Skip to main content

2024 | OriginalPaper | Buchkapitel

Intelligent Active Defense Methods for Mitigating Penetration Attacks on Power Grid Buffer Networks

verfasst von : Yunsong Yan, Wang Wang, Xiong Chen, Wei Wang

Erschienen in: Proceedings of the 2nd International Conference on Internet of Things, Communication and Intelligent Technology

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With its flexibility and active defense capabilities, the power grid buffer network has attracted widespread attention as a novel means of power grid defense. This article proposes an intelligent active defense method specifically designed to mitigate penetration attacks on power grid buffer networks. In this method, attackers typically employ intelligent penetration attacks based on reinforcement learning, which model the penetration process as a Markov decision process. Attackers continuously train themselves through trial and error to optimize their penetration paths, thus enhancing their attack capabilities. To prevent malicious exploitation of intelligent penetration attacks, the power grid buffer network introduces a deceptive defense method aimed at countering attack strategies based on reinforcement learning. This method first gathers necessary information (state, action, reward) during the construction of the attack model by attackers. It then generates deceptive actions through state dimension inversion and confuses attackers by flipping reward value signs, thereby implementing deceptive defense at the early, middle, and late stages of penetration attacks on the power grid buffer network. Finally, this article conducts simulation experiments to compare the defensive effectiveness of the proposed method in three stages of the power grid buffer network’s defense against intelligent penetration attacks. The experimental results demonstrate that the proposed method reduces the success rate of intelligent penetration attacks based on reinforcement learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arkin, B., Stender, S., Mcgraw, G.: Software penetration testing. IEEE Secur. Priv. 3(1), 84–87 (2005)CrossRef Arkin, B., Stender, S., Mcgraw, G.: Software penetration testing. IEEE Secur. Priv. 3(1), 84–87 (2005)CrossRef
2.
Zurück zum Zitat Yang, H.Y., Yuan, H.H., Zhang, L.: Host security assessment method based on attack graph. J. Commun. 43(2), 89–99 (2022) Yang, H.Y., Yuan, H.H., Zhang, L.: Host security assessment method based on attack graph. J. Commun. 43(2), 89–99 (2022)
3.
Zurück zum Zitat Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots. J. Comput. 3(1), 25–36 (2007) Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots. J. Comput. 3(1), 25–36 (2007)
4.
Zurück zum Zitat Kaur, G., Kaur, N.: Penetration testing-reconnaissance with NMAP tool. Int. J. Adv. Res. Comput. Sci. 8(3), 844–846 (2017) Kaur, G., Kaur, N.: Penetration testing-reconnaissance with NMAP tool. Int. J. Adv. Res. Comput. Sci. 8(3), 844–846 (2017)
5.
Zurück zum Zitat Muliński, T.: ICT security in tax administration - Rapid7 Nexpose vulnerability analysis. Studia Informatica 24, 37–51 (2021) Muliński, T.: ICT security in tax administration - Rapid7 Nexpose vulnerability analysis. Studia Informatica 24, 37–51 (2021)
6.
Zurück zum Zitat Lee, A.: Advanced Penetration Testing for Highly-Secured Environments: The Ultimate Security Guide. Packt Publishing, Birmingham (2012) Lee, A.: Advanced Penetration Testing for Highly-Secured Environments: The Ultimate Security Guide. Packt Publishing, Birmingham (2012)
7.
