Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Xingjian Wang, Yuwei Zhang, Shaoping Wang

Erschienen in: Fault Tolerant Control of Large Civil Aircraft

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ensuring flight safety is of utmost importance in the aviation industry. According to reports from the International Civil Aviation Organization, there were a total of 850 accidents recorded between 2012 and 2022, resulting in 3309 fatalities. In addition to the human factors, the key factors identified in the flight accidents include the mechanical failures, faulty components, and extremely challenging perturbations (such as turbulence and wind gust). To enhance safety and reliability, modern aircraft primarily employ redundant configurations. An invaluable technology for mitigating the adverse effects caused by failures is Fault Tolerant Control (FTC), which can detect, isolate and accommodate the faults in real-time and therefore maintain the continued safe operation of the flight.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat J. Jiang, X. Yu, Fault-tolerant control systems: A comparative study between active and passive approaches. Annu. Rev. Control. 36(1), 60–72 (2012)MathSciNetCrossRef J. Jiang, X. Yu, Fault-tolerant control systems: A comparative study between active and passive approaches. Annu. Rev. Control. 36(1), 60–72 (2012)MathSciNetCrossRef
3.
Zurück zum Zitat G.J.J. Ducard, Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles (Springer Science & Business Media, 2009) G.J.J. Ducard, Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles (Springer Science & Business Media, 2009)
4.
Zurück zum Zitat C. Edwards, T. Lombaerts, H. Smaili, Fault tolerant flight control. Lecture Notes Control Inform. Sci. 399, 1–560 (2010) C. Edwards, T. Lombaerts, H. Smaili, Fault tolerant flight control. Lecture Notes Control Inform. Sci. 399, 1–560 (2010)
5.
Zurück zum Zitat A. Niederlinski, A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7(6), 691–701 (1971)CrossRef A. Niederlinski, A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7(6), 691–701 (1971)CrossRef
6.
Zurück zum Zitat R.V. Beard, Failure accommodation in linear systems through self-reorganization (Massachusetts Institute of Technology, 1971) R.V. Beard, Failure accommodation in linear systems through self-reorganization (Massachusetts Institute of Technology, 1971)
7.
8.
Zurück zum Zitat J.S. Eterno, J.L. Weiss, D.P. Looze et al., Design issues for fault tolerant-restructurable aircraft control. 1985 24th IEEE Conference on Decision and Control (1985), pp. 900–905 J.S. Eterno, J.L. Weiss, D.P. Looze et al., Design issues for fault tolerant-restructurable aircraft control. 1985 24th IEEE Conference on Decision and Control (1985), pp. 900–905
9.
Zurück zum Zitat A. Levis, Challenges to control: A collective view–Report of the workshop held at the University of Santa Clara on September 18–19, 1986. IEEE Trans. Autom. Control 32(4), 275–285 (1987)CrossRef A. Levis, Challenges to control: A collective view–Report of the workshop held at the University of Santa Clara on September 18–19, 1986. IEEE Trans. Autom. Control 32(4), 275–285 (1987)CrossRef
10.
Zurück zum Zitat Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)CrossRef Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)CrossRef
11.
Zurück zum Zitat K. Zhou, J.C. Doyle, Essentials of robust control (Upper Saddle River, NJ: Prentice Hall, 1998) K. Zhou, J.C. Doyle, Essentials of robust control (Upper Saddle River, NJ: Prentice Hall, 1998)
12.
Zurück zum Zitat X. Yu, Y. Zhang, Design of passive fault-tolerant flight controller against actuator failures. Chin. J. Aeronaut. 28(1), 180–190 (2015)MathSciNetCrossRef X. Yu, Y. Zhang, Design of passive fault-tolerant flight controller against actuator failures. Chin. J. Aeronaut. 28(1), 180–190 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat X. Li, H.H.T. Liu, A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft (2012) X. Li, H.H.T. Liu, A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft (2012)
14.
