Skip to main content
Erschienen in: Contemporary Problems of Ecology 7/2022

01.12.2022

Impact of Natural Climate Factors on Mechanical Stability and Failure Rate in Silver Birch Trees in the City of Donetsk

verfasst von: V. O. Korniyenko, V. N. Kalaev

Erschienen in: Contemporary Problems of Ecology | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A survey has revealed a relationship between the temperature factor and the biomechanical parameters (the modulus of elasticity) for wood tissues in the silver birch tree (Betula pendula Roth). At thawing temperatures, the elastic modulus decreases, on average, 2–2.5 times. A decrease of this kind is uneven, gradual. The rate of elastic-modulus change relative to the rate of woody-plant specimen/trunk thawing has the greatest effect on the mechanical stability of a tree. During thawing, the mechanical stability parameters tend to fall by 45%, on average. These changes affect the angles of divergence from the vertical axis of the trunk portions, the angles of its skeletal branch attachment, bending strength, and tree resistance to wind and gravity loads. Under a low anthropogenic impact, the bending stiffness value for plants at the age of 40–45 years is 22 ± 2% higher than that under the higher anthropogenic load in a city. Under the impact of anthropogenic load affected by the impact of wind loads, temperatures, and the other factors affecting weather, the transformation of architectonics of the silver birch crown occurs, which can cause irreversible deformations or trunk breakage under a blizzard and freezing rain. Therefore, 63 trees were uprooted and 168 woody plants underwent irreversible deformation, causing a high failure rate on the experimental plots in Donetsk from 2014 to 2020. Splits were recorded in plants at heights of 2–4 m (35%), 5–6 m (17%), 7–8 m (52%), and 9 m (6%). Correlation analysis revealed a strong positive relationship between the L : D morphometric coefficient (trunk length-to-diameter ratio) and the mechanical stability (R = 0.87), along with the failure rate (R = 0.79) of silver birch trees. In this regard, it seems possible to use the L : D coefficient as a morphometric marker for mechanical stability in silver birch trees in the south of the East European Plain (Donetsk Hill Ridge).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albrecht, A., Badel, E., Bonnesoeur, V., Brunet, Y., Constant, T., Defossez, P., Langre, E., Dupont, S., Fournier, M., Gardiner, B., Mitchell, S.J., Moore, J.R., Moulia, B., Nicoll, B.C., Niklas, K.J., Schelhaas, M., Spatz, H.-Ch., and Telewski, F.W., Comment on “Critical wind speed at which trees break”, Phys. Rev., 2016, vol. 94, pp. 067001-1–067001-2. Albrecht, A., Badel, E., Bonnesoeur, V., Brunet, Y., Constant, T., Defossez, P., Langre, E., Dupont, S., Fournier, M., Gardiner, B., Mitchell, S.J., Moore, J.R., Moulia, B., Nicoll, B.C., Niklas, K.J., Schelhaas, M., Spatz, H.-Ch., and Telewski, F.W., Comment on “Critical wind speed at which trees break”, Phys. Rev., 2016, vol. 94, pp. 067001-1–067001-2.
2.
Zurück zum Zitat Alonso-Serra, J., Shi, X., Peaucelle, A., Rastas, P., Bourdon, M., Immanen, J., Takahashi, J., Koivula, H., Eswaran, G., Muranen, S., Help, H., Smolander, O., Su, Ch., Safronov, O., Gerber, L., Salojarvi, J., Hagqvist, R., Mähönen, A., Nieminen, K., and Helariutta, Y., Elimäki locus is required for vertical proprioceptive response in birch trees, Curr. Biol., 2020, vol. 30, no. 4, pp. 589–599.CrossRef Alonso-Serra, J., Shi, X., Peaucelle, A., Rastas, P., Bourdon, M., Immanen, J., Takahashi, J., Koivula, H., Eswaran, G., Muranen, S., Help, H., Smolander, O., Su, Ch., Safronov, O., Gerber, L., Salojarvi, J., Hagqvist, R., Mähönen, A., Nieminen, K., and Helariutta, Y., Elimäki locus is required for vertical proprioceptive response in birch trees, Curr. Biol., 2020, vol. 30, no. 4, pp. 589–599.CrossRef
3.