Zurück zum Zitat HelpSysthems: Core impact [EB] (2021) HelpSysthems: Core impact [EB] (2021)
8.
Zurück zum Zitat Sayed, A.: Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 7(4/5), 311–801 (2014)CrossRef Sayed, A.: Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 7(4/5), 311–801 (2014)CrossRef
9.
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Playing atari with deep reinforcement learning. arXiv Preprint arXiv:1312.5602 (2013) Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Playing atari with deep reinforcement learning. arXiv Preprint arXiv:​1312.​5602 (2013)
10.
Zurück zum Zitat Zhou, S.C., Liu, J.J., Hou, D.D., et al.: Autonomous penetration testing based on improved deep Q-network. Appl. Sci. 11(19), 8823 (2021)CrossRef Zhou, S.C., Liu, J.J., Hou, D.D., et al.: Autonomous penetration testing based on improved deep Q-network. Appl. Sci. 11(19), 8823 (2021)CrossRef
11.
Zurück zum Zitat Tran, K., Akella, A., Standen, M., et al.: Deep hierarchical reinforcement agents for automated penetration testing. arXiv Preprint arXiv:2109.06449 (2021) Tran, K., Akella, A., Standen, M., et al.: Deep hierarchical reinforcement agents for automated penetration testing. arXiv Preprint arXiv:​2109.​06449 (2021)
12.
Zurück zum Zitat Dulac-Arnold, G., Evans, R., Sunehag, P., et al.: Reinforcement learning in large discrete action spaces. arXiv Preprint arXiv:1512.07679 (2015) Dulac-Arnold, G., Evans, R., Sunehag, P., et al.: Reinforcement learning in large discrete action spaces. arXiv Preprint arXiv:​1512.​07679 (2015)
13.
Zurück zum Zitat Yuill, J.J.: Defensive computer-security deception operations: processes, principles and techniques. North Carolina State University,Raleigh (2006) Yuill, J.J.: Defensive computer-security deception operations: processes, principles and techniques. North Carolina State University,Raleigh (2006)
14.
Zurück zum Zitat Gartner Research: Hype cycle for threat-facing technologies 2017 [R] (2017) Gartner Research: Hype cycle for threat-facing technologies 2017 [R] (2017)
15.
Zurück zum Zitat Jia, Z.P., Fang, B.X., Liu, C.G., et al.: Survey on cyber deception. J. Commun. 38(12), 128–143 (2017) Jia, Z.P., Fang, B.X., Liu, C.G., et al.: Survey on cyber deception. J. Commun. 38(12), 128–143 (2017)
16.
Zurück zum Zitat Hu, Y.J., Ma, J., Guo, Y.B.: Research on cyber deception based on game theory. J. Commun. 39(S2), 9–18 (2018) Hu, Y.J., Ma, J., Guo, Y.B.: Research on cyber deception based on game theory. J. Commun. 39(S2), 9–18 (2018)
17.
Zurück zum Zitat Wang, S., Wang, J.H., Pei, Q.Q., et al.: Active deception defense method based on dynamic camouflage network. J. Commun. 41(2), 97–111 (2020) Wang, S., Wang, J.H., Pei, Q.Q., et al.: Active deception defense method based on dynamic camouflage network. J. Commun. 41(2), 97–111 (2020)
18.
Zurück zum Zitat Jafarian, J.H., Al-Shaer, E., Duan, Q.: Adversary-aware IP address randomization for proactive agility against sophisticated attackers. In: Proceedings of 2015 IEEE Conference on Computer Communications, Piscataway, pp. 738–746. IEEE Press (2015) Jafarian, J.H., Al-Shaer, E., Duan, Q.: Adversary-aware IP address randomization for proactive agility against sophisticated attackers. In: Proceedings of 2015 IEEE Conference on Computer Communications, Piscataway, pp. 738–746. IEEE Press (2015)
19.
Zurück zum Zitat Wang, K., Chen, X., Zhu, Y.F.: Random domain name and address mutation (RDAM) for thwarting reconnaissance attacks. PLoS ONE 12(5), e0177111 (2017)CrossRef Wang, K., Chen, X., Zhu, Y.F.: Random domain name and address mutation (RDAM) for thwarting reconnaissance attacks. PLoS ONE 12(5), e0177111 (2017)CrossRef
