Skip to main content
Erschienen in: Fire Technology 6/2023

16.08.2020

Generating Synthetic Sensor Data to Facilitate Machine Learning Paradigm for Prediction of Building Fire Hazard

verfasst von: Wai Cheong Tam, Eugene Yujun Fu, Richard Peacock, Paul Reneke, Jun Wang, Jiajia Li, Thomas Cleary

Erschienen in: Fire Technology | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the zone fire model CFAST as the simulation engine, time series data for building sensors, such as heat detectors, smoke detectors, and other targets at any arbitrary locations in multi-room compartments with different geometric configurations, can be obtained. An automated process for creating inputs files and summarizing model results, CData, is being developed as a companion to CFAST. An example case is presented to demonstrate the use of CData where synthetic data is generated for a wide range of fire scenarios. Three machine learning algorithms: support vector machine (SVM), decision tree (DT), and random forest (RF), are used to develop classification models that can predict the location of a fire based on temperature data within a compartment. Results show that DT and RF have excellent performance on the prediction of fire location and achieve model accuracy in between 93% and 96%. For SVM, model performance is sensitive to the size of training data. Additional study shows that results obtained from DT and RT can be used to examine the importance of each input feature. This paper contributes a learning-by-synthesis approach to facilitate the utilization of a machine learning paradigm to enhance situational awareness for fire fighting in buildings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
CData is under active development. In the future version of CData, its fundamental elements, statistics of input parameters for residential buildings, and available distribution functions, can be varied to enhance data generation capacity and numerical efficiency.
 
2
Hyperparameters can be thought of as the “dials” or “knobs” of a machine learning model.
 
3
There are 24 sets of temperature profiles. Each temperature profile has 1000 s of data. With the minimum window size of 10 s, the maximum instances for this dataset will be 23,760.
 
4
Accuracy is defined as the number of correct classified instances over the total number of instances.
 
5
Feature importance is calculated based on the decrease in node impurity weighted by the probability of reaching that node.
 
