Skip to main content

08.05.2024 | Original Paper

Fabrication of Nanostructured Cu-Au Materials as an Efficient Electrocatalyst for Lactate Determination in Athletes Biological Fluid During Exercise

verfasst von: Changwen Lu, Yanwen Lu, Manqiang Xu, Zitong Zhang, Wei Han, Masoud Ghanei

Erschienen in: Topics in Catalysis

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The exact determination of lactate concentration is very important in the fields of food quality and clinical diagnosis. A non-enzymatic amperometric sensor based on nanostructured porous Cu-Au electrocatalyst martial was designed and employed for lactate determination. For this purpose, the bimetallic surface was successfully coated on the glassy carbon electrode (GCE) using co-electrodeposition of copper and gold ions. The Cu-Au alloy proved to be an effective interface for the direct electrochemical oxidation of lactate. The Cu-Au modified GCE exhibits excellent lactate sensing capabilities thanks to the excellent conductivity of gold element in bimetallic material and high surface area of the porous Cu-Au alloy. In phosphate buffer solution, this novel electrochemical lactate sensor demonstrates a linear response to lactate within the concentration range of 20 to 2000 µM. The detection limit (based on S/N = 3) of the assay was estimated to be 5 µM. The established electrochemical sensing protocol is a highly selective device for the analysis of lactate in biological fluids. The lactate level in saliva samples was successfully quantified before and after exercise of athletes using the recommended strategy. The present non-enzymatic sensor offers a convenient, fast, cost-effective, and effective protocol for lactate measuring in clinical diagnosis applications.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100PubMedCrossRef Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100PubMedCrossRef
2.
Zurück zum Zitat Allen SE, Holm JL (2008) Lactate: physiology and clinical utility. J Vet Emerg Crit Care 18(2):123–132CrossRef Allen SE, Holm JL (2008) Lactate: physiology and clinical utility. J Vet Emerg Crit Care 18(2):123–132CrossRef
3.
Zurück zum Zitat Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829PubMedCrossRef Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829PubMedCrossRef
4.
Zurück zum Zitat Ma-L G-M, Hérigault G, Rémy C, Farion R, Ballesteros P, Coles JA, Cerdán S, Ziegler A (2001) Mapping extracellular pH in rat brain gliomas in vivo by H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Can Res 61(17):6524–6531 Ma-L G-M, Hérigault G, Rémy C, Farion R, Ballesteros P, Coles JA, Cerdán S, Ziegler A (2001) Mapping extracellular pH in rat brain gliomas in vivo by H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Can Res 61(17):6524–6531
5.
Zurück zum Zitat Finsterer J (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord 13:1–13CrossRef Finsterer J (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord 13:1–13CrossRef
6.
Zurück zum Zitat Peng X, Ed-Dra A, Yue M (2023) Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 63(32):11244–11262PubMedCrossRef Peng X, Ed-Dra A, Yue M (2023) Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 63(32):11244–11262PubMedCrossRef
7.
Zurück zum Zitat Lomonaco T, Ghimenti S, Biagini D, Bramanti E, Onor M, Bellagambi F, Fuoco R, Di Francesco F (2018) The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem J 136:255–262CrossRef Lomonaco T, Ghimenti S, Biagini D, Bramanti E, Onor M, Bellagambi F, Fuoco R, Di Francesco F (2018) The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem J 136:255–262CrossRef
8.
Zurück zum Zitat Santos RVTd, Almeida A, Caperuto E, Martins E Jr, Rosa LC (2006) Effects of a 30-km race upon salivary lactate correlation with blood lactate. Comp Biochem Physiol B: Biochem Mol Biol 145(1):114–117PubMedCrossRef Santos RVTd, Almeida A, Caperuto E, Martins E Jr, Rosa LC (2006) Effects of a 30-km race upon salivary lactate correlation with blood lactate. Comp Biochem Physiol B: Biochem Mol Biol 145(1):114–117PubMedCrossRef
9.
Zurück zum Zitat Biagi S, Ghimenti S, Onor M, Bramanti E (2012) Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquid chromatography: a noninvasive approach. Biomed Chromatogr 26(11):1408–1415PubMedCrossRef Biagi S, Ghimenti S, Onor M, Bramanti E (2012) Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquid chromatography: a noninvasive approach. Biomed Chromatogr 26(11):1408–1415PubMedCrossRef
10.
