Skip to main content
Erschienen in: Wireless Personal Communications 3/2024

11.05.2024 | Research

Exploiting HDU/FDU-NOMA Schemes for Reliable Communication in Post-disaster Scenario

verfasst von: Rampravesh Kumar, Saurabh Srivastava, Sanjay Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a reliable communication system tailored for post-disaster scenarios, where the existing terrestrial communication infrastructure is entirely disrupted by natural calamities. To encounter the situation, a Temporary Base Station (TBS) is deployed in the heart of the disaster-stricken area. However, due to the limited coverage area of the TBS, reaching far users becomes unattainable. To address this, Unmanned Aerial Vehicles (UAVs) are proposed as flying relays with indirect connectivity, utilizing Half-Duplex/Full-Duplex (HD/FD) Non-Orthogonal Multiple Access (NOMA) schemes, abbreviated as HDU/FDU-NOMA. The UAVs, strategically positioned around the TBS on a circular path, can move radially outward or inward based on far user throughput demands and also serve as near-users. Moreover, a Weibull fading distribution (WD) is taken into account for both links, encompassing transmissions from far-users to UAVs and from UAVs to TBS. To assess communication reliability, exact and closed-form expressions for outage probability and throughput performance are derived. These expressions aid in identifying optimal UAV locations to achieve throughput fairness for both far-users and near-users, as well as maximizing throughput for far-users. Additionally, the proposed scheme’s outage and throughput performance is demonstrated to surpass that of corresponding Orthogonal Multiple Access (OMA) schemes in the uplink. Simulation results conform to the analytical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.CrossRef Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.CrossRef
2.
Zurück zum Zitat Lin, Z., Lin, M., De Cola, T., Wang, J.-B., Zhu, W.-P., & Cheng, J. (2021). Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet of Things Journal, 8(14), 11123–11134.CrossRef Lin, Z., Lin, M., De Cola, T., Wang, J.-B., Zhu, W.-P., & Cheng, J. (2021). Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet of Things Journal, 8(14), 11123–11134.CrossRef
3.
Zurück zum Zitat Liu, M., Yang, J., & Gui, G. (2019). DSF-NOMA: UAV-assisted emergency communication technology in a heterogeneous internet of things. IEEE Internet of Things Journal, 6(3), 5508–5519.CrossRef Liu, M., Yang, J., & Gui, G. (2019). DSF-NOMA: UAV-assisted emergency communication technology in a heterogeneous internet of things. IEEE Internet of Things Journal, 6(3), 5508–5519.CrossRef
4.
Zurück zum Zitat Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.CrossRef Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.CrossRef
5.
Zurück zum Zitat Liu, Y., Zhang, S., Mu, X., Ding, Z., Schober, R., Al-Dhahir, N., Hossain, E., & Shen, X. (2022). Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE Journal on Selected Areas in Communications, 40(4), 1037–1071.CrossRef Liu, Y., Zhang, S., Mu, X., Ding, Z., Schober, R., Al-Dhahir, N., Hossain, E., & Shen, X. (2022). Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE Journal on Selected Areas in Communications, 40(4), 1037–1071.CrossRef
6.
Zurück zum Zitat Lin, Z., Lin, M., Huang, Y., De Cola, T., & Zhu, W.-P. (2019). Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information. IEEE Transactions on Signal Processing, 67(24), 6384–6396.MathSciNetCrossRef Lin, Z., Lin, M., Huang, Y., De Cola, T., & Zhu, W.-P. (2019). Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information. IEEE Transactions on Signal Processing, 67(24), 6384–6396.MathSciNetCrossRef
7.
Zurück zum Zitat Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.CrossRef Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.CrossRef
8.
Zurück zum Zitat Liu, G., Chen, X., Ding, Z., Ma, Z., & Yu, F. R. (2017). Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation. IEEE Transactions on Wireless Communications, 17(1), 506–519.CrossRef Liu, G., Chen, X., Ding, Z., Ma, Z., & Yu, F. R. (2017). Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation. IEEE Transactions on Wireless Communications, 17(1), 506–519.CrossRef
9.
