Skip to main content

2024 | OriginalPaper | Buchkapitel

Heavy Metal Waste Management to Combat Climate Crisis: An Overview of Plant-Based Strategies and Its Current Developments

verfasst von : Swagata Karak, Garima, Eapsa Berry, Ashish Kumar Choudhary

Erschienen in: Integrated Waste Management

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Environmental pollution caused by heavy metals is currently a serious global problem. These deleterious heavy metal pollutants quickly build up in the environment causing a critical concern for agricultural production and food safety. An efficient and sustainable waste management system to remediate heavy metals in the environment is crucial for the survival of any ecosystem. Management of heavy metal contamination has so far been accomplished using a variety of physical, chemical, and biological approaches. Physical and chemical approaches typically have several drawbacks, e.g., they are high in cost they are labor intensive, they render irreversible changes to soil quality and they disrupt the native soil flora. Chemical approaches also have the potential to produce secondary pollution problems and are non-sustainable. Therefore, research to develop waste management methods that are affordable, efficient, and advantageous to the environment is in the spotlight. In this review, an age-old plant-based method of heavy metal waste management, called phytoremediation, has been described. At this point, the various strategic methods applied by hyperaccumulator plants have been summarized. The current developments of phytotechnology, involving the use of cutting-edge biotechnological tools in enhancing the scope and relevance of phytoremediation, have been described including the development of transgenics, the use of nanoparticles, earthworms, and microorganisms. We highlight the lacuna in the current information and suggest a desirable way ahead in the context of climate action. Furthermore, this green solution to heavy metal waste management has tremendous potential that all stakeholders of environmental management have heavily counted on, given the unprecedented battle against pollution in times of global climate change.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10 Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10
8.
Zurück zum Zitat Akhtar FZ, Archana KM, Krishnaswamy VG, Rajagopal R (2020) Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: A novel approach. SN App Sci 2:1–14 Akhtar FZ, Archana KM, Krishnaswamy VG, Rajagopal R (2020) Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: A novel approach. SN App Sci 2:1–14
9.
Zurück zum Zitat Dixit R, Wasiullah X, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189CrossRef Dixit R, Wasiullah X, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://​doi.​org/​10.​3390/​su7022189CrossRef
10.
Zurück zum Zitat Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168CrossRef Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168CrossRef
15.
Zurück zum Zitat Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, pp 71–88 Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, pp 71–88
16.
Zurück zum Zitat Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Environ Health 14(3):235–239 Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Environ Health 14(3):235–239
22.
Zurück zum Zitat Vareda JP, Valente AJ, Durães L (2019) Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage 246:101–118CrossRef Vareda JP, Valente AJ, Durães L (2019) Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage 246:101–118CrossRef
23.
Zurück zum Zitat Kruckeberg AR (2004) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press Kruckeberg AR (2004) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press
24.
Zurück zum Zitat Gupta A (2020) Effects of climate change on heavy metals and their toxicity on freshwater organisms, 1st ed. CRC Press Gupta A (2020) Effects of climate change on heavy metals and their toxicity on freshwater organisms, 1st ed. CRC Press
28.
Zurück zum Zitat Dockery D, Pope A (1996) Epidemiology of acute health effects: summary of time-series studies. In: Wilson R, Spengler JD (eds) Particles in our air. Harvard University Press, pp 123–147 Dockery D, Pope A (1996) Epidemiology of acute health effects: summary of time-series studies. In: Wilson R, Spengler JD (eds) Particles in our air. Harvard University Press, pp 123–147
29.
Zurück zum Zitat Mudipalli A (2008) Metals (micro nutrients or toxicants) and global health. Indian J Med Res 128:331–334 Mudipalli A (2008) Metals (micro nutrients or toxicants) and global health. Indian J Med Res 128:331–334
30.
Zurück zum Zitat Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128:412–425 Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128:412–425
31.
34.
Zurück zum Zitat Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S (2018) Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav 13(8):e1460048 Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S (2018) Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav 13(8):e1460048
35.