Zurück zum Zitat Paik MJ, Cho EY, Kim H, Kim KR, Choi S, Ahn YH, Lee G (2008) Simultaneous clinical monitoring of lactic acid, pyruvic acid and ketone bodies in plasma as methoxime/tert-butyldimethylsilyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode. Biomed Chromatogr 22(5):450–453PubMedCrossRef Paik MJ, Cho EY, Kim H, Kim KR, Choi S, Ahn YH, Lee G (2008) Simultaneous clinical monitoring of lactic acid, pyruvic acid and ketone bodies in plasma as methoxime/tert-butyldimethylsilyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode. Biomed Chromatogr 22(5):450–453PubMedCrossRef
11.
Zurück zum Zitat PcB M, Reis BF, Araújo AN, Conceição M, Montenegro B (2001) A flow system with a conventional spectrophotometer for the chemiluminescent determination of lactic acid in yoghurt. Talanta 54(5):879–885CrossRef PcB M, Reis BF, Araújo AN, Conceição M, Montenegro B (2001) A flow system with a conventional spectrophotometer for the chemiluminescent determination of lactic acid in yoghurt. Talanta 54(5):879–885CrossRef
12.
Zurück zum Zitat Borshchevskaya L, Gordeeva T, Kalinina A, Sineokii S (2016) Spectrophotometric determination of lactic acid. J Anal Chem 71:755–758CrossRef Borshchevskaya L, Gordeeva T, Kalinina A, Sineokii S (2016) Spectrophotometric determination of lactic acid. J Anal Chem 71:755–758CrossRef
13.
Zurück zum Zitat Qi L, Danielson ND (2003) Determination of lactate or oxalate using injected lactate oxidase and peroxidase by capillary electrophoresis with UV detection. Electrophoresis 24(12–13):2070–2075PubMedCrossRef Qi L, Danielson ND (2003) Determination of lactate or oxalate using injected lactate oxidase and peroxidase by capillary electrophoresis with UV detection. Electrophoresis 24(12–13):2070–2075PubMedCrossRef
14.
Zurück zum Zitat Mengarda P, Dias FA, Peixoto JV, Osiecki R, Bergamini MF, Marcolino-Junior LH (2019) Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films. Sens Actuators, B Chem 296:126663CrossRef Mengarda P, Dias FA, Peixoto JV, Osiecki R, Bergamini MF, Marcolino-Junior LH (2019) Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films. Sens Actuators, B Chem 296:126663CrossRef
15.
Zurück zum Zitat Pundir CS, Narwal V, Batra B (2016) Determination of lactic acid with special emphasis on biosensing methods: a review. Biosens Bioelectron 86:777–790PubMedCrossRef Pundir CS, Narwal V, Batra B (2016) Determination of lactic acid with special emphasis on biosensing methods: a review. Biosens Bioelectron 86:777–790PubMedCrossRef
16.
Zurück zum Zitat Lin Y, Liu K, Yu P, Xiang L, Li X, Mao L (2007) A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide. Anal Chem 79(24):9577–9583PubMedCrossRef Lin Y, Liu K, Yu P, Xiang L, Li X, Mao L (2007) A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide. Anal Chem 79(24):9577–9583PubMedCrossRef
17.
Zurück zum Zitat Thin A, Hamzah Z, FitzGerald M, McLoughlin P, Freaney R (1999) Lactate determination in exercise testing using an electrochemical analyser: with or without blood lysis? Eur J Appl Physiol 79:155–159CrossRef Thin A, Hamzah Z, FitzGerald M, McLoughlin P, Freaney R (1999) Lactate determination in exercise testing using an electrochemical analyser: with or without blood lysis? Eur J Appl Physiol 79:155–159CrossRef
18.
Zurück zum Zitat Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochemistry and biophysics reports 5:35–54PubMedCrossRef Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochemistry and biophysics reports 5:35–54PubMedCrossRef
19.
Zurück zum Zitat Ibupoto ZH, Ali Shah SMU, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 12(3):2456–2466PubMedPubMedCentralCrossRef Ibupoto ZH, Ali Shah SMU, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 12(3):2456–2466PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129PubMedCrossRef Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129PubMedCrossRef
21.
Zurück zum Zitat Huang Y-S, Chen K-Y, Cheng Y-T, Lee C-K, Tsai H-E (2020) An inkjet-printed flexible non-enzymatic lactate sensor for clinical blood plasma test. IEEE Electron Device Lett 41(4):597–600CrossRef Huang Y-S, Chen K-Y, Cheng Y-T, Lee C-K, Tsai H-E (2020) An inkjet-printed flexible non-enzymatic lactate sensor for clinical blood plasma test. IEEE Electron Device Lett 41(4):597–600CrossRef
22.