Zurück zum Zitat Burgert, I., Bernasconi, A., Niklas, K.J., and Eckstein, D., The influence of rays on the transverse elastic anisotropy in green wood of deciduous tree, Holzforschung, 2001, vol. 55, no. 5, pp. 449–454.CrossRef Burgert, I., Bernasconi, A., Niklas, K.J., and Eckstein, D., The influence of rays on the transverse elastic anisotropy in green wood of deciduous tree, Holzforschung, 2001, vol. 55, no. 5, pp. 449–454.CrossRef
4.
Zurück zum Zitat Chistyakova, A.A., Zaugol’nova, L.B., Poltinkina, I.V., Kut’ina, I.S., and Lshtsinskii, N.N., Diagnozy i klyuchi vozrastnykh sostoyanii lesnykh rastenii. Derev’ya i kustarniki (The Keys to Diagnosis of the Age State of Forest Plants. Trees and Shrubs), Moscow: Prometei, 1989. Chistyakova, A.A., Zaugol’nova, L.B., Poltinkina, I.V., Kut’ina, I.S., and Lshtsinskii, N.N., Diagnozy i klyuchi vozrastnykh sostoyanii lesnykh rastenii. Derev’ya i kustarniki (The Keys to Diagnosis of the Age State of Forest Plants. Trees and Shrubs), Moscow: Prometei, 1989.
5.
Zurück zum Zitat Curtis, P.S. and Gough, C.M., Forest aging, disturbance and the carbon cycle, New Phytol., 2018, vol. 219, pp. 1188–1193.CrossRef Curtis, P.S. and Gough, C.M., Forest aging, disturbance and the carbon cycle, New Phytol., 2018, vol. 219, pp. 1188–1193.CrossRef
6.
Zurück zum Zitat Dahle, G.A. and Grabosky, J.C., Variation in modulus of elasticity (E) along Acer platanoides L. (Aceraceae) branches, Urban For. Urban Greening, 2010, vol. 9, pp. 227–233.CrossRef Dahle, G.A. and Grabosky, J.C., Variation in modulus of elasticity (E) along Acer platanoides L. (Aceraceae) branches, Urban For. Urban Greening, 2010, vol. 9, pp. 227–233.CrossRef
7.
Zurück zum Zitat Dahle, G.A., James, K.R., Kane, B., Grabosky, J.C., and Detter, A., A review of factors that affect the static loadbearing capacity of urban trees, Arboric. Urban For., 2017, vol. 43, no. 3, pp. 89–106. Dahle, G.A., James, K.R., Kane, B., Grabosky, J.C., and Detter, A., A review of factors that affect the static loadbearing capacity of urban trees, Arboric. Urban For., 2017, vol. 43, no. 3, pp. 89–106.
8.
Zurück zum Zitat Fahey, R.T., Atkins, J.W., Campbell, J.L., Rustad, L.E., Duffy, M., Driscoll, Ch.T., Fahey, T.J., and Schaberg, P.G., Effects of an experimental ice storm on forest canopy structure, Can. J. For. Res., 2020, vol. 50, no. 2, pp. 136–145.CrossRef Fahey, R.T., Atkins, J.W., Campbell, J.L., Rustad, L.E., Duffy, M., Driscoll, Ch.T., Fahey, T.J., and Schaberg, P.G., Effects of an experimental ice storm on forest canopy structure, Can. J. For. Res., 2020, vol. 50, no. 2, pp. 136–145.CrossRef
9.
Zurück zum Zitat Fournier, M., Dlouhá, J., Jaouen, G., and Almeras, T., Integrative biomechanics for tree ecology: beyond wood density and strength, J. Exp. Bot., 2013, vol. 64, no. 15, pp. 4793–4815.CrossRef Fournier, M., Dlouhá, J., Jaouen, G., and Almeras, T., Integrative biomechanics for tree ecology: beyond wood density and strength, J. Exp. Bot., 2013, vol. 64, no. 15, pp. 4793–4815.CrossRef
10.
Zurück zum Zitat Glukhov, A.Z., Kharkhota, L.V., Pasternak, G.A., and Likhatskaya, E.N., Current state of Donetsk dendroflora, Samar. Nauchn. Vestn. 2016, vol. 2, no. 15, pp. 20–24. Glukhov, A.Z., Kharkhota, L.V., Pasternak, G.A., and Likhatskaya, E.N., Current state of Donetsk dendroflora, Samar. Nauchn. Vestn. 2016, vol. 2, no. 15, pp. 20–24.
