Skip to main content

29.12.2023

Hybrid Quantum Artificial Intelligence Electromagnetic Spectrum Analysis Framework for Transportation System Security

verfasst von: Varghese Mathew Vaidyan, Bhaskar P. Rimal

Erschienen in: Journal of Hardware and Systems Security

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The traffic signal control (TSC) system is faced with both opportunities and challenges as a consequence of connected vehicle (CV) technology. Although implementing CV technology might considerably enhance safety and mobility performance, the connection between vehicles and transportation infrastructure may raise the dangers of cyberattacks. Studies on cybersecurity in TSC systems have been undertaken in recent years. However, a safe framework for air-gapped malware analysis is still lacking. Our study aims to close this research gap by presenting a thorough electromagnetic analysis approach to address the cybersecurity issue facing the TSC in the CV environment. In this technique, a hybrid deep learning architecture based on classical quantum transfer learning models is constructed to study electromagnetic (EM) spectra. We assess the effect of adversarial attacks on TSC systems using these hybrid models and distinguish attacks from normal operations of the controller. A neural network trained on a dataset to collect pertinent characteristics from a high-dimensional dataset of electromagnetic (EM) trace-based TSC attack vectors form the basis of hybrid models. The quantum layer then examines the outcome of the standard deep learning process. A number of quantum gates make up the quantum layer, which can enable a number of quantum mechanical activities, including superposition and entanglement. The most conceivable and feasible attack approach in transport signal controllers has been found to be data spoofing, and the potential of the proposed air-gapped electromagnetic Hybrid classical quantum monitoring framework in sensor fusion and interrupts is explored in light of these findings. A range of sensor fusion configurations and interruptions have been investigated to identify a fake data attack from a normal controller operation. With lower penetration rates of 1% to 10%, the prediction accuracy of a four-way controller ranges from 76% to 84% and is in the low 80% for a two-way controller. There are fewer false alarms when the penetration rate is higher since there is greater confidence in the prediction. Further testing of different timing scheme modifications in a four-way controller operation yielded a prediction accuracy of 88% when the time duration was raised by more than 60% in all circumstances.
Literatur
1.
Zurück zum Zitat Laszka A, Potteiger B, Vorobeychik Y, Amin S, Koutsoukos X (2016) Vulnerability of transportation networks to traffic-signal tampering. In: 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp 1–10 Laszka A, Potteiger B, Vorobeychik Y, Amin S, Koutsoukos X (2016) Vulnerability of transportation networks to traffic-signal tampering. In: 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp 1–10
2.
Zurück zum Zitat Ernst JM, Michaels AJ (2017) Framework for evaluating the severity of cybervulnerability of a traffic cabinet. Transp Res Rec 2619(1):55–63CrossRef Ernst JM, Michaels AJ (2017) Framework for evaluating the severity of cybervulnerability of a traffic cabinet. Transp Res Rec 2619(1):55–63CrossRef
3.
Zurück zum Zitat Perrine KA, Levin MW, Yahia CN, Duell M, Boyles SD (2019) Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transp Res A Policy Pract 120:58–70CrossRef Perrine KA, Levin MW, Yahia CN, Duell M, Boyles SD (2019) Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transp Res A Policy Pract 120:58–70CrossRef
4.
Zurück zum Zitat Ganin AA, Mersky AC, Jin AS, Kitsak M, Keisler JM, Linkov I (2019) Resilience in intelligent transportation systems (its). Transp Res Part C Emerg Technol 100:318–329CrossRef Ganin AA, Mersky AC, Jin AS, Kitsak M, Keisler JM, Linkov I (2019) Resilience in intelligent transportation systems (its). Transp Res Part C Emerg Technol 100:318–329CrossRef
5.
Zurück zum Zitat Reilly J, Martin S, Payer M, Bayen AM (2016) Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security. Transp Res Part B Methodol 91:366–382CrossRef Reilly J, Martin S, Payer M, Bayen AM (2016) Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security. Transp Res Part B Methodol 91:366–382CrossRef
6.
Zurück zum Zitat Huang S (2020) Cyber security of traffic signal control systems with connected vehicles. PhD thesis, University of Michigan Huang S (2020) Cyber security of traffic signal control systems with connected vehicles. PhD thesis, University of Michigan
7.
Zurück zum Zitat Callan R, Zajic A, Prvulovic M (2014) A practical methodology for measuring the side-channel signal available to the attacker for instruction-level events. In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp 242–254. IEEE Callan R, Zajic A, Prvulovic M (2014) A practical methodology for measuring the side-channel signal available to the attacker for instruction-level events. In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp 242–254. IEEE
8.