Zurück zum Zitat Xiao H, Cao L, Qin H, Wei S, Gu M, Zhao F, Chen Z (2021) Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials. J Electroanal Chem 903:115806CrossRef Xiao H, Cao L, Qin H, Wei S, Gu M, Zhao F, Chen Z (2021) Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials. J Electroanal Chem 903:115806CrossRef
23.
Zurück zum Zitat Djebbi MA, Boubakri S, Braiek M, Jaffrezic-Renault N, Namour P, Amara ABH (2021) High performance non-enzymatic electrochemical lactate sensor based on ZnAl layered double hydroxide nanosheets supported gold nanoparticles. J Electrochem Soc 168(5):057529CrossRef Djebbi MA, Boubakri S, Braiek M, Jaffrezic-Renault N, Namour P, Amara ABH (2021) High performance non-enzymatic electrochemical lactate sensor based on ZnAl layered double hydroxide nanosheets supported gold nanoparticles. J Electrochem Soc 168(5):057529CrossRef
24.
Zurück zum Zitat Amiripour F, Ghasemi S, Azizi SN (2021) A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Appl Surf Sci 537:147827CrossRef Amiripour F, Ghasemi S, Azizi SN (2021) A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Appl Surf Sci 537:147827CrossRef
25.
Zurück zum Zitat Niu X, Li X, Pan J, He Y, Qiu F, Yan Y (2016) Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv 6(88):84893–84905CrossRef Niu X, Li X, Pan J, He Y, Qiu F, Yan Y (2016) Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv 6(88):84893–84905CrossRef
26.
Zurück zum Zitat Yang Z-Z, Liu L, Wang A-J, Yuan J, Feng J-J, Xu Q-Q (2017) Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation. Int J Hydrogen Energy 42(4):2034–2044CrossRef Yang Z-Z, Liu L, Wang A-J, Yuan J, Feng J-J, Xu Q-Q (2017) Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation. Int J Hydrogen Energy 42(4):2034–2044CrossRef
27.
Zurück zum Zitat Jing H, Wang H (2015) Structural evolution of Ag–Pd bimetallic nanoparticles through controlled galvanic replacement: effects of mild reducing agents. Chem Mater 27(6):2172–2180CrossRef Jing H, Wang H (2015) Structural evolution of Ag–Pd bimetallic nanoparticles through controlled galvanic replacement: effects of mild reducing agents. Chem Mater 27(6):2172–2180CrossRef
28.
Zurück zum Zitat Anuratha KS, Su Y-Z, Huang M-K, Hsieh C-K, Xiao Y, Lin J-Y (2022) High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets. J Alloy Compd 897:163031CrossRef Anuratha KS, Su Y-Z, Huang M-K, Hsieh C-K, Xiao Y, Lin J-Y (2022) High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets. J Alloy Compd 897:163031CrossRef
29.
Zurück zum Zitat Xu W, Du D, Lan R, Humphreys J, Miller DN, Walker M, Wu Z, Irvine JT, Tao S (2018) Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl Catal B 237:1101–1109CrossRef Xu W, Du D, Lan R, Humphreys J, Miller DN, Walker M, Wu Z, Irvine JT, Tao S (2018) Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl Catal B 237:1101–1109CrossRef
30.
Zurück zum Zitat Fazri AA, Puspita AN, Ningsih S, Auliya A (2023) Electrodeposition of CoNi bimetallic catalyst for ethanol electrooxidation application. Chemistry and Materials 2(3):56–60CrossRef Fazri AA, Puspita AN, Ningsih S, Auliya A (2023) Electrodeposition of CoNi bimetallic catalyst for ethanol electrooxidation application. Chemistry and Materials 2(3):56–60CrossRef
31.
Zurück zum Zitat Tee SY, Ye E, Pan PH, Lee CJJ, Hui HK, Zhang S-Y, Koh LD, Dong Z, Han M-Y (2015) Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 7(25):11190–11198PubMedCrossRef Tee SY, Ye E, Pan PH, Lee CJJ, Hui HK, Zhang S-Y, Koh LD, Dong Z, Han M-Y (2015) Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 7(25):11190–11198PubMedCrossRef
32.
Zurück zum Zitat Jadhav L, Patil S, Chavan A, Jamale A, Puri V (2011) Solution combustion synthesis of Cu nanoparticles: a role of oxidant-to-fuel ratio. Micro & nano letters 6(9):812–815CrossRef Jadhav L, Patil S, Chavan A, Jamale A, Puri V (2011) Solution combustion synthesis of Cu nanoparticles: a role of oxidant-to-fuel ratio. Micro & nano letters 6(9):812–815CrossRef
33.