Zurück zum Zitat Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology, volume 3: environmental toxicology. 133–164 Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology, volume 3: environmental toxicology. 133–164
36.
Zurück zum Zitat Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792CrossRef Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792CrossRef
38.
Zurück zum Zitat Sharma P, Dubey RS (2006) Cadmium uptake and its toxicity in higher plants. Cadmium toxicity and tolerance in plants. Narosa Publishing House, New Delhi, pp 63–86 Sharma P, Dubey RS (2006) Cadmium uptake and its toxicity in higher plants. Cadmium toxicity and tolerance in plants. Narosa Publishing House, New Delhi, pp 63–86
39.
Zurück zum Zitat Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Cadmium: from toxicity to essentiality. pp 1–29 Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Cadmium: from toxicity to essentiality. pp 1–29
40.
Zurück zum Zitat Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC et al (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 75(2):257–263 Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC et al (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 75(2):257–263
41.
Zurück zum Zitat Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRef Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRef
42.
Zurück zum Zitat Muro-González DA, Mussali-Galante P, Valencia-Cuevas L, Flores-Trujillo K, Tovar-Sánchez E (2020) Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environ Sci Pollut Res 27:40187–40204CrossRef Muro-González DA, Mussali-Galante P, Valencia-Cuevas L, Flores-Trujillo K, Tovar-Sánchez E (2020) Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environ Sci Pollut Res 27:40187–40204CrossRef
43.
Zurück zum Zitat Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198 Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198
46.
Zurück zum Zitat Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley
47.
Zurück zum Zitat Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRef Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRef
57.
59.
Zurück zum Zitat Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Plant metal interaction. Elsevier, pp 239–261 Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Plant metal interaction. Elsevier, pp 239–261
69.
79.
Zurück zum Zitat Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van Der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794. https://doi.org/10.1007/s11356-009-0213-6CrossRef Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van Der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794. https://​doi.​org/​10.​1007/​s11356-009-0213-6CrossRef
90.
94.
Zurück zum Zitat Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: Advances in biodegradation and bioremediation of industrial waste. CRC Press, pp 1–30 Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: Advances in biodegradation and bioremediation of industrial waste. CRC Press, pp 1–30
102.
Zurück zum Zitat Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18 Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18
104.
Zurück zum Zitat Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85 Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85
106.
Zurück zum Zitat Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364CrossRef Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364CrossRef
107.
Zurück zum Zitat Singh NP, Santal AR (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. Phytoremediation: Manag Environ Contam 2:115–129 Singh NP, Santal AR (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. Phytoremediation: Manag Environ Contam 2:115–129
110.
Zurück zum Zitat Benavides LCL, Pinilla LAC, Serrezuela RR, Serrezuela WFR (2018) Extraction in laboratory of heavy metals through rhizofiltration using the plant zea mays (maize). Int J Appl Environ Sci 13:9–26 Benavides LCL, Pinilla LAC, Serrezuela RR, Serrezuela WFR (2018) Extraction in laboratory of heavy metals through rhizofiltration using the plant zea mays (maize). Int J Appl Environ Sci 13:9–26
114.
Zurück zum Zitat Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2), Suppl:367–376 Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2), Suppl:367–376
117.
Zurück zum Zitat Bezie Y, Taye M, Kumar A (2021) Recent advancement in phytoremediation for removal of toxic compounds. In: Kumar A, Ram C (eds) Nanobiotechnology for green environment. CRC Press, pp 195–228CrossRef Bezie Y, Taye M, Kumar A (2021) Recent advancement in phytoremediation for removal of toxic compounds. In: Kumar A, Ram C (eds) Nanobiotechnology for green environment. CRC Press, pp 195–228CrossRef
122.
Zurück zum Zitat Mishra A, Mishra SP, Arshi A, Agarwal A, Dwivedi SK (2020) Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, pp 415–436CrossRef Mishra A, Mishra SP, Arshi A, Agarwal A, Dwivedi SK (2020) Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety. Springer, pp 415–436CrossRef
124.
