Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 6/2022

01.12.2022 | Technical Note

Influence of Retained Zone Width on the Behaviour of Back-to-Back Mechanically Stabilized Earth Walls upon Rainwater Infiltration

verfasst von: Gopika Rajagopal, Sudheesh Thiyyakkandi

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of back-to-back mechanically stabilized earth walls (MSE) for highway ramps and bridge approaches has gained wide popularity due to their construction easiness and cost efficiency. The width of the retained zone (L) is a key parameter affecting the behaviour of such walls. Federal highway administration (FHWA) guidelines suggest independent design of two walls when the width of retained zone is more than the top width of active wedges behind the walls. This study has investigated the effect of retained zone width on the overall performance of walls with complete select fill, complete marginal fill, and marginal fill only in the retained zone, at the end of construction and subsequent to rainwater infiltration, through finite element approach. Results showed that effect of retained zone width on lateral pressure, facing displacement, and global factor of safety both subsequent to construction and rainfall infiltration was more significant in complete marginal fill wall. For a given retained zone width, lateral force behind the reinforced zone following the infiltration was found to be higher than FHWA values for complete marginal fill case, whereas reasonable agreement with FHWA was observed for complete select fill case. Variation in reinforcement tension was observed to be least influenced by L for all three fill cases. Furthermore, factor of safety was noticed to increase with decrease in L. Overall, the interaction between the walls was more prominent when L is less than half height of the wall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berg RR, Christopher BR, Samtani NC (2009) Design of mechanically stabilized earth walls and reinforced soil slopes–Volume I (No. FHWA-NHI-10-024). Federal Highway Administration Berg RR, Christopher BR, Samtani NC (2009) Design of mechanically stabilized earth walls and reinforced soil slopes–Volume I (No. FHWA-NHI-10-024). Federal Highway Administration
2.
Zurück zum Zitat Han J, Leshchinsky D (2010) Analysis of back-to-back mechanically stabilized earth walls. Geotext Geomembr 28(3):262–267CrossRef Han J, Leshchinsky D (2010) Analysis of back-to-back mechanically stabilized earth walls. Geotext Geomembr 28(3):262–267CrossRef
3.
Zurück zum Zitat El-Sherbiny R, Ibrahim E, Salem A (2013) Stability of back-to-back mechanically stabilized earth walls. Geo-Congress 2013: Stability and Performance of Slopes and Embankments III: 555–565 El-Sherbiny R, Ibrahim E, Salem A (2013) Stability of back-to-back mechanically stabilized earth walls. Geo-Congress 2013: Stability and Performance of Slopes and Embankments III: 555–565
4.
Zurück zum Zitat Mouli SS, Umashankar B, Madhav MR (2015) Analysis of back-to- back reinforced retaining walls with modular block facing. 50th Indian Geotechnical Conference Mouli SS, Umashankar B, Madhav MR (2015) Analysis of back-to- back reinforced retaining walls with modular block facing. 50th Indian Geotechnical Conference
5.
Zurück zum Zitat Benmebarek S, Attallaoui S, Benmebarek N (2016) Interaction analysis of back-to-back mechanically stabilized earth walls. J Rock Mech Geotech Eng 8(5):697–702CrossRef Benmebarek S, Attallaoui S, Benmebarek N (2016) Interaction analysis of back-to-back mechanically stabilized earth walls. J Rock Mech Geotech Eng 8(5):697–702CrossRef
6.
Zurück zum Zitat Djabri M, Benmebarek S (2016) FEM analysis of back-to-back geosynthetic-reinforced soil retaining walls. Int J Geosynth Ground Eng 2(3):1–8CrossRef Djabri M, Benmebarek S (2016) FEM analysis of back-to-back geosynthetic-reinforced soil retaining walls. Int J Geosynth Ground Eng 2(3):1–8CrossRef
7.
Zurück zum Zitat Benmebarek S, Djabri M (2017) FEM to investigate the effect of overlapping reinforcement on the performance of back-to-back embankment bridge approaches under self-weight. Transport Geotech 11:17–26CrossRef Benmebarek S, Djabri M (2017) FEM to investigate the effect of overlapping reinforcement on the performance of back-to-back embankment bridge approaches under self-weight. Transport Geotech 11:17–26CrossRef
8.
Zurück zum Zitat Xu P, Yang G, Li T, Hatami K (2021) Finite element limit analysis of bearing capacity of footing on back to-back reinforced soil retaining walls. Transport Geotech 30:100596CrossRef Xu P, Yang G, Li T, Hatami K (2021) Finite element limit analysis of bearing capacity of footing on back to-back reinforced soil retaining walls. Transport Geotech 30:100596CrossRef
9.