Zurück zum Zitat Lee, S., Da Costa, D. B., Vien, Q.-T., Duong, T. Q., & de Sousa, R. T. (2017). Non-orthogonal multiple access schemes with partial relay selection. IET Communications, 11(6), 846–854.CrossRef Lee, S., Da Costa, D. B., Vien, Q.-T., Duong, T. Q., & de Sousa, R. T. (2017). Non-orthogonal multiple access schemes with partial relay selection. IET Communications, 11(6), 846–854.CrossRef
10.
Zurück zum Zitat Men, J., & Ge, J. (2015). Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Communications, 9(18), 2267–2273.CrossRef Men, J., & Ge, J. (2015). Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Communications, 9(18), 2267–2273.CrossRef
11.
Zurück zum Zitat Aswathi, V., & Babu, A. V. (2020). Non-orthogonal multiple access in full-duplex-based coordinated direct and relay transmission (CDRT) system: Performance analysis and optimization. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–27. Aswathi, V., & Babu, A. V. (2020). Non-orthogonal multiple access in full-duplex-based coordinated direct and relay transmission (CDRT) system: Performance analysis and optimization. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–27.
12.
Zurück zum Zitat Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef
13.
Zurück zum Zitat Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.CrossRef Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.CrossRef
14.
Zurück zum Zitat Lin, Z., Niu, H., An, K., Wang, Y., Zheng, G., Chatzinotas, S., & Hu, Y. (2022). Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Transactions on Aerospace and Electronic Systems, 58(4), 3717–3724.CrossRef Lin, Z., Niu, H., An, K., Wang, Y., Zheng, G., Chatzinotas, S., & Hu, Y. (2022). Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Transactions on Aerospace and Electronic Systems, 58(4), 3717–3724.CrossRef
15.
Zurück zum Zitat Gong, C., Dai, X., Cui, J., & Long, K. (2023). Performance analysis of distributed reconfigurable intelligent surface aided NOMA systems. Wireless Personal Communications, 131, 217.CrossRef Gong, C., Dai, X., Cui, J., & Long, K. (2023). Performance analysis of distributed reconfigurable intelligent surface aided NOMA systems. Wireless Personal Communications, 131, 217.CrossRef
16.
Zurück zum Zitat ur Rahman, S., Kim, G.-H., Cho, Y.-Z., & Khan, A. (2018). Positioning of UAVs for throughput maximization in software-defined disaster area UAV communication networks. Journal of Communications and Networks, 20(5), 452–463.CrossRef ur Rahman, S., Kim, G.-H., Cho, Y.-Z., & Khan, A. (2018). Positioning of UAVs for throughput maximization in software-defined disaster area UAV communication networks. Journal of Communications and Networks, 20(5), 452–463.CrossRef
17.
Zurück zum Zitat Zheng, H. E. T., Madhukumar, A., Sirigina, R. P., Krishna, A. K. (2019). An outage probability analysis of full-duplex NOMA in UAV communications. In IEEE Wireless Communications and Networking Conference (WCNC). IEEE. Vol. 2019. pp 1–5. Zheng, H. E. T., Madhukumar, A., Sirigina, R. P., Krishna, A. K. (2019). An outage probability analysis of full-duplex NOMA in UAV communications. In IEEE Wireless Communications and Networking Conference (WCNC). IEEE. Vol. 2019. pp 1–5.
18.
Zurück zum Zitat An, K., Lin, M., Ouyang, J., & Zhu, W.-P. (2016). Secure transmission in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communications, 34(11), 3025–3037.CrossRef An, K., Lin, M., Ouyang, J., & Zhu, W.-P. (2016). Secure transmission in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communications, 34(11), 3025–3037.CrossRef
19.
