Yamamoto M, Nakamura M, Nakai K, Murata K (2018) Health Impacts and biomarkers of prenatal exposure to methylmercury: lessons from Minamata, Japan. Toxics 6(45):1–9 Sakamoto M, Tatsuta N, Izumo K, Phan PT, Vu LD, Yamamoto M, Nakamura M, Nakai K, Murata K (2018) Health Impacts and biomarkers of prenatal exposure to methylmercury: lessons from Minamata, Japan. Toxics 6(45):1–9
Zurück zum Zitat Sandoval-Cárdenas DI, Pool H, Favela-Camacho SE, Santos-Cruz J, Campos-Guillén J, Ramos-López MA, Rodríguez-deLeón E, Urbina-Arroyo JV, Amaro-Reyes A (2023) Sargassum@ magnetite composite EDTA-functionalized for the potential removal of mercury. Polymers 15(6):1405CrossRef Sandoval-Cárdenas DI, Pool H, Favela-Camacho SE, Santos-Cruz J, Campos-Guillén J, Ramos-López MA, Rodríguez-deLeón E, Urbina-Arroyo JV, Amaro-Reyes A (2023) Sargassum@ magnetite composite EDTA-functionalized for the potential removal of mercury. Polymers 15(6):1405CrossRef
Zurück zum Zitat Sanjaya WTA, Khoirunhisa NS, Ismiani S, Hazra F, Santosa DA (2021) Isolation and characterization of mercury-resistant microbes from the gold mine area in Mount Pongkor, Bogor District, Indonesia. Biodiversitas J Biol Diver 22(7) Sanjaya WTA, Khoirunhisa NS, Ismiani S, Hazra F, Santosa DA (2021) Isolation and characterization of mercury-resistant microbes from the gold mine area in Mount Pongkor, Bogor District, Indonesia. Biodiversitas J Biol Diver 22(7)
Zurück zum Zitat Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Res Inter Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Res Inter
Zurück zum Zitat Saraswathi R, Sumithra P (2018) An assessment of heavy metal bioremediation study using estuarine fungi. Int J Res Ana Rev 5(4):702–704 Saraswathi R, Sumithra P (2018) An assessment of heavy metal bioremediation study using estuarine fungi. Int J Res Ana Rev 5(4):702–704
Zurück zum Zitat Senabio JA, de Campos Pereira F, Pietro-Souza W, Sousa TF, Silva GF, Soares MA (2023) Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 1–16 Senabio JA, de Campos Pereira F, Pietro-Souza W, Sousa TF, Silva GF, Soares MA (2023) Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 1–16
Zurück zum Zitat Shahid M, Khalid S, Bibi I, Bundschuh J, Niazi NK, Dumat C (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ 711:134749CrossRef Shahid M, Khalid S, Bibi I, Bundschuh J, Niazi NK, Dumat C (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ 711:134749CrossRef
Zurück zum Zitat Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68(3):145–152CrossRef Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68(3):145–152CrossRef
Zurück zum Zitat Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P (2023) Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 137917 Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P (2023) Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 137917
Zurück zum Zitat Soedarti T, Tini S, Sucipto H, Kuncoro EP (2017) Bioremediation of mercury(II) contaminated seawater using the diatom Skeletonema costatum. KnE Life Sci 62–68 Soedarti T, Tini S, Sucipto H, Kuncoro EP (2017) Bioremediation of mercury(II) contaminated seawater using the diatom Skeletonema costatum. KnE Life Sci 62–68
Zurück zum Zitat Sun Y, Li Y, Rao J, Liu Z, Chen Q (2018) Effects of inorganic mercury exposure on histological structure, antioxidant status and immune response of immune organs in yellow catfish (Pelteobagrus fulvidraco). J App Toxicol 38(6):843–854CrossRef Sun Y, Li Y, Rao J, Liu Z, Chen Q (2018) Effects of inorganic mercury exposure on histological structure, antioxidant status and immune response of immune organs in yellow catfish (Pelteobagrus fulvidraco). J App Toxicol 38(6):843–854CrossRef
Zurück zum Zitat Taha A, Hussien W, Gouda SA (2023) Bioremediation of heavy metals in wastewaters: a concise review. Egypt J Aquat Biol Fish 27(1):143–166CrossRef Taha A, Hussien W, Gouda SA (2023) Bioremediation of heavy metals in wastewaters: a concise review. Egypt J Aquat Biol Fish 27(1):143–166CrossRef