Zurück zum Zitat Souto KM, Jacques RJS, de Avila LA, de Oliveira Machado SL, Zanella R, Refatti JP (2013) Biodegradation of the herbicides imazethapyr and imazapic in rhizosphere soil of six plant species/Biodegradacao dos herbicidas imazetapir e imazapique em solo rizosferico de seis especies vegetais. Ciência Rural 43:1790–1796CrossRef Souto KM, Jacques RJS, de Avila LA, de Oliveira Machado SL, Zanella R, Refatti JP (2013) Biodegradation of the herbicides imazethapyr and imazapic in rhizosphere soil of six plant species/Biodegradacao dos herbicidas imazetapir e imazapique em solo rizosferico de seis especies vegetais. Ciência Rural 43:1790–1796CrossRef
126.
Zurück zum Zitat Melo CA, Souza WM, Carvalho FP, Massenssini AM, Silva AA, Ferreira LR, Costa MD (2017) Microbial activity of soil with sulfentrazone associated with phytoremediator species and inoculation with a bacterial consortium. Bragantia 76:300–310CrossRef Melo CA, Souza WM, Carvalho FP, Massenssini AM, Silva AA, Ferreira LR, Costa MD (2017) Microbial activity of soil with sulfentrazone associated with phytoremediator species and inoculation with a bacterial consortium. Bragantia 76:300–310CrossRef
132.
Zurück zum Zitat Cappa JJ, Yetter C, Fakra S, Cappa PJ, DeTar R, Landes C, Pilon-Smits EAH, Simmons MP (2015) Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis. New Phytol 205:583–595. https://doi.org/10.1111/nph.13071CrossRef Cappa JJ, Yetter C, Fakra S, Cappa PJ, DeTar R, Landes C, Pilon-Smits EAH, Simmons MP (2015) Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis. New Phytol 205:583–595. https://​doi.​org/​10.​1111/​nph.​13071CrossRef
133.
Zurück zum Zitat Hanikenne M, Talke IN, HaydonMJ, LanzC, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):article 7193. https://doi.org/10.1038/nature06877 Hanikenne M, Talke IN, HaydonMJ, LanzC, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):article 7193. https://​doi.​org/​10.​1038/​nature06877
138.
Zurück zum Zitat Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2(4):178–191 Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2(4):178–191
139.
Zurück zum Zitat Fulekar MH, SinghA, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4) Fulekar MH, SinghA, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4)
145.
147.
Zurück zum Zitat Song W-Y, Ju Sohn E, Martinoia E, Jik Lee Y, Yang Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):Article 8. https://doi.org/10.1038/nbt850 Song W-Y, Ju Sohn E, Martinoia E, Jik Lee Y, Yang Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):Article 8. https://​doi.​org/​10.​1038/​nbt850
148.
Zurück zum Zitat Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment: proceedings of the XIII international plant nutrition colloquium, Tokyo, Japan. Springer Netherlands, pp 391–395. https://doi.org/10.1007/978-94-009-0047-9_117 Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment: proceedings of the XIII international plant nutrition colloquium, Tokyo, Japan. Springer Netherlands, pp 391–395. https://​doi.​org/​10.​1007/​978-94-009-0047-9_​117
152.
Zurück zum Zitat Kumar V, AlMomin S, Al-Shatti A, Al-Aqeel H, Al-Salameen F, Shajan AB, Nair SM (2019) Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. Int J Phytoremediation 21:1112–1121CrossRef Kumar V, AlMomin S, Al-Shatti A, Al-Aqeel H, Al-Salameen F, Shajan AB, Nair SM (2019) Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. Int J Phytoremediation 21:1112–1121CrossRef
155.