Zurück zum Zitat Wang, L., Hu, B., Chen, S., & Cui, J. (2020). UAV-enabled reliable mobile relaying based on downlink NOMA. IEEE Access, 8, 25237–25248.CrossRef Wang, L., Hu, B., Chen, S., & Cui, J. (2020). UAV-enabled reliable mobile relaying based on downlink NOMA. IEEE Access, 8, 25237–25248.CrossRef
20.
Zurück zum Zitat Zhang, J., Zheng, X., Pan, G., & Xie, Y. (2021). On secrecy analysis of UAV-enabled relaying NOMA systems. Physical Communication, 45, 101263.CrossRef Zhang, J., Zheng, X., Pan, G., & Xie, Y. (2021). On secrecy analysis of UAV-enabled relaying NOMA systems. Physical Communication, 45, 101263.CrossRef
21.
Zurück zum Zitat Nguyen, L.-M.-D., Vo, V. N., So-In, C., & Dang, V.-H. (2021). Throughput analysis and optimization for NOMA multi-UAV assisted disaster communication using CMA-ES. Wireless Networks, 27, 4889–4902.CrossRef Nguyen, L.-M.-D., Vo, V. N., So-In, C., & Dang, V.-H. (2021). Throughput analysis and optimization for NOMA multi-UAV assisted disaster communication using CMA-ES. Wireless Networks, 27, 4889–4902.CrossRef
22.
Zurück zum Zitat Ghosh, S., Roy, S. D., & Kundu, S. (2023). Uav assisted swipt enabled noma based d2d network for disaster management. Wireless Personal Communications, 128(4), 2341–2362.CrossRef Ghosh, S., Roy, S. D., & Kundu, S. (2023). Uav assisted swipt enabled noma based d2d network for disaster management. Wireless Personal Communications, 128(4), 2341–2362.CrossRef
23.
Zurück zum Zitat Trotta, A., Andreagiovanni, F. D., Di Felice, M., Natalizio, E., & Chowdhury, K. R. (2018). When UAVs ride a bus: Towards energy-efficient city-scale video surveillance. In IEEE infocom 2018-IEEE conference on computer communications. IEEE, pp. 1043–1051. Trotta, A., Andreagiovanni, F. D., Di Felice, M., Natalizio, E., & Chowdhury, K. R. (2018). When UAVs ride a bus: Towards energy-efficient city-scale video surveillance. In IEEE infocom 2018-IEEE conference on computer communications. IEEE, pp. 1043–1051.
24.
Zurück zum Zitat Han, S. I., & Baek, J. (2021). Optimal UAV deployment and resource management in UAV relay networks. Sensors, 21(20), 6878.CrossRef Han, S. I., & Baek, J. (2021). Optimal UAV deployment and resource management in UAV relay networks. Sensors, 21(20), 6878.CrossRef
25.
Zurück zum Zitat Shakhatreh, H., Alenezi, A., Sawalmeh, A., Almutiry, M., & Malkawi, W. (2021). Efficient placement of an aerial relay drone for throughput maximization, Wireless Communications and Mobile Computing, vol. 2021. Shakhatreh, H., Alenezi, A., Sawalmeh, A., Almutiry, M., & Malkawi, W. (2021). Efficient placement of an aerial relay drone for throughput maximization, Wireless Communications and Mobile Computing, vol. 2021.
26.
Zurück zum Zitat Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.CrossRef Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.CrossRef
27.
Zurück zum Zitat Elnabty, I. A., Fahmy, Y., & Kafafy, M. (2022). A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Physical Communication, 51, 101564.CrossRef Elnabty, I. A., Fahmy, Y., & Kafafy, M. (2022). A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Physical Communication, 51, 101564.CrossRef
28.
Zurück zum Zitat Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2017). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.CrossRef Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2017). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.CrossRef
29.