Zurück zum Zitat Takeuchi F., Sugio T (2006) Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2–2 and MON-1. Environ Sci An Int J Environ Physiol Toxicol 13(6):305–316 Takeuchi F., Sugio T (2006) Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2–2 and MON-1. Environ Sci An Int J Environ Physiol Toxicol 13(6):305–316
Zurück zum Zitat Tang W, He M, Chen B, Ruan G, Xia Y, Xu P, Song G, Bi Y, Hu B (2023) Investigation of toxic effect of mercury on Microcystis aeruginosa: correlation between intracellular mercury content at single cells level and algae physiological responses. Sci Total Environ 858:159894CrossRef Tang W, He M, Chen B, Ruan G, Xia Y, Xu P, Song G, Bi Y, Hu B (2023) Investigation of toxic effect of mercury on Microcystis aeruginosa: correlation between intracellular mercury content at single cells level and algae physiological responses. Sci Total Environ 858:159894CrossRef
Zurück zum Zitat Tayang A, Songachan LS (2021) Microbial bioremediation of heavy metals. Curr Sci 120(6):00113891CrossRef Tayang A, Songachan LS (2021) Microbial bioremediation of heavy metals. Curr Sci 120(6):00113891CrossRef
Zurück zum Zitat Teixeira FB, De Oliveira AC, Leão LK, Fagundes NC, Fernandes RM, Fernandes LM, Da Silva MC, Amado LL, Sagica FE, De Oliveira EH, Crespo-Lopez ME (2018) Exposure to inorganic mercury causes oxidative stress, cell death, and functional deficits in the motor cortex. Front Mol Neurosci 11:125CrossRef Teixeira FB, De Oliveira AC, Leão LK, Fagundes NC, Fernandes RM, Fernandes LM, Da Silva MC, Amado LL, Sagica FE, De Oliveira EH, Crespo-Lopez ME (2018) Exposure to inorganic mercury causes oxidative stress, cell death, and functional deficits in the motor cortex. Front Mol Neurosci 11:125CrossRef
Zurück zum Zitat Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK, Feng X, Zhang H (2020) Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Adv 10(39):23221–23232CrossRef Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK, Feng X, Zhang H (2020) Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Adv 10(39):23221–23232CrossRef
Zurück zum Zitat Thompson LA, Darwish WS (2019) Environmental chemical contaminants in food: review of a global problem. J Toxicol Thompson LA, Darwish WS (2019) Environmental chemical contaminants in food: review of a global problem. J Toxicol
Zurück zum Zitat Tiodar ED, Văcar CL, Podar D (2021) Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 18(5):2435CrossRef Tiodar ED, Văcar CL, Podar D (2021) Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 18(5):2435CrossRef
Zurück zum Zitat Tran TAT, Dinh QT, Zhou F, Zhai H, Xue M, Du Z, Bañuelos GS, Liang D (2021) Mechanisms underlying mercury detoxification in soil–plant systems after selenium application: a review. Environ Sci Pollut Res 28:46852–46876CrossRef Tran TAT, Dinh QT, Zhou F, Zhai H, Xue M, Du Z, Bañuelos GS, Liang D (2021) Mechanisms underlying mercury detoxification in soil–plant systems after selenium application: a review. Environ Sci Pollut Res 28:46852–46876CrossRef
Zurück zum Zitat UNEP (2019) Global mercury assessment 2018. Chemicals and Health Branch, Geneva, Switzerland UNEP (2019) Global mercury assessment 2018. Chemicals and Health Branch, Geneva, Switzerland
Zurück zum Zitat Vacar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D (2021) Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J. Fungi 7(5):386CrossRef Vacar CL, Covaci E, Chakraborty S, Li B, Weindorf DC, Frențiu T, Pârvu M, Podar D (2021) Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J. Fungi 7(5):386CrossRef
Zurück zum Zitat Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. ci. Total Environ 737:139766 Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. ci. Total Environ 737:139766
Zurück zum Zitat Velásquez-Riaño M, Benavides-Otaya HD (2016) Bioremediation techniques applied to aqueous media contaminated with mercury. Crit Rev Biotechnol 36(6):1124–1130CrossRef Velásquez-Riaño M, Benavides-Otaya HD (2016) Bioremediation techniques applied to aqueous media contaminated with mercury. Crit Rev Biotechnol 36(6):1124–1130CrossRef