Zurück zum Zitat Yilmaz BB, Callan RL, Prvulovic M, Zajić A (2017) Capacity of the em covert/side-channel created by the execution of instructions in a processor. IEEE Trans Inf Forensics Secur 13(3):605–620CrossRef Yilmaz BB, Callan RL, Prvulovic M, Zajić A (2017) Capacity of the em covert/side-channel created by the execution of instructions in a processor. IEEE Trans Inf Forensics Secur 13(3):605–620CrossRef
9.
Zurück zum Zitat Jorgensen EJ, Werner FT, Prvulovic M, Zajić A (2021) Deep learning classification of motherboard components by leveraging em side-channel signals. J Hardw Syst Secur 5(2):114–126CrossRef Jorgensen EJ, Werner FT, Prvulovic M, Zajić A (2021) Deep learning classification of motherboard components by leveraging em side-channel signals. J Hardw Syst Secur 5(2):114–126CrossRef
10.
Zurück zum Zitat Park J, Tyagi A (2017) Using power clues to hack iot devices: The power side channel provides for instruction-level disassembly. IEEE Consum Electron Mag 6(3):92–102CrossRef Park J, Tyagi A (2017) Using power clues to hack iot devices: The power side channel provides for instruction-level disassembly. IEEE Consum Electron Mag 6(3):92–102CrossRef
11.
Zurück zum Zitat Vaidyan V, Tyagi A (2020) Instruction level disassembly through electromagnetic side-chanel: Machine learning classification approach with reduced combinatorial complexity. In: Proceedings of the 2020 3rd International Conference on Signal Processing and Machine Learning, pp 124–130 Vaidyan V, Tyagi A (2020) Instruction level disassembly through electromagnetic side-chanel: Machine learning classification approach with reduced combinatorial complexity. In: Proceedings of the 2020 3rd International Conference on Signal Processing and Machine Learning, pp 124–130
18.
Zurück zum Zitat Ghafouri A, Abbas W, Vorobeychik Y, Koutsoukos X (2016) Vulnerability of fixed-time control of signalized intersections to cyber-tampering. In: 2016 Resilience Week (RWS), pp 130–135. IEEE Ghafouri A, Abbas W, Vorobeychik Y, Koutsoukos X (2016) Vulnerability of fixed-time control of signalized intersections to cyber-tampering. In: 2016 Resilience Week (RWS), pp 130–135. IEEE
19.
Zurück zum Zitat Chen QA, Yin Y, Feng Y, Mao ZM, Liu HX (2018) Exposing congestion attack on emerging connected vehicle based traffic signal control. In: NDSS Chen QA, Yin Y, Feng Y, Mao ZM, Liu HX (2018) Exposing congestion attack on emerging connected vehicle based traffic signal control. In: NDSS
20.
Zurück zum Zitat Yen C-C, Ghosal D, Zhang M, Chuah C-N, Chen H (2018) Falsified data attack on backpressure-based traffic signal control algorithms. In: 2018 IEEE Vehicular Networking Conference (VNC), pp 1–8. IEEE Yen C-C, Ghosal D, Zhang M, Chuah C-N, Chen H (2018) Falsified data attack on backpressure-based traffic signal control algorithms. In: 2018 IEEE Vehicular Networking Conference (VNC), pp 1–8. IEEE
21.
Zurück zum Zitat Jeske T (2013) Floating car data from smartphones: What google and waze know about you and how hackers can control traffic. Proc of the BlackHat Europe, pp 1–12 Jeske T (2013) Floating car data from smartphones: What google and waze know about you and how hackers can control traffic. Proc of the BlackHat Europe, pp 1–12
22.
Zurück zum Zitat Feng Y, Huang SE, Wong W, Chen QA, Mao ZM, Liu HX (2022) On the cybersecurity of traffic signal control system with connected vehicles. IEEE Trans Intell Transp Syst 23(9):16267–16279CrossRef Feng Y, Huang SE, Wong W, Chen QA, Mao ZM, Liu HX (2022) On the cybersecurity of traffic signal control system with connected vehicles. IEEE Trans Intell Transp Syst 23(9):16267–16279CrossRef
23.
Zurück zum Zitat Hunt P, Robertson D, Bretherton R, Winton R (1981) Scoot-a traffic responsive method of coordinating signals. Transport and Road Research Lab, Crowthorne, UK Hunt P, Robertson D, Bretherton R, Winton R (1981) Scoot-a traffic responsive method of coordinating signals. Transport and Road Research Lab, Crowthorne, UK
24.