11.
Zurück zum Zitat Green, D.W., Evans, J.W., Logan, J.D., and Nelson, W.J., Adjusting modulus of elasticity of lumber forchanges in temperature, For. Prod. J., 1999, vol. 49, no. 10, pp. 82–94. Green, D.W., Evans, J.W., Logan, J.D., and Nelson, W.J., Adjusting modulus of elasticity of lumber forchanges in temperature, For. Prod. J., 1999, vol. 49, no. 10, pp. 82–94.
12.
Zurück zum Zitat James, K.R., Haritos, N., and Ades, P.K., Mechanical stability of trees under dynamic loads, Am. J. Bot., 2006, vol. 93, no. 10, pp. 1522–1530.CrossRef James, K.R., Haritos, N., and Ades, P.K., Mechanical stability of trees under dynamic loads, Am. J. Bot., 2006, vol. 93, no. 10, pp. 1522–1530.CrossRef
13.
Zurück zum Zitat James, K.R., Dahle, G.A., Grabosky, J., Kane, B., and Detter, A., Tree biomechanics literature review: dynamics, Arboric. Urban For., 2014, vol. 40, no. 1, pp. 1–15. James, K.R., Dahle, G.A., Grabosky, J., Kane, B., and Detter, A., Tree biomechanics literature review: dynamics, Arboric. Urban For., 2014, vol. 40, no. 1, pp. 1–15.
14.
Zurück zum Zitat Jelonek, T., Tomczak, A., Karaszewski, Z., Jakubowski, M., Arasimowicz-Jelonek, M., Grzywiński, W., Kopaczyk, J., and Klimek, K., The biomechanical formation of trees, Drewno, 2019, vol. 62, no. 204, pp. 5–22. Jelonek, T., Tomczak, A., Karaszewski, Z., Jakubowski, M., Arasimowicz-Jelonek, M., Grzywiński, W., Kopaczyk, J., and Klimek, K., The biomechanical formation of trees, Drewno, 2019, vol. 62, no. 204, pp. 5–22.
15.
Zurück zum Zitat Klein, R.W., Koeser, A.K., Kane, B., Landry, S.M., Shields, H., Lloyd, S., and Hansen, G., Evaluating the likelihood of tree failure in Naples, Florida (United States) following hurricane Irma, Forests, 2020, vol. 11, no. 485, pp. 1–10.CrossRef Klein, R.W., Koeser, A.K., Kane, B., Landry, S.M., Shields, H., Lloyd, S., and Hansen, G., Evaluating the likelihood of tree failure in Naples, Florida (United States) following hurricane Irma, Forests, 2020, vol. 11, no. 485, pp. 1–10.CrossRef
16.
Zurück zum Zitat Kofman, G.B., Rost i forma derev’ev (Growth and Form of Trees), Novosibirsk: Nauka, 1986. Kofman, G.B., Rost i forma derev’ev (Growth and Form of Trees), Novosibirsk: Nauka, 1986.
17.
Zurück zum Zitat Kornienko, V.O. and Kalaev, V.N., Mekhanicheskaya ustoichivost’ drevesnykh porod i rekomendatsii po predotvrashcheniyu ikh avariinosti v gorodskikh nasazhdeniyakh (Mechanical Stability of Tree Species and Recommendations for Preventing their Accident Rate in Urban Plantings), Voronezh: Roza Vetrov, 2018. Kornienko, V.O. and Kalaev, V.N., Mekhanicheskaya ustoichivost’ drevesnykh porod i rekomendatsii po predotvrashcheniyu ikh avariinosti v gorodskikh nasazhdeniyakh (Mechanical Stability of Tree Species and Recommendations for Preventing their Accident Rate in Urban Plantings), Voronezh: Roza Vetrov, 2018.
18.
Zurück zum Zitat Kornienko, V.O. and Netsvetov, M.V., The influence of negative temperatures on the mechanical resistance of red oak (Quercus rubra L.), Prom. Bot., 2013, vol. 13, pp. 180–186. Kornienko, V.O. and Netsvetov, M.V., The influence of negative temperatures on the mechanical resistance of red oak (Quercus rubra L.), Prom. Bot., 2013, vol. 13, pp. 180–186.
19.