Zurück zum Zitat IRC, SP. 102 (2014) In guidelines for design and construction of reinforced soil walls. Indian Roads Congress, New Delhi IRC, SP. 102 (2014) In guidelines for design and construction of reinforced soil walls. Indian Roads Congress, New Delhi
10.
Zurück zum Zitat Portelinha FHM, Bueno BS, Zornberg JG (2012) Performance of geotextile reinforced soil wall in unsaturated poorly draining backfill soil conditions. In: Proceedings of the 5th European geosynthetics congress: 455–465 Portelinha FHM, Bueno BS, Zornberg JG (2012) Performance of geotextile reinforced soil wall in unsaturated poorly draining backfill soil conditions. In: Proceedings of the 5th European geosynthetics congress: 455–465
11.
Zurück zum Zitat Yoo C, Jung HY (2006) Case history of geosynthetic reinforced segmental retaining wall failure. J Geotech Geoenviron Eng 132(12):1538–1548CrossRef Yoo C, Jung HY (2006) Case history of geosynthetic reinforced segmental retaining wall failure. J Geotech Geoenviron Eng 132(12):1538–1548CrossRef
12.
Zurück zum Zitat Hossain MS, Kibria G, Khan MS, Hossain J, Taufiq T (2012) Effects of backfill soil on excessive movement of MSE wall. J Perform Constr Facil 26(6):793–802CrossRef Hossain MS, Kibria G, Khan MS, Hossain J, Taufiq T (2012) Effects of backfill soil on excessive movement of MSE wall. J Perform Constr Facil 26(6):793–802CrossRef
13.
Zurück zum Zitat Koerner RM, Koerner GR (2013) A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotext Geomembr 40:20–27CrossRef Koerner RM, Koerner GR (2013) A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotext Geomembr 40:20–27CrossRef
14.
Zurück zum Zitat Koerner RM, Koerner GR (2018) An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotext Geomembr 46:904–912CrossRef Koerner RM, Koerner GR (2018) An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotext Geomembr 46:904–912CrossRef
15.
Zurück zum Zitat Zornberg JG, Mitchell JS (1994) Reinforced soil structures with poorly draining backfills. Part I: reinforcement interactions and functions. Geosynth Int 2(1):103–147CrossRef Zornberg JG, Mitchell JS (1994) Reinforced soil structures with poorly draining backfills. Part I: reinforcement interactions and functions. Geosynth Int 2(1):103–147CrossRef
16.
Zurück zum Zitat Mitchell JK (1995) Reinforced soil structures with poorly draining backfills part II: case histories and applications. Geosynth Int 2(1):265–307CrossRef Mitchell JK (1995) Reinforced soil structures with poorly draining backfills part II: case histories and applications. Geosynth Int 2(1):265–307CrossRef
17.
Zurück zum Zitat Koerner RM, Koerner GR (2011) The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls. J GeoEng 6(1):3–13 Koerner RM, Koerner GR (2011) The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls. J GeoEng 6(1):3–13
18.
Zurück zum Zitat Yoo C (2011) Effect of rainfall on performance of reinforced earth wall. In: Han J, Alzamora DE (eds) Geo-frontiers congress 2011. ASCE, GSP 211 3:1852–1861 Yoo C (2011) Effect of rainfall on performance of reinforced earth wall. In: Han J, Alzamora DE (eds) Geo-frontiers congress 2011. ASCE, GSP 211 3:1852–1861
19.
Zurück zum Zitat Koerner RM, Soong TY (2001) Geosynthetic reinforced segmental retaining walls. Geotext Geomembr 19(6):359–386CrossRef Koerner RM, Soong TY (2001) Geosynthetic reinforced segmental retaining walls. Geotext Geomembr 19(6):359–386CrossRef
20.
Zurück zum Zitat Christopher BR, Stulgis RP (2005) Low permeable backfill soils in geosynthetic reinforced soil walls: state-of-the-practice in North America. Proc North Am Geo-synth Conf 2005:14–16 Christopher BR, Stulgis RP (2005) Low permeable backfill soils in geosynthetic reinforced soil walls: state-of-the-practice in North America. Proc North Am Geo-synth Conf 2005:14–16
21.
Zurück zum Zitat Chen HT, Hung WY, Chang CC, Chen YJ, Lee CJ (2007) Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill. Geotext Geomembr 25(6):346–359CrossRef Chen HT, Hung WY, Chang CC, Chen YJ, Lee CJ (2007) Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill. Geotext Geomembr 25(6):346–359CrossRef
22.