Zurück zum Zitat Kader, M. F., & Shin, S. Y. (2017). Coordinated direct and relay transmission using uplink NOMA. IEEE Wireless Communications Letters, 7(3), 400–403.CrossRef Kader, M. F., & Shin, S. Y. (2017). Coordinated direct and relay transmission using uplink NOMA. IEEE Wireless Communications Letters, 7(3), 400–403.CrossRef
30.
Zurück zum Zitat Do, N. T., Da Costa, D. B., Duong, T. Q., & An, B. (2016). A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Communications Letters, 21(3), 664–667.CrossRef Do, N. T., Da Costa, D. B., Duong, T. Q., & An, B. (2016). A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Communications Letters, 21(3), 664–667.CrossRef
31.
Zurück zum Zitat Do, T. N., da Costa, D. B., Duong, T. Q., & An, B. (2018). Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Transactions on Communications, 66(5), 1883–1901.CrossRef Do, T. N., da Costa, D. B., Duong, T. Q., & An, B. (2018). Improving the performance of cell-edge users in NOMA systems using cooperative relaying. IEEE Transactions on Communications, 66(5), 1883–1901.CrossRef
32.
Zurück zum Zitat Nguyen, H.-T.-T., Nguyen, T., & Tran, X. N. (2021). Full-duplex cooperative NOMA system under impacts of residual SI and MAI. International Journal of Electronics, 108(5), 858–875.CrossRef Nguyen, H.-T.-T., Nguyen, T., & Tran, X. N. (2021). Full-duplex cooperative NOMA system under impacts of residual SI and MAI. International Journal of Electronics, 108(5), 858–875.CrossRef
33.
Zurück zum Zitat Thi Tam, D., Cao Nguyen, B., Manh Hoang, T., The Dung, L., Vinh, N. V., Kim, T., & Lee, W. (2023). Combining FD-UAV and NOMA technologies in IoT sensor network with millimeter-wave communications. International Journal of Communication Systems. https://doi.org/10.1002/dac.5492CrossRef Thi Tam, D., Cao Nguyen, B., Manh Hoang, T., The Dung, L., Vinh, N. V., Kim, T., & Lee, W. (2023). Combining FD-UAV and NOMA technologies in IoT sensor network with millimeter-wave communications. International Journal of Communication Systems. https://​doi.​org/​10.​1002/​dac.​5492CrossRef
34.
Zurück zum Zitat Men, J., Ge, J., & Zhang, C. (2016). Performance analysis of nonorthogonal multiple access for relaying networks over nakagami-\( m \) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.CrossRef Men, J., Ge, J., & Zhang, C. (2016). Performance analysis of nonorthogonal multiple access for relaying networks over nakagami-\( m \) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.CrossRef
35.
Zurück zum Zitat Bepari, D., Misra, A., Mondal, S., & Bala, I. (2024). Partial cooperative NOMA for improving outage performance of edge users. International Journal of Electronics Letters, 12, 69–86.CrossRef Bepari, D., Misra, A., Mondal, S., & Bala, I. (2024). Partial cooperative NOMA for improving outage performance of edge users. International Journal of Electronics Letters, 12, 69–86.CrossRef
36.
Zurück zum Zitat Zhai, D., Li, H., Tang, X., Zhang, R., Ding, Z., & Yu, F. R. (2020). Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks. IEEE Transactions on Communications, 69(2), 962–975.CrossRef Zhai, D., Li, H., Tang, X., Zhang, R., Ding, Z., & Yu, F. R. (2020). Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks. IEEE Transactions on Communications, 69(2), 962–975.CrossRef
37.
Zurück zum Zitat Barick, S., & Singhal, C. (2022). Multi-UAV assisted IoT NOMA uplink communication system for disaster scenario. IEEE Access, 10, 34058–34068.CrossRef Barick, S., & Singhal, C. (2022). Multi-UAV assisted IoT NOMA uplink communication system for disaster scenario. IEEE Access, 10, 34058–34068.CrossRef
38.