Zurück zum Zitat Kornienko, V.O. and Netsvetov, M.V., Cryoscopy of wood moisture and temperature dependence of wood elasticity modulus, Visti Biosf. Zapovid. “Askaniya-Nova”, 2014, vol. 16, pp. 88–94. Kornienko, V.O. and Netsvetov, M.V., Cryoscopy of wood moisture and temperature dependence of wood elasticity modulus, Visti Biosf. Zapovid. “Askaniya-Nova”, 2014, vol. 16, pp. 88–94.
20.
Zurück zum Zitat Korniєnko, V.O., Netsvetov, M.V., Nikulina, V.M., and Suslova, O.P., Investigation of the trees’ endurance for vibrations, Visn. L’vivs’kogo Univ. Ser. Fiz., 2009, no. 44, pp. 185–193. Korniєnko, V.O., Netsvetov, M.V., Nikulina, V.M., and Suslova, O.P., Investigation of the trees’ endurance for vibrations, Visn. L’vivs’kogo Univ. Ser. Fiz., 2009, no. 44, pp. 185–193.
21.
Zurück zum Zitat Kornienko, V.O., Kalaev, V.N., and Elizarov, A.O., The influence of temperature on biomechanical properties of woody plants in the conditions of protected and open grounds, Sib. Lesn. Zh., 2018, no. 6, pp. 91–102. Kornienko, V.O., Kalaev, V.N., and Elizarov, A.O., The influence of temperature on biomechanical properties of woody plants in the conditions of protected and open grounds, Sib. Lesn. Zh., 2018, no. 6, pp. 91–102.
22.
Zurück zum Zitat Mikheeva, M.A. and Fedorova, A.I., Effect of high temperatures on the stability of trees in urban environments, Vestn. Voronezh. Gos. Univ., Ser.: Geogr. Geoekol., 2011, no. 2, pp. 166–175. Mikheeva, M.A. and Fedorova, A.I., Effect of high temperatures on the stability of trees in urban environments, Vestn. Voronezh. Gos. Univ., Ser.: Geogr. Geoekol., 2011, no. 2, pp. 166–175.
23.
Zurück zum Zitat Mishiro, A. and Asano, I., Mechanical properties of wood at low temperatures: effect of moisture content and temperature on bending properties of wood. Part I. Moisture content below the fiber saturation point, J. Jpn. Wood Res. Soc., 1984a, vol. 30, no. 3, pp. 207–213. Mishiro, A. and Asano, I., Mechanical properties of wood at low temperatures: effect of moisture content and temperature on bending properties of wood. Part I. Moisture content below the fiber saturation point, J. Jpn. Wood Res. Soc., 1984a, vol. 30, no. 3, pp. 207–213.
24.
Zurück zum Zitat Mishiro, A. and Asano, I., Mechanical properties of wood at low temperatures: effect of moisture content and temperature on bending properties of wood. Part II. Moisture content beyond the fiber saturation point, J. Jpn. Wood Res. Soc., 1984b, vol. 30, no. 4, pp. 277–286. Mishiro, A. and Asano, I., Mechanical properties of wood at low temperatures: effect of moisture content and temperature on bending properties of wood. Part II. Moisture content beyond the fiber saturation point, J. Jpn. Wood Res. Soc., 1984b, vol. 30, no. 4, pp. 277–286.
25.
Zurück zum Zitat Netsvetov, M.V. and Suslova, E.P., Mechanical stability of trees and schrubs under vibration loads, Prom. Bot., 2009, no. 9, pp. 60–67. Netsvetov, M.V. and Suslova, E.P., Mechanical stability of trees and schrubs under vibration loads, Prom. Bot., 2009, no. 9, pp. 60–67.
26.
Zurück zum Zitat Netsvetov, M.V., Suslova, E.P., Nikulina, V.M., and Kornienko, V.O., Mechanical resistance of trees to anthropogenic vibration loads, in Program and Proceedings of II International Conference, Lviv–Vorokhta, Ukraine “Physical Methods in Ecology, Biology and Medicine”, Lviv: Vidavnichii Tsentr LNU im. I. Franka, 2019, pp. 22–23. Netsvetov, M.V., Suslova, E.P., Nikulina, V.M., and Kornienko, V.O., Mechanical resistance of trees to anthropogenic vibration loads, in Program and Proceedings of II International Conference, Lviv–Vorokhta, UkrainePhysical Methods in Ecology, Biology and Medicine”, Lviv: Vidavnichii Tsentr LNU im. I. Franka, 2019, pp. 22–23.