Zurück zum Zitat Esmaili D, Hatami K, Miller GA (2014) Influence of matric suction on geotextile reinforcement-marginal soil interface strength. Geotext Geomembr 42(2):139–153CrossRef Esmaili D, Hatami K, Miller GA (2014) Influence of matric suction on geotextile reinforcement-marginal soil interface strength. Geotext Geomembr 42(2):139–153CrossRef
23.
Zurück zum Zitat Hatami K, Esmaili D, Chan EC, Miller GA (2014) Laboratory performance of reduced-scale reinforced embankments at different moisture contents. Int J Geotech Eng 8(3):260–276CrossRef Hatami K, Esmaili D, Chan EC, Miller GA (2014) Laboratory performance of reduced-scale reinforced embankments at different moisture contents. Int J Geotech Eng 8(3):260–276CrossRef
24.
Zurück zum Zitat Hatami K, Esmaili D, Chan EC, Miller GA (2016) Moisture reduction factors for shear strength of unsaturated reinforced embankments. Int J Geomech 16(6):D4016001CrossRef Hatami K, Esmaili D, Chan EC, Miller GA (2016) Moisture reduction factors for shear strength of unsaturated reinforced embankments. Int J Geomech 16(6):D4016001CrossRef
25.
Zurück zum Zitat Kim WS, Borden RH (2013) Numerical simulation of MSE wall behavior induced by surface-water infiltration. J Geotech Geoenviron Eng 139(12):2110–2124CrossRef Kim WS, Borden RH (2013) Numerical simulation of MSE wall behavior induced by surface-water infiltration. J Geotech Geoenviron Eng 139(12):2110–2124CrossRef
26.
Zurück zum Zitat Vahedifard F, Tehrani FS, Galavi V, Ragno E, AghaKouchak A (2017) Resilience of MSE walls with marginal backfill under a changing climate: quantitative assessment for extreme precipitation events. J Geotech Geoenviron Eng 143(9):04017056CrossRef Vahedifard F, Tehrani FS, Galavi V, Ragno E, AghaKouchak A (2017) Resilience of MSE walls with marginal backfill under a changing climate: quantitative assessment for extreme precipitation events. J Geotech Geoenviron Eng 143(9):04017056CrossRef
27.
Zurück zum Zitat Jayanandan M, Viswanadham BVS (2020) Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotech J 50(2):238–251CrossRef Jayanandan M, Viswanadham BVS (2020) Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotech J 50(2):238–251CrossRef
28.
Zurück zum Zitat Rajagopal G, Thiyyakkandi S (2021) Numerical evaluation of the performance of back-to-back MSE walls with hybrid select-marginal fill zones. Transport Geotech 26:100445CrossRef Rajagopal G, Thiyyakkandi S (2021) Numerical evaluation of the performance of back-to-back MSE walls with hybrid select-marginal fill zones. Transport Geotech 26:100445CrossRef
29.
Zurück zum Zitat Zheng Y, Hatami K, Miller GA (2017) Influence of compaction moisture content on wetting-induced settlement of embankments. Int J Geosynth Ground Eng 3(1):7CrossRef Zheng Y, Hatami K, Miller GA (2017) Influence of compaction moisture content on wetting-induced settlement of embankments. Int J Geosynth Ground Eng 3(1):7CrossRef
30.
Zurück zum Zitat Zheng Y, Hatami K, Miller GA (2017) Numerical simulation of wetting-induced settlement of embankments. J Perform Constr Facil 31(3):D4017001CrossRef Zheng Y, Hatami K, Miller GA (2017) Numerical simulation of wetting-induced settlement of embankments. J Perform Constr Facil 31(3):D4017001CrossRef
31.
Zurück zum Zitat Glendinning S, Jones CJ, Pugh RC (2005) Reinforced soil using cohesive fill and electrokinetic geosynthetics. Int J Geomech 5(2):138–146CrossRef Glendinning S, Jones CJ, Pugh RC (2005) Reinforced soil using cohesive fill and electrokinetic geosynthetics. Int J Geomech 5(2):138–146CrossRef
32.
Zurück zum Zitat Iryo T, Rowe RK (2005) Infiltration into an embankment reinforced by nonwoven geotextiles. Can Geotech J 42(4):1145–1159CrossRef Iryo T, Rowe RK (2005) Infiltration into an embankment reinforced by nonwoven geotextiles. Can Geotech J 42(4):1145–1159CrossRef
33.