20.
Zurück zum Zitat Anagnostakis, K., Sidiroglou, S., Akritidis, P., et al.: Detecting targeted attacks using shadow honeypots. In: Proceedings of the 14th Conference on USENIX Security Symposium. USE-NIX Association, Berkeley (2005) Anagnostakis, K., Sidiroglou, S., Akritidis, P., et al.: Detecting targeted attacks using shadow honeypots. In: Proceedings of the 14th Conference on USENIX Security Symposium. USE-NIX Association, Berkeley (2005)
21.
Zurück zum Zitat Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots. J. Comput. 2(2), 25–36 (2007)CrossRef Rowe, N.C., Custy, E.J., Duong, B.T.: Defending cyberspace with fake honeypots. J. Comput. 2(2), 25–36 (2007)CrossRef
22.
Zurück zum Zitat Shi, L.Y., Jiang, L.L., Liu, X., et al.: Game theoretic analysis for the feature of mimicry honeypot. J. Electron. Inf. Technol. 35(5), 1063–1068 (2013)CrossRef Shi, L.Y., Jiang, L.L., Liu, X., et al.: Game theoretic analysis for the feature of mimicry honeypot. J. Electron. Inf. Technol. 35(5), 1063–1068 (2013)CrossRef
23.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef
24.
Zurück zum Zitat Berner, C., Brockman, G., Chan, B., et al.: Dota 2 with large scale deep reinforcement learning. arXiv Preprint arXiv:1912.06680 (2019) Berner, C., Brockman, G., Chan, B., et al.: Dota 2 with large scale deep reinforcement learning. arXiv Preprint arXiv:​1912.​06680 (2019)
25.
Zurück zum Zitat Vinyals, O., Babuschkin, I., Czarnecki, W.M., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)CrossRef Vinyals, O., Babuschkin, I., Czarnecki, W.M., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)CrossRef
26.
Zurück zum Zitat Schwartz, J., Kurniawati, H.: Autonomous penetration testing using reinforcement learning. arXiv Preprint arXiv:1905.05965 (2019) Schwartz, J., Kurniawati, H.: Autonomous penetration testing using reinforcement learning. arXiv Preprint arXiv:​1905.​05965 (2019)
27.
Zurück zum Zitat Zennaro, F.M., Erdodi, L.: Modeling penetration testing with reinforcement learning using capture-the-flag challenges and tabular Q-learning. arXiv Preprint arXiv:2005.12632 (2005) Zennaro, F.M., Erdodi, L.: Modeling penetration testing with reinforcement learning using capture-the-flag challenges and tabular Q-learning. arXiv Preprint arXiv:​2005.​12632 (2005)
28.
Zurück zum Zitat Zang, Y.C., Zhou, T.Y., Zhu, J.H., et al.: Domain-independent intelligent planning technology and its application to automated penetration testing oriented attack path discovery. J. Electron. Inf. Technol. 42(9), 2095–2107 (2020) Zang, Y.C., Zhou, T.Y., Zhu, J.H., et al.: Domain-independent intelligent planning technology and its application to automated penetration testing oriented attack path discovery. J. Electron. Inf. Technol. 42(9), 2095–2107 (2020)
29.
Zurück zum Zitat Schwartz, J.: Network attack simulator[EB] (2017) Schwartz, J.: Network attack simulator[EB] (2017)
30.
Zurück zum Zitat Al Amin, M.A.R., Shetty, S., Njilla, L., Tosh, D.K., Kamhoua, C., et al.: Hidden Markov model and cyber deception for the prevention of adversarial lateral movement. IEEE Access 9, 49662–49682 (2021)CrossRef Al Amin, M.A.R., Shetty, S., Njilla, L., Tosh, D.K., Kamhoua, C., et al.: Hidden Markov model and cyber deception for the prevention of adversarial lateral movement. IEEE Access 9, 49662–49682 (2021)CrossRef
Metadaten
Titel
Intelligent Active Defense Methods for Mitigating Penetration Attacks on Power Grid Buffer Networks
verfasst von
Yunsong Yan
Wang Wang
Xiong Chen
Wei Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2757-5_53

Premium Partner