27.
Zurück zum Zitat Neverova, O.A., Legoshchina, O.M., and Bykov, A.A., Anatomy of leaves of Betula pendula (Roth.) affected by air emissions in industrial area of Kemerovo city, Middle East J. Sci. Res., 2013, vol. 17, no. 3, pp. 354–358. Neverova, O.A., Legoshchina, O.M., and Bykov, A.A., Anatomy of leaves of Betula pendula (Roth.) affected by air emissions in industrial area of Kemerovo city, Middle East J. Sci. Res., 2013, vol. 17, no. 3, pp. 354–358.
28.
Zurück zum Zitat Niklas, K.J. and Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density, Am. J. Bot., 2010, vol. 97, no. 10, pp. 1587–1594.CrossRef Niklas, K.J. and Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density, Am. J. Bot., 2010, vol. 97, no. 10, pp. 1587–1594.CrossRef
29.
Zurück zum Zitat Niklas, K.J. and Spatz, H.-Ch., Plant Physics, Chicago: University of Chicago Press, 2012.CrossRef Niklas, K.J. and Spatz, H.-Ch., Plant Physics, Chicago: University of Chicago Press, 2012.CrossRef
30.
Zurück zum Zitat Nocetti, M., Brunetti, M., and Bacher, M., Effect of moisture content on the flexural properties and dynamic modulus of elasticity of dimension chestnut timber, Eur. J. Wood Wood Prod., 2015, vol. 73, pp. 51–60.CrossRef Nocetti, M., Brunetti, M., and Bacher, M., Effect of moisture content on the flexural properties and dynamic modulus of elasticity of dimension chestnut timber, Eur. J. Wood Wood Prod., 2015, vol. 73, pp. 51–60.CrossRef
31.
Zurück zum Zitat Nock, C.A., Lecigne, B., Taugourdeau, O., Greene, D.F., Dauzat, J., Delagrange, S., and Messier, Ch., Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies, Ann. Bot., 2016, vol. 117, no. 7, pp. 1163–1173.CrossRef Nock, C.A., Lecigne, B., Taugourdeau, O., Greene, D.F., Dauzat, J., Delagrange, S., and Messier, Ch., Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies, Ann. Bot., 2016, vol. 117, no. 7, pp. 1163–1173.CrossRef
32.
Zurück zum Zitat Polyakov, A.K., Introduction of woody plants in a technogenic environment, Donetsk: Noulidzh, 2009. Polyakov, A.K., Introduction of woody plants in a technogenic environment, Donetsk: Noulidzh, 2009.
33.
Zurück zum Zitat Razdorskii, V.F., Arkhitektonika rastenii (Plant Architectonics), Moscow: Sov. Nauka, 1955. Razdorskii, V.F., Arkhitektonika rastenii (Plant Architectonics), Moscow: Sov. Nauka, 1955.
34.
Zurück zum Zitat Sarbaeva, E.V., Voskresenskaya, O.L., and Voskresenskii, V.S., Assessment of the resistance of trees and shrubs in an urban environment, Sovrem. Probl. Nauki Obraz., 2013, no. 2. http://science-education.ru/ru/article/view?id=9011. Cited April 27, 2020. Sarbaeva, E.V., Voskresenskaya, O.L., and Voskresenskii, V.S., Assessment of the resistance of trees and shrubs in an urban environment, Sovrem. Probl. Nauki Obraz., 2013, no. 2. http://​science-education.​ru/​ru/​article/​view?​id=​9011.​ Cited April 27, 2020.
35.
Zurück zum Zitat Savel’eva, L.S., Ustoichivost’ derev’ev i kustarnikov v zashchitnykh lesnykh nasazhdeniyakh (Resilience of Trees and Shrubs in Protective Forest Stands), Moscow: Lesn. Prom-st., 1975. Savel’eva, L.S., Ustoichivost’ derev’ev i kustarnikov v zashchitnykh lesnykh nasazhdeniyakh (Resilience of Trees and Shrubs in Protective Forest Stands), Moscow: Lesn. Prom-st., 1975.
36.
Zurück zum Zitat Sell, J., Eigenschaften und Kenngrößen von Holzarten, Lignum: Baufachverlag AG Zürich, 1989. Sell, J., Eigenschaften und Kenngrößen von Holzarten, Lignum: Baufachverlag AG Zürich, 1989.