Zurück zum Zitat Wu C, Tang D, Dai J, Tang X, Bao Y, Ning J, Zhen Q, Song H, St. Leger RJ, Fang W (2022) Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc Natl Acad Sci 119(47):e2214513119 Wu C, Tang D, Dai J, Tang X, Bao Y, Ning J, Zhen Q, Song H, St. Leger RJ, Fang W (2022) Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc Natl Acad Sci 119(47):e2214513119
Zurück zum Zitat Xu W, Hussain A, Liu Y (2018) A review on modification methods of adsorbents for elemental mercury from flue gas. Chem Eng J 346:692–711CrossRef Xu W, Hussain A, Liu Y (2018) A review on modification methods of adsorbents for elemental mercury from flue gas. Chem Eng J 346:692–711CrossRef
Zurück zum Zitat Yadav APS, Dwivedi V, Kumar S, Kushwaha A, Goswami L, Reddy BS (2020) Cyanobacterial extracellular polymeric substances for heavy metal removal: a mini review. J Composites Sci 5(1):1CrossRef Yadav APS, Dwivedi V, Kumar S, Kushwaha A, Goswami L, Reddy BS (2020) Cyanobacterial extracellular polymeric substances for heavy metal removal: a mini review. J Composites Sci 5(1):1CrossRef
Zurück zum Zitat Yahaya I, Amoh AM, Mends EA, Amankwah RK (2022) Biosorption of mercury by selected plants–a preliminary study. Ghana Min J 22(2):32–36 Yahaya I, Amoh AM, Mends EA, Amankwah RK (2022) Biosorption of mercury by selected plants–a preliminary study. Ghana Min J 22(2):32–36
Zurück zum Zitat Yan XT, Huang JF, Xiao X, Ma CB, Zhang J, Zhur O, Zhou MY, He HL, Wu CL (2022) A new method for determination of polysaccharides in adsorption of Hg2+. Microchem J 183:107962CrossRef Yan XT, Huang JF, Xiao X, Ma CB, Zhang J, Zhur O, Zhou MY, He HL, Wu CL (2022) A new method for determination of polysaccharides in adsorption of Hg2+. Microchem J 183:107962CrossRef
Zurück zum Zitat Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: molecular evidence. Chemosphere 1(245):125586CrossRef Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: molecular evidence. Chemosphere 1(245):125586CrossRef
Zurück zum Zitat Zhang L, Lin X, Wang J, Jiang F, Wei L, Chen G, Hao X (2016) Effects of lead and mercury on sulfate-reducing bacterial activity in a biological process for flue gas desulfurization wastewater treatment. Sci Rep 6(1):30455CrossRef Zhang L, Lin X, Wang J, Jiang F, Wei L, Chen G, Hao X (2016) Effects of lead and mercury on sulfate-reducing bacterial activity in a biological process for flue gas desulfurization wastewater treatment. Sci Rep 6(1):30455CrossRef
Zurück zum Zitat Zhao Y, Zhou C, Guo X, Hu G, Li G, Zhuang Y, Cao H, Li L, Xing C, Zhang C, Yang F (2021) Exposed to mercury-induced oxidative stress, changes of intestinal microflora, and association between them in mice. Biol Trace Elem Res 199:1900–1907CrossRef Zhao Y, Zhou C, Guo X, Hu G, Li G, Zhuang Y, Cao H, Li L, Xing C, Zhang C, Yang F (2021) Exposed to mercury-induced oxidative stress, changes of intestinal microflora, and association between them in mice. Biol Trace Elem Res 199:1900–1907CrossRef
Zurück zum Zitat Zheng NA, Wang S, Dong WU, Hua X, Li Y, Song X, Chu Q, Hou S, Li Y (2019) The toxicological effects of mercury exposure in marine fish. Bull Environ Contam Toxicol 15(102):714–720CrossRef Zheng NA, Wang S, Dong WU, Hua X, Li Y, Song X, Chu Q, Hou S, Li Y (2019) The toxicological effects of mercury exposure in marine fish. Bull Environ Contam Toxicol 15(102):714–720CrossRef
Zurück zum Zitat Znad H, Awual MR, Martini S (2022) The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules 27(4):1275CrossRef Znad H, Awual MR, Martini S (2022) The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules 27(4):1275CrossRef
Metadaten
Titel
Environmental Mercury Toxicity and Its Bioremediation
verfasst von
Vikas Menon
Bhairav Prasad
Himani Sharma
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-7719-2_13