Zurück zum Zitat Sims AG, Dobinson KW (1980) The sydney coordinated adaptive traffic (scat) system philosophy and benefits. IEEE Trans Veh Technol 29(2):130–137CrossRef Sims AG, Dobinson KW (1980) The sydney coordinated adaptive traffic (scat) system philosophy and benefits. IEEE Trans Veh Technol 29(2):130–137CrossRef
25.
Zurück zum Zitat Ghena B, Beyer W, Hillaker A, Pevarnek J, Halderman JA (2014) Green lights forever: Analyzing the security of traffic infrastructure. In: 8th USENIX Workshop on Offensive Technologies (WOOT 14) Ghena B, Beyer W, Hillaker A, Pevarnek J, Halderman JA (2014) Green lights forever: Analyzing the security of traffic infrastructure. In: 8th USENIX Workshop on Offensive Technologies (WOOT 14)
26.
Zurück zum Zitat Laszka A, Potteiger B, Vorobeychik Y, Amin S, Koutsoukos X (2016) Vulnerability of transportation networks to traffic-signal tampering. In: 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp 1–10. IEEE Laszka A, Potteiger B, Vorobeychik Y, Amin S, Koutsoukos X (2016) Vulnerability of transportation networks to traffic-signal tampering. In: 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp 1–10. IEEE
27.
Zurück zum Zitat Ghafouri A, Abbas W, Vorobeychik Y, Koutsoukos X (2016) Vulnerability of fixed-time control of signalized intersections to cyber-tampering. In: 2016 Resilience Week (RWS), pp 130–135. IEEE Ghafouri A, Abbas W, Vorobeychik Y, Koutsoukos X (2016) Vulnerability of fixed-time control of signalized intersections to cyber-tampering. In: 2016 Resilience Week (RWS), pp 130–135. IEEE
28.
Zurück zum Zitat Perrine KA, Levin MW, Yahia CN, Duell M, Boyles SD (2019) Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transp Res Part A Policy Pract 120:58–70CrossRef Perrine KA, Levin MW, Yahia CN, Duell M, Boyles SD (2019) Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transp Res Part A Policy Pract 120:58–70CrossRef
30.
Zurück zum Zitat Feng Y, Huang S, Chen QA, Liu HX, Mao ZM (2018) Vulnerability of traffic control system under cyberattacks with falsified data. Transp Res Rec 2672(1):1–11CrossRef Feng Y, Huang S, Chen QA, Liu HX, Mao ZM (2018) Vulnerability of traffic control system under cyberattacks with falsified data. Transp Res Rec 2672(1):1–11CrossRef
31.
Zurück zum Zitat Ruan Y, Xue X, Shen Y (2021) Quantum image processing: opportunities and challenges. Math Probl Eng 2021:1–8CrossRef Ruan Y, Xue X, Shen Y (2021) Quantum image processing: opportunities and challenges. Math Probl Eng 2021:1–8CrossRef
32.
Zurück zum Zitat Huggins W, Patil P, Mitchell B, Whaley KB, Stoudenmire EM (2019) Towards quantum machine learning with tensor networks. Quantum Sci Technol 4(2):024001CrossRef Huggins W, Patil P, Mitchell B, Whaley KB, Stoudenmire EM (2019) Towards quantum machine learning with tensor networks. Quantum Sci Technol 4(2):024001CrossRef
33.
Zurück zum Zitat Majumder R, Khan SM, Ahmed F, Khan Z, Ngeni F, Comert G, Mwakalonge J, Michalaka D, Chowdhury M (2021) Hybrid classical-quantum deep learning models for autonomous vehicle traffic image classification under adversarial attack. arXiv preprint arXiv:2108.01125 Majumder R, Khan SM, Ahmed F, Khan Z, Ngeni F, Comert G, Mwakalonge J, Michalaka D, Chowdhury M (2021) Hybrid classical-quantum deep learning models for autonomous vehicle traffic image classification under adversarial attack. arXiv preprint arXiv:​2108.​01125
34.
35.
Zurück zum Zitat The White House (2015) FACT SHEET: Administration Announces New Smart Cities Initiative to Help Communities Tackle Local Challenges and Improve City Services. (Accessed on Feb 2023) The White House (2015) FACT SHEET: Administration Announces New Smart Cities Initiative to Help Communities Tackle Local Challenges and Improve City Services. (Accessed on Feb 2023)
36.
Zurück zum Zitat Bezzina D, Sayer J (2015) Safety pilot model deployment: Test conductor team report usdot. Tech Rep DOT HS 812:171 Bezzina D, Sayer J (2015) Safety pilot model deployment: Test conductor team report usdot.  Tech Rep DOT HS 812:171
37.