Literatur
1.
Zurück zum Zitat Hamins AP, Bryner NP, Jones AW, Koepke GH (2015) Research roadmap for smart fire fighting (No. Special Publication (NIST SP)-1191) Hamins AP, Bryner NP, Jones AW, Koepke GH (2015) Research roadmap for smart fire fighting (No. Special Publication (NIST SP)-1191)
2.
Zurück zum Zitat Qolomany B, Al-Fuqaha A, Gupta A, Benhaddou D, Alwajidi S, Qadir J, Fong AC (2019) Machine learning, big data, and smart buildings: a comprehensive survey. arXiv:1904.01460 Qolomany B, Al-Fuqaha A, Gupta A, Benhaddou D, Alwajidi S, Qadir J, Fong AC (2019) Machine learning, big data, and smart buildings: a comprehensive survey. arXiv:​1904.​01460
3.
Zurück zum Zitat Overholt KJ, Ezekoye OA (2012) Characterizing heat release rates using an inverse fire modeling technique. Fire Technol 48(4):893–909CrossRef Overholt KJ, Ezekoye OA (2012) Characterizing heat release rates using an inverse fire modeling technique. Fire Technol 48(4):893–909CrossRef
4.
Zurück zum Zitat Lin CC, Wang LL (2017) Real-time forecasting of building fire growth and smoke transport via ensemble Kalman filter. Fire Technol 53(3):1101–1121CrossRef Lin CC, Wang LL (2017) Real-time forecasting of building fire growth and smoke transport via ensemble Kalman filter. Fire Technol 53(3):1101–1121CrossRef
5.
Zurück zum Zitat Mahdavinejad MS, Mohammadreza R, Mohammadamin B, Peyman A, Payam B, Sheth AP (2018) Machine learning for Internet of Things data analysis: a survey. Digit Commun Netw 4(3):161–175CrossRef Mahdavinejad MS, Mohammadreza R, Mohammadamin B, Peyman A, Payam B, Sheth AP (2018) Machine learning for Internet of Things data analysis: a survey. Digit Commun Netw 4(3):161–175CrossRef
6.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
7.
Zurück zum Zitat Chenebert A, Breckon TP, Gaszczak A (2011) A non-temporal texture driven approach to real-time fire detection. In: 2011 18th IEEE international conference on image processing. IEEE, pp 1741–1744 Chenebert A, Breckon TP, Gaszczak A (2011) A non-temporal texture driven approach to real-time fire detection. In: 2011 18th IEEE international conference on image processing. IEEE, pp 1741–1744
8.
Zurück zum Zitat Yin Z, Wan B, Yuan F, Xia X, Shi J (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef Yin Z, Wan B, Yuan F, Xia X, Shi J (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef
9.
Zurück zum Zitat Shen D, Chen X, Nguyen M, Yan WQ (2018) Flame detection using deep learning. In: 2018 4th international conference on control, automation and robotics (ICCAR). IEEE, pp 416–420 Shen D, Chen X, Nguyen M, Yan WQ (2018) Flame detection using deep learning. In: 2018 4th international conference on control, automation and robotics (ICCAR). IEEE, pp 416–420
10.
Zurück zum Zitat Aslan S, Güdükbay U, Töreyin BU, Çetin AE (2019) Deep convolutional generative adversarial networks based flame detection in video. arXiv:1902.01824 Aslan S, Güdükbay U, Töreyin BU, Çetin AE (2019) Deep convolutional generative adversarial networks based flame detection in video. arXiv:​1902.​01824
11.
Zurück zum Zitat Zhao Y, Ma J, Li X, Zhang J (2018) Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 18(3):712CrossRef Zhao Y, Ma J, Li X, Zhang J (2018) Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 18(3):712CrossRef
12.
Zurück zum Zitat Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Vis Commun Image Represent 18(2):176–185CrossRef Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Vis Commun Image Represent 18(2):176–185CrossRef
13.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator user’s guide, vol 1019, no 6. NIST Special Publication McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator user’s guide, vol 1019, no 6. NIST Special Publication
14.
Zurück zum Zitat Yuen RK, Lee EW, Lo SM, Yeoh GH (2006) Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis. Fire Saf J 41(6):478–485CrossRef Yuen RK, Lee EW, Lo SM, Yeoh GH (2006) Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis. Fire Saf J 41(6):478–485CrossRef
15.
Zurück zum Zitat Hodges JL, Lattimer BY, Luxbacher KD (2019) Compartment fire predictions using transpose convolutional neural networks. Fire Saf J 108:102854CrossRef Hodges JL, Lattimer BY, Luxbacher KD (2019) Compartment fire predictions using transpose convolutional neural networks. Fire Saf J 108:102854CrossRef
16.
Zurück zum Zitat Lattimer BY, Hodges JL, Lattimer AM (2020) Using machine learning in physics-based simulation of fire. Fire Saf J 114: 102991CrossRef Lattimer BY, Hodges JL, Lattimer AM (2020) Using machine learning in physics-based simulation of fire. Fire Saf J 114: 102991CrossRef
17.
