Skip to main content

2024 | OriginalPaper | Buchkapitel

Heterogeneous Mechanical Metamaterials with Extreme Bulk-To-Shear Modulus Ratio: An Evolutionary Design Approach

verfasst von : Sara E. Rodriguez Gomez, Raj Das, Emilio P. Calius

Erschienen in: Recent Advances on the Mechanical Behaviour of Materials

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most non-stochastic architected materials proposed to date have been based on periodic structures with a homogeneous topology and uniform materiality. Topologically and materially heterogeneous mechanical metamaterials promise novel capabilities, expanding the design space through growth in degrees of freedom. However, this leads to increased design complexity, as the space of possible solutions becomes a high-dimensional domain. We present a computational design automation framework for novel heterogeneous mechanical meta-material designs with a CMA-ES black-box evolutionary algorithm at its core, and demonstrate its application through a case study on new 2D pentamode meta-materials. Pentamodes are defined by extreme values of the bulk-to-shear modulus ratio (B/G) and are of particular interest due to both their unusual properties, being very stiff under compression yet easy to deform in shear, and potential as building blocks for the realization of any physically possible and desired elastic property. For the pentamode case study, this approach resulted in irregular composite structures with large B/G ratios, many structures having values between 1–3 × 104, a range well above previously reported experimental values of 103. The new meta-material systems it generated do not present the point-like connections of the classic pentamode diamond-type lattice, which is a key practical limitation for application. This work shows that population-based metaheuristic computational methods can reliably generate novel mechanical metamaterial designs capable of achieving more extreme performance than more traditional metamaterial design approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Yu X et al (2018) Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 94:114–173CrossRef Yu X et al (2018) Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 94:114–173CrossRef
3.
Zurück zum Zitat Banerjee B (2011) An introduction to metamaterials and waves in composites. CRC Press/Taylor & Francis Group, Boca Raton, FL Banerjee B (2011) An introduction to metamaterials and waves in composites. CRC Press/Taylor & Francis Group, Boca Raton, FL
4.
Zurück zum Zitat Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of Phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4) Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of Phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4)
5.
Zurück zum Zitat Kumar S et al (2020) Inverse-designed spinodoid metamaterials. npj Computat Mater 6(1):73 Kumar S et al (2020) Inverse-designed spinodoid metamaterials. npj Computat Mater 6(1):73
6.
Zurück zum Zitat Wang J, Chen WW, Da D, Fuge M, Rai R (2022) Comput Methods Appl Mech Eng 396:115060CrossRef Wang J, Chen WW, Da D, Fuge M, Rai R (2022) Comput Methods Appl Mech Eng 396:115060CrossRef
7.
Zurück zum Zitat Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D (2015) ACM Trans Graph 34(4):Article 135 Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D (2015) ACM Trans Graph 34(4):Article 135
8.
Zurück zum Zitat Tozoni DC, Dumas J, Jiang Z, Panetta J, Panozzo D, Zorin D (2020) ACM Trans Graph 39(4):Article 101 Tozoni DC, Dumas J, Jiang Z, Panetta J, Panozzo D, Zorin D (2020) ACM Trans Graph 39(4):Article 101
9.
10.
Zurück zum Zitat Du Z, Kim HA (2018) In 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference: American institute of aeronautics and astronautics Du Z, Kim HA (2018) In 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference: American institute of aeronautics and astronautics
11.
Zurück zum Zitat Kumar S, Tan S, Zheng L (2020) npj Comput Mater 6(1):7 Kumar S, Tan S, Zheng L (2020) npj Comput Mater 6(1):7
12.
Zurück zum Zitat Memoli G et al (2017) Metamaterial bricks and quantization of meta-surfaces. Nat Commun 8(1):14608CrossRef Memoli G et al (2017) Metamaterial bricks and quantization of meta-surfaces. Nat Commun 8(1):14608CrossRef
13.
Zurück zum Zitat Chen D et al (2018) Computational discovery of extremal microstructure families. Sci Adv 4(1):eaao7005 Chen D et al (2018) Computational discovery of extremal microstructure families. Sci Adv 4(1):eaao7005
14.
Zurück zum Zitat Coulais C et al (2016) Combinatorial design of textured mechanical metamaterials. Nature 535(7613):529–532CrossRef Coulais C et al (2016) Combinatorial design of textured mechanical metamaterials. Nature 535(7613):529–532CrossRef
15.
Zurück zum Zitat Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368CrossRef Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368CrossRef
16.
Zurück zum Zitat Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetCrossRef Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetCrossRef
17.
Zurück zum Zitat Diest K (2013) Numerical methods for metamaterial design. 1st ed. 2013. ed, ed. K.e. Diest. Dordrecht: Springer Netherlands: Imprint: Springer Diest K (2013) Numerical methods for metamaterial design. 1st ed. 2013. ed, ed. K.e. Diest. Dordrecht: Springer Netherlands: Imprint: Springer
18.
Zurück zum Zitat Vogiatzis P et al (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput Aided Des 83:15–32MathSciNetCrossRef Vogiatzis P et al (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput Aided Des 83:15–32MathSciNetCrossRef
19.
Zurück zum Zitat Han Y, Lu W (2018) Evolutionary design of nonuniform cellular structures with optimized Poisson’s ratio distribution. Mater Des 141:384–394CrossRef Han Y, Lu W (2018) Evolutionary design of nonuniform cellular structures with optimized Poisson’s ratio distribution. Mater Des 141:384–394CrossRef
20.
Zurück zum Zitat Packo P, Norris AN, Torrent D (2019) Inverse grating problem: efficient design of anomalous flexural wave reflectors and refractors. Phys Rev Appl 11(1):014023CrossRef Packo P, Norris AN, Torrent D (2019) Inverse grating problem: efficient design of anomalous flexural wave reflectors and refractors. Phys Rev Appl 11(1):014023CrossRef
21.
Zurück zum Zitat Ronellenfitsch H et al (2019) Inverse design of discrete mechanical metamaterials. Phys Rev Mater 3(9):095201CrossRef Ronellenfitsch H et al (2019) Inverse design of discrete mechanical metamaterials. Phys Rev Mater 3(9):095201CrossRef
22.
Zurück zum Zitat Zhang Y, Ye W (2019) Deep learning–based inverse method for layout design. Struct Multidiscip Optim 60(2):527–536MathSciNetCrossRef Zhang Y, Ye W (2019) Deep learning–based inverse method for layout design. Struct Multidiscip Optim 60(2):527–536MathSciNetCrossRef
23.
Zurück zum Zitat Ion A et al (2019) Understanding Metamaterial mechanisms. In: Proceedings of the 2019 CHI conference on human factors in computing systems. Association for Computing Machinery: Glasgow, Scotland Uk. p. Paper 647 Ion A et al (2019) Understanding Metamaterial mechanisms. In: Proceedings of the 2019 CHI conference on human factors in computing systems. Association for Computing Machinery: Glasgow, Scotland Uk. p. Paper 647
24.
Zurück zum Zitat Zheng Y et al (2020) Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int J Mech Sci 179:105638CrossRef Zheng Y et al (2020) Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int J Mech Sci 179:105638CrossRef
25.
Zurück zum Zitat Tan RK, Zhang NL, Ye W (2019) A deep learning-based method for the design of microstructural materials, 32 Tan RK, Zhang NL, Ye W (2019) A deep learning-based method for the design of microstructural materials, 32
26.
Zurück zum Zitat Chen C-T, Gu GX (2020) Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci 7(5):1902607CrossRef Chen C-T, Gu GX (2020) Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci 7(5):1902607CrossRef
28.
Zurück zum Zitat Dokeroglu T et al (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040NCrossRef Dokeroglu T et al (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040NCrossRef
29.
Zurück zum Zitat Christensen J et al (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462CrossRef Christensen J et al (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462CrossRef
30.
Zurück zum Zitat Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117(4):483–493CrossRef Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117(4):483–493CrossRef
31.
Zurück zum Zitat Kadic M et al (2012) On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 100(19):191901CrossRef Kadic M et al (2012) On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 100(19):191901CrossRef
32.
Zurück zum Zitat Schittny R et al (2013) Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl Phys Lett 103(23):231905CrossRef Schittny R et al (2013) Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl Phys Lett 103(23):231905CrossRef
34.
Zurück zum Zitat Rodriguez SE, Calius EP, Khatibi A, Orifici A, Das R (2023) Evolutionary design of novel 2D pentamode metamaterials, Article under review Rodriguez SE, Calius EP, Khatibi A, Orifici A, Das R (2023) Evolutionary design of novel 2D pentamode metamaterials, Article under review
35.
Zurück zum Zitat Eiben AE, Smith JE (2015) Introduction to evolutionary computing. Springer Publishing Company, IncorporatedCrossRef Eiben AE, Smith JE (2015) Introduction to evolutionary computing. Springer Publishing Company, IncorporatedCrossRef
36.
Zurück zum Zitat Fortin F-A et al (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175MathSciNet Fortin F-A et al (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175MathSciNet
Metadaten
Titel
Heterogeneous Mechanical Metamaterials with Extreme Bulk-To-Shear Modulus Ratio: An Evolutionary Design Approach
verfasst von
Sara E. Rodriguez Gomez
Raj Das
Emilio P. Calius
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53375-4_2