Zurück zum Zitat D. Zhang, Z. Wang, S. Hu, Robust satisfactory fault-tolerant control of uncertain linear discrete-time systems: An LMI approach. Int. J. Syst. Sci. 38(2), 151–165 (2007)MathSciNetCrossRef D. Zhang, Z. Wang, S. Hu, Robust satisfactory fault-tolerant control of uncertain linear discrete-time systems: An LMI approach. Int. J. Syst. Sci. 38(2), 151–165 (2007)MathSciNetCrossRef
15.
Zurück zum Zitat Y. Liu, G.H. Yang, X.J. Li, Fault-tolerant control for uncertain linear systems via adaptive and LMI approaches. Int. J. Syst. Sci. 48(2), 347–356 (2017)MathSciNetCrossRef Y. Liu, G.H. Yang, X.J. Li, Fault-tolerant control for uncertain linear systems via adaptive and LMI approaches. Int. J. Syst. Sci. 48(2), 347–356 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat H. Azmi, M.J. Khosrowjerdi, LMI-based adaptive output feedback fault-tolerant controller design for nonlinear systems. Int. J. Adapt. Control Signal Process. 31(12), 1885–1902 (2017)MathSciNetCrossRef H. Azmi, M.J. Khosrowjerdi, LMI-based adaptive output feedback fault-tolerant controller design for nonlinear systems. Int. J. Adapt. Control Signal Process. 31(12), 1885–1902 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat Q. Zhao, J. Jiang, Reliable state feedback control system design against actuator failures. Automatica 34(10), 1267–1272 (1998)CrossRef Q. Zhao, J. Jiang, Reliable state feedback control system design against actuator failures. Automatica 34(10), 1267–1272 (1998)CrossRef
18.
Zurück zum Zitat J. Jiang, Design of reconfigurable control systems using Eigen structure assignments. Int. J. Control. 59(2), 395–410 (1994)CrossRef J. Jiang, Design of reconfigurable control systems using Eigen structure assignments. Int. J. Control. 59(2), 395–410 (1994)CrossRef
19.
Zurück zum Zitat Y. Zhang, J. Jiang, Integrated active fault-tolerant control using IMM approach. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1221–1235 (2001)CrossRef Y. Zhang, J. Jiang, Integrated active fault-tolerant control using IMM approach. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1221–1235 (2001)CrossRef
20.
Zurück zum Zitat F. Ahmed-Zaid, P. Ioannou, K. Gousman et al., Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control. Syst. Mag. 11(1), 73–78 (1991)CrossRef F. Ahmed-Zaid, P. Ioannou, K. Gousman et al., Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control. Syst. Mag. 11(1), 73–78 (1991)CrossRef
21.
Zurück zum Zitat K.S. Narendra, J. Balakrishnan, Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)MathSciNetCrossRef K.S. Narendra, J. Balakrishnan, Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)MathSciNetCrossRef
22.
Zurück zum Zitat J.D. Boskovic, R.K. Mehra, Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. Proceedings of the 1999 American Control Conference (3, 1999), pp. 1920–1924 J.D. Boskovic, R.K. Mehra, Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. Proceedings of the 1999 American Control Conference (3, 1999), pp. 1920–1924
23.
Zurück zum Zitat Y. Zhao, J. Wang, F. Yan et al., Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inf. Sci. 473, 227–238 (2019)MathSciNetCrossRef Y. Zhao, J. Wang, F. Yan et al., Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inf. Sci. 473, 227–238 (2019)MathSciNetCrossRef
24.
Zurück zum Zitat M. Van, M. Mavrovouniotis, S.S. Ge, An adaptive back stepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7), 1448–1458 (2018)CrossRef M. Van, M. Mavrovouniotis, S.S. Ge, An adaptive back stepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7), 1448–1458 (2018)CrossRef
25.
Zurück zum Zitat S. Zhang, P. Yang, L. Kong et al., Neural networks-based fault tolerant control of a robot via fast terminal sliding mode. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(7), 4091–4101 (2019)CrossRef S. Zhang, P. Yang, L. Kong et al., Neural networks-based fault tolerant control of a robot via fast terminal sliding mode. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(7), 4091–4101 (2019)CrossRef
26.