Zurück zum Zitat Chiaraviglio, L., D’Andreagiovanni, F., Liu, W., Gutierrez, J. A., Blefari-Melazzi, N., Choo, K.-K.R., & Alouini, M.-S. (2020). Multi-area throughput and energy optimization of UAV-aided cellular networks powered by solar panels and grid. IEEE Transactions on Mobile Computing, 20(7), 2427–2444.CrossRef Chiaraviglio, L., D’Andreagiovanni, F., Liu, W., Gutierrez, J. A., Blefari-Melazzi, N., Choo, K.-K.R., & Alouini, M.-S. (2020). Multi-area throughput and energy optimization of UAV-aided cellular networks powered by solar panels and grid. IEEE Transactions on Mobile Computing, 20(7), 2427–2444.CrossRef
39.
Zurück zum Zitat Kumar, R., & Kumar, S. (2023). HD/FD cooperative NOMA under UAV deployment for a novel disaster-management model. Electronics, 12(3), 513.CrossRef Kumar, R., & Kumar, S. (2023). HD/FD cooperative NOMA under UAV deployment for a novel disaster-management model. Electronics, 12(3), 513.CrossRef
40.
Zurück zum Zitat Huaicong, K., Min, L., Zhang, J., Ouyang, J., Jun-Bo, W., & Upadhyay, P. K. (2022). Ergodic sum rate for uplink NOMA transmission in satellite-aerial-ground integrated networks. Chinese Journal of Aeronautics, 35(9), 58–70.CrossRef Huaicong, K., Min, L., Zhang, J., Ouyang, J., Jun-Bo, W., & Upadhyay, P. K. (2022). Ergodic sum rate for uplink NOMA transmission in satellite-aerial-ground integrated networks. Chinese Journal of Aeronautics, 35(9), 58–70.CrossRef
41.
Zurück zum Zitat Kong, H., Lin, M., Han, L., Zhu, W.-P., Ding, Z., & Alouini, M.-S. (2023). Uplink multiple access with semi-grant-free transmission in integrated satellite-aerial-terrestrial networks. IEEE Journal on Selected Areas in Communications, 41, 1723.CrossRef Kong, H., Lin, M., Han, L., Zhu, W.-P., Ding, Z., & Alouini, M.-S. (2023). Uplink multiple access with semi-grant-free transmission in integrated satellite-aerial-terrestrial networks. IEEE Journal on Selected Areas in Communications, 41, 1723.CrossRef
42.
Zurück zum Zitat Ueda, Y. (2014). Vehicle-mounted transportable mobile base station and backhaul link for disaster relief operation. New Breeze, 26(3), 1–14. Ueda, Y. (2014). Vehicle-mounted transportable mobile base station and backhaul link for disaster relief operation. New Breeze, 26(3), 1–14.
43.
Zurück zum Zitat ITU (2019). Recommendation itu-r f.1105-4: Fixed wireless systems for disaster mitigation and relief operations. pp. 1–15. ITU (2019). Recommendation itu-r f.1105-4: Fixed wireless systems for disaster mitigation and relief operations. pp. 1–15.
44.
Zurück zum Zitat Bello, A. B., Navarro, F., Raposo, J., Miranda, M., Zazo, A., & Álvarez, M. (2022). Fixed-wing UAV flight operation under harsh weather conditions: A case study in Livingston Island glaciers, Antarctica. Drones, 6(12), 384.CrossRef Bello, A. B., Navarro, F., Raposo, J., Miranda, M., Zazo, A., & Álvarez, M. (2022). Fixed-wing UAV flight operation under harsh weather conditions: A case study in Livingston Island glaciers, Antarctica. Drones, 6(12), 384.CrossRef
45.
Zurück zum Zitat Ding, Z., Fan, P., & Poor, H. V. (2015). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.CrossRef Ding, Z., Fan, P., & Poor, H. V. (2015). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.CrossRef
46.