Zurück zum Zitat Noorzad R, Mirmoradi S (2010) Laboratory evaluation of the behavior of a geotextile reinforced clay. Geotext Geomembr 28(4):386–392CrossRef Noorzad R, Mirmoradi S (2010) Laboratory evaluation of the behavior of a geotextile reinforced clay. Geotext Geomembr 28(4):386–392CrossRef
34.
Zurück zum Zitat Raisinghani DV, Viswanadham BVS (2011) Centrifuge model study on low permeable slope reinforced by hybrid geosynthetics. Geotext Geomembr 29(6):567–580CrossRef Raisinghani DV, Viswanadham BVS (2011) Centrifuge model study on low permeable slope reinforced by hybrid geosynthetics. Geotext Geomembr 29(6):567–580CrossRef
35.
Zurück zum Zitat Abdi MR, Arjomand MA (2011) Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand. Geotext Geomembr 29(6):588–595CrossRef Abdi MR, Arjomand MA (2011) Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand. Geotext Geomembr 29(6):588–595CrossRef
36.
Zurück zum Zitat Viswanadham BVS, Razeghi HR, Mamaghanian J, Manikumar CHSG (2017) Centrifuge model study on geogrid reinforced soil walls with marginal backfills with and without chimney sand drain. Geotext Geomembr 45(5):430–446CrossRef Viswanadham BVS, Razeghi HR, Mamaghanian J, Manikumar CHSG (2017) Centrifuge model study on geogrid reinforced soil walls with marginal backfills with and without chimney sand drain. Geotext Geomembr 45(5):430–446CrossRef
37.
Zurück zum Zitat Mamaghanian J, Viswanadham BVS, Razeghi HR (2019) Centrifuge model studies on geocomposite reinforced soil walls subjected to seepage. Geosynth Intl 26(4):371–387CrossRef Mamaghanian J, Viswanadham BVS, Razeghi HR (2019) Centrifuge model studies on geocomposite reinforced soil walls subjected to seepage. Geosynth Intl 26(4):371–387CrossRef
38.
Zurück zum Zitat Bathurst RJ, Walters D, Vlachopoulos N, Burgess P, Allen TM (2000) Full scale testing of geosynthetic reinforced walls. Adv Transport Geoenviron Syst Using Geosynth 201–17 Bathurst RJ, Walters D, Vlachopoulos N, Burgess P, Allen TM (2000) Full scale testing of geosynthetic reinforced walls. Adv Transport Geoenviron Syst Using Geosynth 201–17
39.
Zurück zum Zitat ASTM D5298-16 (2016) Standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken ASTM D5298-16 (2016) Standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken
40.
Zurück zum Zitat Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44(5):892–898CrossRef Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44(5):892–898CrossRef
41.
Zurück zum Zitat ASTM D3080/D3080M-11 (2011) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken ASTM D3080/D3080M-11 (2011) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken
42.
Zurück zum Zitat ASTM D698-12e2 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken ASTM D698-12e2 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken
43.
Zurück zum Zitat Indian Standard, IS: 2720 (Part 17) (1986) Laboratory determination of permeability. Indian Standards Institution, New Delhi Indian Standard, IS: 2720 (Part 17) (1986) Laboratory determination of permeability. Indian Standards Institution, New Delhi
44.
Zurück zum Zitat Brinkgreve RBJ, Kumarswamy S, Swolfs WM, Foria F, Waterman D, Chesaru A, Bonnier PG (2018) PLAXIS BV, the Netherlands Brinkgreve RBJ, Kumarswamy S, Swolfs WM, Foria F, Waterman D, Chesaru A, Bonnier PG (2018) PLAXIS BV, the Netherlands
45.
Zurück zum Zitat Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can Geotech J 42(4):1066–1085CrossRef Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can Geotech J 42(4):1066–1085CrossRef
46.
Zurück zum Zitat Hatami K, Bathurst RJ (2006) Numerical model for reinforced soil segmental walls under surcharge loading. J Geotech Geoenviron Eng 132(6):673–684CrossRef Hatami K, Bathurst RJ (2006) Numerical model for reinforced soil segmental walls under surcharge loading. J Geotech Geoenviron Eng 132(6):673–684CrossRef
47.
Zurück zum Zitat Cazzuffi D, Picarelli L, Ricciuti A, Rimoldi P (1993) Laboratory investigations on the shear strength of geogrid reinforced soils. In: Geosynthetic soil reinforcement testing procedures. ASTM International Cazzuffi D, Picarelli L, Ricciuti A, Rimoldi P (1993) Laboratory investigations on the shear strength of geogrid reinforced soils. In: Geosynthetic soil reinforcement testing procedures. ASTM International
48.