Zurück zum Zitat Sharma J, Granmo OC, Goodwin M, Fidje JT (2017) Deep convolutional neural networks for fire detection in images. In: International conference on engineering applications of neural networks. Springer, Cham, pp. 183–193 Sharma J, Granmo OC, Goodwin M, Fidje JT (2017) Deep convolutional neural networks for fire detection in images. In: International conference on engineering applications of neural networks. Springer, Cham, pp. 183–193
18.
Zurück zum Zitat Lichman M (2013) UCI machine learning repository Lichman M (2013) UCI machine learning repository
19.
Zurück zum Zitat Bruns MC (2018) Estimating the flashover probability of residential fires using Monte Carlo simulations of the MQH correlation. Fire Technol 54(1):187–210CrossRef Bruns MC (2018) Estimating the flashover probability of residential fires using Monte Carlo simulations of the MQH correlation. Fire Technol 54(1):187–210CrossRef
22.
Zurück zum Zitat Peacock RD, Reneke PA, Forney GP (2017) CFAST—consolidated model of fire growth and smoke transport (version 7) volume 2: user’s guide. NIST Technical Note 1889v2 Peacock RD, Reneke PA, Forney GP (2017) CFAST—consolidated model of fire growth and smoke transport (version 7) volume 2: user’s guide. NIST Technical Note 1889v2
23.
Zurück zum Zitat Mishra M, Rout PK (2017) Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Gen Transm Distribut 12(2):388–397CrossRef Mishra M, Rout PK (2017) Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Gen Transm Distribut 12(2):388–397CrossRef
24.
Zurück zum Zitat Kazem HA, Yousif JH, Chaichan MT (2016) Modeling of daily solar energy system prediction using support vector machine for Oman. Int J Appl Eng Res 11(20): 10166–10172 Kazem HA, Yousif JH, Chaichan MT (2016) Modeling of daily solar energy system prediction using support vector machine for Oman. Int J Appl Eng Res 11(20): 10166–10172
25.
Zurück zum Zitat Moutis P, Skarvelis-Kazakos S, Brucoli M (2016) Decision tree aided planning and energy balancing of planned community microgrids. Applied Energy 161: 197–205CrossRef Moutis P, Skarvelis-Kazakos S, Brucoli M (2016) Decision tree aided planning and energy balancing of planned community microgrids. Applied Energy 161: 197–205CrossRef
26.
Zurück zum Zitat Jiang H, Li Y, Zhang Y, Zhang JJ, Gao DW, Muljadi E, Gu Y (2017) Big data-based approach to detect, locate, and enhance the stability of an unplanned microgrid islanding. J Energy Eng 143(5):04017045CrossRef Jiang H, Li Y, Zhang Y, Zhang JJ, Gao DW, Muljadi E, Gu Y (2017) Big data-based approach to detect, locate, and enhance the stability of an unplanned microgrid islanding. J Energy Eng 143(5):04017045CrossRef
27.
Zurück zum Zitat Vapnik V (1998) The support vector method of function estimation. In: Nonlinear modeling. Springer, Boston, pp 55–85 Vapnik V (1998) The support vector method of function estimation. In: Nonlinear modeling. Springer, Boston, pp 55–85
28.
Zurück zum Zitat Breiman L (2017) Classification and regression trees. Routledge, AbingdonCrossRef Breiman L (2017) Classification and regression trees. Routledge, AbingdonCrossRef
30.
Zurück zum Zitat Schittenkopf C, Deco G, Brauer W (1997) Two strategies to avoid overfitting in feedforward networks. Neural Netw 10(3):505–516CrossRef Schittenkopf C, Deco G, Brauer W (1997) Two strategies to avoid overfitting in feedforward networks. Neural Netw 10(3):505–516CrossRef
31.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, et al. (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(Oct): 2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, et al. (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12(Oct): 2825–2830MathSciNetMATH
32.
Zurück zum Zitat Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef
33.
Zurück zum Zitat Staelin C (2003) Parameter selection for support vector machines. Hewlett-Packard Company, Tech. Rep. HPL-2002-354R1 Staelin C (2003) Parameter selection for support vector machines. Hewlett-Packard Company, Tech. Rep. HPL-2002-354R1
34.
Zurück zum Zitat Jebara T (2004) Multi-task feature and kernel selection for SVMs. In: Proceedings of the twenty-first international conference on Machine learning. ACM, p. 55 Jebara T (2004) Multi-task feature and kernel selection for SVMs. In: Proceedings of the twenty-first international conference on Machine learning. ACM, p. 55
Metadaten
Titel
Generating Synthetic Sensor Data to Facilitate Machine Learning Paradigm for Prediction of Building Fire Hazard
verfasst von
Wai Cheong Tam
Eugene Yujun Fu
Richard Peacock
Paul Reneke
Jun Wang
Jiajia Li
Thomas Cleary
Publikationsdatum
16.08.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01022-9

Weitere Artikel der Ausgabe 6/2023

Fire Technology 6/2023 Zur Ausgabe