Zurück zum Zitat Xiong L, Li S, Zhang B, Du Y, Miao P, Ma Y, Han Y, Zhao H, Xu P (2015) Galvanic replacement-mediated synthesis of hollow Cu2O-Au nanocomposites and Au nanocages for catalytic and SERS applications. RSC Adv 5(93):76101–76106CrossRef Xiong L, Li S, Zhang B, Du Y, Miao P, Ma Y, Han Y, Zhao H, Xu P (2015) Galvanic replacement-mediated synthesis of hollow Cu2O-Au nanocomposites and Au nanocages for catalytic and SERS applications. RSC Adv 5(93):76101–76106CrossRef
34.
Zurück zum Zitat Wang L, Li H, Tian J, Sun X (2010) Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 2(11):2987–2991PubMedCrossRef Wang L, Li H, Tian J, Sun X (2010) Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 2(11):2987–2991PubMedCrossRef
35.
Zurück zum Zitat Wang R-C, Li C-H (2011) Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: structural evolution and reverse surface-enhanced Raman scattering. Acta Mater 59(2):822–829CrossRef Wang R-C, Li C-H (2011) Cu, Cu-Cu2O core–shell, and hollow Cu2O nanodendrites: structural evolution and reverse surface-enhanced Raman scattering. Acta Mater 59(2):822–829CrossRef
36.
Zurück zum Zitat Goriushkina TB, Soldatkin AP, Dzyadevych SV (2009) Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J Agric Food Chem 57(15):6528–6535PubMedCrossRef Goriushkina TB, Soldatkin AP, Dzyadevych SV (2009) Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J Agric Food Chem 57(15):6528–6535PubMedCrossRef
37.
Zurück zum Zitat Chang AS, Memon NN, Amin S, Chang F, Aftab U, Abro MI, dad Chandio A, Shah AA, Ibupoto MH, Ansari MA (2019) Facile non-enzymatic lactic acid sensor based on cobalt oxide nanostructures. Electroanalysis 31(7):1296–1303CrossRef Chang AS, Memon NN, Amin S, Chang F, Aftab U, Abro MI, dad Chandio A, Shah AA, Ibupoto MH, Ansari MA (2019) Facile non-enzymatic lactic acid sensor based on cobalt oxide nanostructures. Electroanalysis 31(7):1296–1303CrossRef
38.
Zurück zum Zitat Pagán M, Suazo D, Del Toro N, Griebenow K (2015) A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens Bioelectron 64:138–146PubMedCrossRef Pagán M, Suazo D, Del Toro N, Griebenow K (2015) A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens Bioelectron 64:138–146PubMedCrossRef
39.
Zurück zum Zitat Pfeiffer D, Möller B, Klimes N, Szeponik J, Fischer S (1997) Amperometric lactate oxidase catheter for real-time lactate monitoring based on thin film technology. Biosens Bioelectron 12(6):539–550PubMedCrossRef Pfeiffer D, Möller B, Klimes N, Szeponik J, Fischer S (1997) Amperometric lactate oxidase catheter for real-time lactate monitoring based on thin film technology. Biosens Bioelectron 12(6):539–550PubMedCrossRef
40.
Zurück zum Zitat Amin S, Tahira A, Solangi A, Mazzaro R, Ibupoto ZH, Vomiero A (2019) A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Anal Methods 11(28):3578–3583CrossRef Amin S, Tahira A, Solangi A, Mazzaro R, Ibupoto ZH, Vomiero A (2019) A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Anal Methods 11(28):3578–3583CrossRef
41.
Zurück zum Zitat Petropoulos K, Piermarini S, Bernardini S, Palleschi G, Moscone D (2016) Development of a disposable biosensor for lactate monitoring in saliva. Sens Actuators, B Chem 237:8–15CrossRef Petropoulos K, Piermarini S, Bernardini S, Palleschi G, Moscone D (2016) Development of a disposable biosensor for lactate monitoring in saliva. Sens Actuators, B Chem 237:8–15CrossRef
Metadaten
Titel
Fabrication of Nanostructured Cu-Au Materials as an Efficient Electrocatalyst for Lactate Determination in Athletes Biological Fluid During Exercise
verfasst von
Changwen Lu
Yanwen Lu
Manqiang Xu
Zitong Zhang
Wei Han
Masoud Ghanei
Publikationsdatum
08.05.2024
Verlag
Springer US
Erschienen in
Topics in Catalysis
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-024-01958-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.