Zurück zum Zitat Liu CN, Ho YH, Huang JW (2009) Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembr 27(1):19–30CrossRef Liu CN, Ho YH, Huang JW (2009) Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembr 27(1):19–30CrossRef
49.
Zurück zum Zitat Huang B, Bathurst RJ, Hatami K (2009) Numerical study of reinforced soil segmental walls using three different constitutive soil models. J Geotech Geoenviron Eng 135(10):1486–1498CrossRef Huang B, Bathurst RJ, Hatami K (2009) Numerical study of reinforced soil segmental walls using three different constitutive soil models. J Geotech Geoenviron Eng 135(10):1486–1498CrossRef
50.
Zurück zum Zitat Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610CrossRef Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610CrossRef
51.
Zurück zum Zitat Bathurst RJ, Naftchali FM (2021) Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures. Geotext Geomembr 49(4):921–940CrossRef Bathurst RJ, Naftchali FM (2021) Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures. Geotext Geomembr 49(4):921–940CrossRef
52.
Zurück zum Zitat Bergado DT, Chai JC, Abiera HO, Alfaro MC, Balasubramaniam AS (1993) Interaction between cohesive-frictional soil and various grid reinforcements. Geotext Geomembr 12(4):327–349CrossRef Bergado DT, Chai JC, Abiera HO, Alfaro MC, Balasubramaniam AS (1993) Interaction between cohesive-frictional soil and various grid reinforcements. Geotext Geomembr 12(4):327–349CrossRef
53.
Zurück zum Zitat Hamdhan IN, Schweiger HF (2013) Finite element method–based analysis of an unsaturated soil slope subjected to rainfall infiltration. Int J Geomech 13(5):653–658CrossRef Hamdhan IN, Schweiger HF (2013) Finite element method–based analysis of an unsaturated soil slope subjected to rainfall infiltration. Int J Geomech 13(5):653–658CrossRef
54.
Zurück zum Zitat Yubonchit S, Chinkulkijniwat A, Horpibulsuk S, Jothityangkoon C, Arulrajah A, Suddeepong A (2017) Influence factors involving rainfall-induced shallow slope failure: numerical study. Int J Geomech 17(7):04016158CrossRef Yubonchit S, Chinkulkijniwat A, Horpibulsuk S, Jothityangkoon C, Arulrajah A, Suddeepong A (2017) Influence factors involving rainfall-induced shallow slope failure: numerical study. Int J Geomech 17(7):04016158CrossRef
56.
Zurück zum Zitat Galavi V (2010) Ground water flow, fully coupled flow deformation and undrained analyses in PLAXIS 2D and 3D. Plaxis Report Galavi V (2010) Ground water flow, fully coupled flow deformation and undrained analyses in PLAXIS 2D and 3D. Plaxis Report
57.
Zurück zum Zitat Portelinha FHM, Zornberg JG (2017) Effect of infiltration on the performance of an unsaturated geotextile-reinforced soil wall. Geotext Geomembr 45(3):211–226CrossRef Portelinha FHM, Zornberg JG (2017) Effect of infiltration on the performance of an unsaturated geotextile-reinforced soil wall. Geotext Geomembr 45(3):211–226CrossRef
58.
Zurück zum Zitat CWC (2018) Study report Kerala floods of August 2018. Central Water Commission, Hydrological Studies Organisation, Hydrology (S) Directorate, Govt. of India CWC (2018) Study report Kerala floods of August 2018. Central Water Commission, Hydrological Studies Organisation, Hydrology (S) Directorate, Govt. of India
59.
Zurück zum Zitat Adarsh S, Reddy MJ (2018) Developing hourly intensity duration frequency curves for urban areas in India using multivariate empirical mode decomposition and scaling theory. Stoch Env Res Risk A 32(6):1889–1902CrossRef Adarsh S, Reddy MJ (2018) Developing hourly intensity duration frequency curves for urban areas in India using multivariate empirical mode decomposition and scaling theory. Stoch Env Res Risk A 32(6):1889–1902CrossRef
Metadaten
Titel
Influence of Retained Zone Width on the Behaviour of Back-to-Back Mechanically Stabilized Earth Walls upon Rainwater Infiltration
verfasst von
Gopika Rajagopal
Sudheesh Thiyyakkandi
Publikationsdatum
01.12.2022
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 6/2022
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-022-00416-9

Weitere Artikel der Ausgabe 6/2022

International Journal of Geosynthetics and Ground Engineering 6/2022 Zur Ausgabe