38.
Zurück zum Zitat Spatz, H.-C. and Pfisterer, J., Mechanical properties of green wood and tree risk assessment, Arboric. Urban For., 2013, vol. 39, no. 5, pp. 218–225. Spatz, H.-C. and Pfisterer, J., Mechanical properties of green wood and tree risk assessment, Arboric. Urban For., 2013, vol. 39, no. 5, pp. 218–225.
39.
Zurück zum Zitat Suslova, O.P., Polyakov, O.K., Netsvєtov, M.V., Dats’ko, O.M., and Likhats’ka, O.M., Viability of woody plants in urban street stands in the South-East of Ukraine, Prom. Bot., 2012, vol. 12, pp. 12–18. Suslova, O.P., Polyakov, O.K., Netsvєtov, M.V., Dats’ko, O.M., and Likhats’ka, O.M., Viability of woody plants in urban street stands in the South-East of Ukraine, Prom. Bot., 2012, vol. 12, pp. 12–18.
40.
Zurück zum Zitat Szmutku, M.B., Campean, M., Sand Andu, A.V., Microstructure modifications induced in spruce wood by freezing, Pro Ligno, 2011, vol. 7, no. 4, pp. 26–31. Szmutku, M.B., Campean, M., Sand Andu, A.V., Microstructure modifications induced in spruce wood by freezing, Pro Ligno, 2011, vol. 7, no. 4, pp. 26–31.
41.
Zurück zum Zitat Szmutku, M.B., Campean, M., and Laurenzi, W., Influence of cyclic freezing and thawing upon spruce wood properties, Pro Ligno, 2012, vol. 8, no. 1, pp. 35–43. Szmutku, M.B., Campean, M., and Laurenzi, W., Influence of cyclic freezing and thawing upon spruce wood properties, Pro Ligno, 2012, vol. 8, no. 1, pp. 35–43.
42.
Zurück zum Zitat Thomas, S.C., Size- and age-related changes in tree structure and function, Tree Physiol., 2011, vol. 2, pp. 33–64.CrossRef Thomas, S.C., Size- and age-related changes in tree structure and function, Tree Physiol., 2011, vol. 2, pp. 33–64.CrossRef
43.
Zurück zum Zitat Virot, E., Ponomarenko, A., Dehandschoewercker, E., Quere, D., and Clanet, C., Critical wind speed at which trees break, Phys. Rev., 2016, vol. 93, pp. 023001-1–023001-7. Virot, E., Ponomarenko, A., Dehandschoewercker, E., Quere, D., and Clanet, C., Critical wind speed at which trees break, Phys. Rev., 2016, vol. 93, pp. 023001-1–023001-7.
44.
Zurück zum Zitat Wood handbook: Wood as an Engineering Material, Madison: U. S. Dep. Agric., For. Serv., Forest Products Laboratory, 1999. Wood handbook: Wood as an Engineering Material, Madison: U. S. Dep. Agric., For. Serv., Forest Products Laboratory, 1999.
45.
Zurück zum Zitat Wood handbook: Wood as an Engineering Material, Madison: Forest Products Laboratory, 2010. Wood handbook: Wood as an Engineering Material, Madison: Forest Products Laboratory, 2010.
46.
Zurück zum Zitat Zelinka, S.L., Stone, D.S., and Rammer, D.R., Equivalent circuit modeling of wood at 12% moisture content, Wood Fiber Sci., 2007, vol. 39, no. 4, pp. 556–565. Zelinka, S.L., Stone, D.S., and Rammer, D.R., Equivalent circuit modeling of wood at 12% moisture content, Wood Fiber Sci., 2007, vol. 39, no. 4, pp. 556–565.
Metadaten
Titel
Impact of Natural Climate Factors on Mechanical Stability and Failure Rate in Silver Birch Trees in the City of Donetsk
verfasst von
V. O. Korniyenko
V. N. Kalaev
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Contemporary Problems of Ecology / Ausgabe 7/2022
Print ISSN: 1995-4255
Elektronische ISSN: 1995-4263
DOI
https://doi.org/10.1134/S1995425522070150

Weitere Artikel der Ausgabe 7/2022

Contemporary Problems of Ecology 7/2022 Zur Ausgabe