Zurück zum Zitat Hartman K, Wunderlich K, Vasudevan M, Thompson K, Staples B, Asare S, Chang J, Anderson J, Ali A. Advancing interoperable connectivity deployment: Connected vehicle pilot deployment results and findings. [online] ROSAP. Available at: https://rosap.ntl.bts.gov/view/dot/68128. Accessed 27 Dec 2023 Hartman K, Wunderlich K, Vasudevan M, Thompson K, Staples B, Asare S, Chang J, Anderson J, Ali A. Advancing interoperable connectivity deployment: Connected vehicle pilot deployment results and findings. [online] ROSAP. Available at: https://​rosap.​ntl.​bts.​gov/​view/​dot/​68128. Accessed 27 Dec 2023
38.
Zurück zum Zitat Veeraraghava RJ (2019) Security analysis of vehicle to vehicle arada locomate on board unit. M.S. thesis, Iowa State Univ., Ames, IA, USA Veeraraghava RJ (2019) Security analysis of vehicle to vehicle arada locomate on board unit. M.S. thesis, Iowa State Univ., Ames, IA, USA
39.
Zurück zum Zitat Alnasser A, Sun H, Jiang J (2019) Cyber security challenges and solutions for v2x communications: A survey. Comput Netw 151:52–67CrossRef Alnasser A, Sun H, Jiang J (2019) Cyber security challenges and solutions for v2x communications: A survey. Comput Netw 151:52–67CrossRef
40.
Zurück zum Zitat Chen QA, Yin Y, Feng Y, Mao ZM, Liu HX (2018) Exposing congestion attack on emerging connected vehicle based traffic signal control. In: NDSS Chen QA, Yin Y, Feng Y, Mao ZM, Liu HX (2018) Exposing congestion attack on emerging connected vehicle based traffic signal control. In: NDSS
41.
Zurück zum Zitat Zeadally S, Hunt R, Chen Y-S, Irwin A, Hassan A (2012) Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommun Syst 50:217–241CrossRef Zeadally S, Hunt R, Chen Y-S, Irwin A, Hassan A (2012) Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommun Syst 50:217–241CrossRef
42.
Zurück zum Zitat Koscher K, Czeskis A, Roesner F, Patel S, Kohno T, Checkoway S, McCoy D, Kantor B, Anderson D, Shacham H et al (2010) Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy, pp 447–462. IEEE Koscher K, Czeskis A, Roesner F, Patel S, Kohno T, Checkoway S, McCoy D, Kantor B, Anderson D, Shacham H et al (2010) Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy, pp 447–462. IEEE
43.
Zurück zum Zitat Checkoway S, Kantor MD et al (2011) Comprehensive experimental analyses of automotive attack surfaces. In: USENIX Security Symposium 4:2021. San Francisco Checkoway S, Kantor MD et al (2011) Comprehensive experimental analyses of automotive attack surfaces. In: USENIX Security Symposium 4:2021. San Francisco
44.
Zurück zum Zitat Intelligent Transportation System Standard Specification for Roadside Cabinets (2006) ITS Cabinet Standard v01.02.17b Intelligent Transportation System Standard Specification for Roadside Cabinets (2006) ITS Cabinet Standard v01.02.17b
45.
Zurück zum Zitat Vaidyan VM, Tyagi A (2022) Hybrid classical-quantum artificial intelligence models for electromagnetic control system processor fault analysis. In: 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), pp 798–803 Vaidyan VM, Tyagi A (2022) Hybrid classical-quantum artificial intelligence models for electromagnetic control system processor fault analysis. In: 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), pp 798–803
46.
Zurück zum Zitat Tai C-T (1992) Complementary reciprocity theorems in electromagnetic theory. IEEE Trans Antennas Propag 40(6):675–681CrossRef Tai C-T (1992) Complementary reciprocity theorems in electromagnetic theory. IEEE Trans Antennas Propag 40(6):675–681CrossRef
47.
Zurück zum Zitat Wang P, Wu X, He X (2020) Modeling and analyzing cyberattack effects on connected automated vehicular platoons. Transp Res Part C Emerg Technol 115:102625CrossRef Wang P, Wu X, He X (2020) Modeling and analyzing cyberattack effects on connected automated vehicular platoons. Transp Res Part C Emerg Technol 115:102625CrossRef
Metadaten
Titel
Hybrid Quantum Artificial Intelligence Electromagnetic Spectrum Analysis Framework for Transportation System Security
verfasst von
Varghese Mathew Vaidyan
Bhaskar P. Rimal
Publikationsdatum
29.12.2023
Verlag
Springer International Publishing
Erschienen in
Journal of Hardware and Systems Security
Print ISSN: 2509-3428
Elektronische ISSN: 2509-3436
DOI
https://doi.org/10.1007/s41635-023-00142-2