Zurück zum Zitat Le, C.-B., & Do, D. T. (2020). Two policies for wireless non-orthogonal multiple access systems: System model and performance enhancement of far user. International Journal of Communication Systems, 33(18), e4615.CrossRef Le, C.-B., & Do, D. T. (2020). Two policies for wireless non-orthogonal multiple access systems: System model and performance enhancement of far user. International Journal of Communication Systems, 33(18), e4615.CrossRef
47.
Zurück zum Zitat Cheng, J., Tellambura, C., & Beaulieu, N. C. (2023). Performance analysis of digital modulations on weibull fading channels. In IEEE 58th vehicular technology conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484). IEEE, vol. 1. pp 236–240. Cheng, J., Tellambura, C., & Beaulieu, N. C. (2023). Performance analysis of digital modulations on weibull fading channels. In IEEE 58th vehicular technology conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484). IEEE, vol. 1. pp 236–240.
48.
Zurück zum Zitat Li, X., Li, J., & Li, L. (2019). Performance analysis of impaired swipt NOMA relaying networks over imperfect Weibull channels. IEEE Systems Journal, 14(1), 669–672.CrossRef Li, X., Li, J., & Li, L. (2019). Performance analysis of impaired swipt NOMA relaying networks over imperfect Weibull channels. IEEE Systems Journal, 14(1), 669–672.CrossRef
49.
Zurück zum Zitat Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2016). Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2016). Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471.
50.
Zurück zum Zitat Zhang, N., Wang, J., Kang, G., & Liu, Y. (2016). Uplink nonorthogonal multiple access in 5G systems. IEEE Communications Letters, 20(3), 458–461.CrossRef Zhang, N., Wang, J., Kang, G., & Liu, Y. (2016). Uplink nonorthogonal multiple access in 5G systems. IEEE Communications Letters, 20(3), 458–461.CrossRef
51.
Zurück zum Zitat Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef
52.
Zurück zum Zitat Zhong, C., Suraweera, H. A., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.CrossRef Zhong, C., Suraweera, H. A., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.CrossRef
53.
Zurück zum Zitat Guo, K., An, K., Zhou, F., Tsiftsis, T. A., Zheng, G., & Chatzinotas, S. (2021). On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments. IEEE Transactions on Vehicular Technology, 70(4), 3661–3676.CrossRef Guo, K., An, K., Zhou, F., Tsiftsis, T. A., Zheng, G., & Chatzinotas, S. (2021). On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments. IEEE Transactions on Vehicular Technology, 70(4), 3661–3676.CrossRef
54.
Zurück zum Zitat Guo, K., Dong, C., & An, K. (2022). Noma-based cognitive satellite terrestrial relay network: Secrecy performance under channel estimation errors and hardware impairments. IEEE Internet of Things Journal, 9(18), 17334–17347.CrossRef Guo, K., Dong, C., & An, K. (2022). Noma-based cognitive satellite terrestrial relay network: Secrecy performance under channel estimation errors and hardware impairments. IEEE Internet of Things Journal, 9(18), 17334–17347.CrossRef
55.
Zurück zum Zitat Guo, K., Liu, R., Alazab, M., Jhaveri, R. H., Li, X., & Zhu, M. (2023). STAR-RIS-empowered cognitive non-terrestrial vehicle network with NOMA. IEEE Transactions on Intelligent Vehicles, 8, 3735.CrossRef Guo, K., Liu, R., Alazab, M., Jhaveri, R. H., Li, X., & Zhu, M. (2023). STAR-RIS-empowered cognitive non-terrestrial vehicle network with NOMA. IEEE Transactions on Intelligent Vehicles, 8, 3735.CrossRef
Metadaten
Titel
Exploiting HDU/FDU-NOMA Schemes for Reliable Communication in Post-disaster Scenario
verfasst von
Rampravesh Kumar
Saurabh Srivastava
Sanjay Kumar
Publikationsdatum
11.05.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11144-w

Weitere Artikel der Ausgabe 3/2024

Wireless Personal Communications 3/2024 Zur Ausgabe