Zurück zum Zitat Wang H, Liu Y, Peng Z, Li J, Huang W, Liu Y, Wang X, Xie S, Sun L, Han E, Wu N, Luo K, Wang B (2019) Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in Arabidopsis thaliana. Int J Mol Sci 20(13) Article 13. https://doi.org/10.3390/ijms20133293 Wang H, Liu Y, Peng Z, Li J, Huang W, Liu Y, Wang X, Xie S, Sun L, Han E, Wu N, Luo K, Wang B (2019) Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in Arabidopsis thaliana. Int J Mol Sci 20(13) Article 13. https://​doi.​org/​10.​3390/​ijms20133293
157.
Zurück zum Zitat Haris M, Ajmal HMN, Bashir H (2023) Impacts of genetically modified organisms (GMOs) on environment and agriculture: a comprehensive review. Trends Anim Plant Sci 1:92–99 Haris M, Ajmal HMN, Bashir H (2023) Impacts of genetically modified organisms (GMOs) on environment and agriculture: a comprehensive review. Trends Anim Plant Sci 1:92–99
158.
Zurück zum Zitat Idris SH, Omar H, Nashir IM (2023) Ethical tools of genetically modified (GM) crops technology for farmers’ protections. In: International conference on mathematical and statistical physics, computational science, education, and communication (ICMSCE 2022), vol 12616. SPIE, pp 267–273 Idris SH, Omar H, Nashir IM (2023) Ethical tools of genetically modified (GM) crops technology for farmers’ protections. In: International conference on mathematical and statistical physics, computational science, education, and communication (ICMSCE 2022), vol 12616. SPIE, pp 267–273
159.
Zurück zum Zitat Aziz AA, Mabrouk YM, Essa EM, El-Metainy AY, Abou-Youssef AY (2008) Genetic aspects of heavy metals phytoremediation abilities of sunflower plants. Egypt J Genet Cytol 37(1) Aziz AA, Mabrouk YM, Essa EM, El-Metainy AY, Abou-Youssef AY (2008) Genetic aspects of heavy metals phytoremediation abilities of sunflower plants. Egypt J Genet Cytol 37(1)
169.
Zurück zum Zitat Zhang Q, Gong M, Liu K, Chen Y, Yuan J, Chang Q (2020) Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Front Microbiol 11:1428. https://www.frontiersin.org/articles/https://doi.org/10.3389/fmicb.2020.01428 Zhang Q, Gong M, Liu K, Chen Y, Yuan J, Chang Q (2020) Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Front Microbiol 11:1428. https://​www.​frontiersin.​org/​articles/​https://​doi.​org/​10.​3389/​fmicb.​2020.​01428
172.
Zurück zum Zitat Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecol Eng 95:64–72CrossRef Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecol Eng 95:64–72CrossRef
175.
Zurück zum Zitat Mishra I, Arora NK (2019) Rhizoremediation: a sustainable approach to improve the quality and productivity of polluted soils. Phyto and rhizo remediation 33–66 Mishra I, Arora NK (2019) Rhizoremediation: a sustainable approach to improve the quality and productivity of polluted soils. Phyto and rhizo remediation 33–66
177.
Zurück zum Zitat Bruno LB, Anbuganesan V, Karthik C, Kumar A, Banu JR, Freitas H, Rajkumar M (2021) Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. J Environ Manage 289:112553CrossRef Bruno LB, Anbuganesan V, Karthik C, Kumar A, Banu JR, Freitas H, Rajkumar M (2021) Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. J Environ Manage 289:112553CrossRef
178.
Zurück zum Zitat Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78CrossRef Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78CrossRef
183.
Zurück zum Zitat Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316. https://doi.org/10.1021/acs.est.7b03164CrossRef Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51:11308–11316. https://​doi.​org/​10.​1021/​acs.​est.​7b03164CrossRef
188.
195.
Metadaten
Titel
Heavy Metal Waste Management to Combat Climate Crisis: An Overview of Plant-Based Strategies and Its Current Developments
verfasst von
Swagata Karak
Garima
Eapsa Berry
Ashish Kumar Choudhary
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0823-9_9