Zurück zum Zitat X. Nian, W. Chen, X. Chu et al., Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. Int. J. Control. 93(3), 725–737 (2020)MathSciNetCrossRef X. Nian, W. Chen, X. Chu et al., Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. Int. J. Control. 93(3), 725–737 (2020)MathSciNetCrossRef
27.
Zurück zum Zitat S.M. Fazeli, M. Abedi, An integrated fault estimation and fault tolerant control method using H∞-based adaptive observers. Int. J. Adapt. Control Signal Process. 34(9), 1259–1280 (2020)MathSciNetCrossRef S.M. Fazeli, M. Abedi, An integrated fault estimation and fault tolerant control method using H∞-based adaptive observers. Int. J. Adapt. Control Signal Process. 34(9), 1259–1280 (2020)MathSciNetCrossRef
28.
Zurück zum Zitat J.E. Tomayko, C. Gelzer, The story of self-repairing flight control systems (NASA Dryden Flight Research Center, Edwards, 2003) J.E. Tomayko, C. Gelzer, The story of self-repairing flight control systems (NASA Dryden Flight Research Center, Edwards, 2003)
29.
Zurück zum Zitat J. Totah, K. Krishnakumar, S. Vikien, Integrated resilient aircraft control-stability, maneuverability, and safe landing in the presence of adverse conditions. NASA Aeronautics Research Mission Directorate Aviation Safety Program (108, 2007). J. Totah, K. Krishnakumar, S. Vikien, Integrated resilient aircraft control-stability, maneuverability, and safe landing in the presence of adverse conditions. NASA Aeronautics Research Mission Directorate Aviation Safety Program (108, 2007).
30.
Zurück zum Zitat P. Goupil, AIRBUS state of the art and practices on FDI and FTC in flight control system. Control. Eng. Pract. 19(6), 524–539 (2011)CrossRef P. Goupil, AIRBUS state of the art and practices on FDI and FTC in flight control system. Control. Eng. Pract. 19(6), 524–539 (2011)CrossRef
31.
Zurück zum Zitat J. Cieslak, D. Henry, A. Zolghadri et al., Development of an active fault-tolerant flight control strategy. J. Guid. Control. Dyn. 31(1), 135–147 (2008)CrossRef J. Cieslak, D. Henry, A. Zolghadri et al., Development of an active fault-tolerant flight control strategy. J. Guid. Control. Dyn. 31(1), 135–147 (2008)CrossRef
32.
Zurück zum Zitat X. Yu, Z. Liu, Y. Zhang, Fault-tolerant flight control design with finite-time adaptation under actuator stuck failures. IEEE Trans. Control Syst. Technol. 25(4), 1431–1440 (2016)CrossRef X. Yu, Z. Liu, Y. Zhang, Fault-tolerant flight control design with finite-time adaptation under actuator stuck failures. IEEE Trans. Control Syst. Technol. 25(4), 1431–1440 (2016)CrossRef
33.
Zurück zum Zitat F.A. De Almeida, D. Leißling, Fault-tolerant model predictive control with flight-test results. J. Guid. Control. Dyn. 33(2), 363–375 (2010)CrossRef F.A. De Almeida, D. Leißling, Fault-tolerant model predictive control with flight-test results. J. Guid. Control. Dyn. 33(2), 363–375 (2010)CrossRef
34.
Zurück zum Zitat F.A. De Almeida, Reference management for fault-tolerant model predictive control. J. Guid. Control. Dyn. 34(1), 44–56 (2011)CrossRef F.A. De Almeida, Reference management for fault-tolerant model predictive control. J. Guid. Control. Dyn. 34(1), 44–56 (2011)CrossRef
35.
Zurück zum Zitat S. Cao, L. Guo, X. Wen, Fault tolerant control with disturbance rejection and attenuation performance for systems with multiple disturbances. Asian J. Control 13(6), 1056–1064 (2011)MathSciNetCrossRef S. Cao, L. Guo, X. Wen, Fault tolerant control with disturbance rejection and attenuation performance for systems with multiple disturbances. Asian J. Control 13(6), 1056–1064 (2011)MathSciNetCrossRef
36.
Zurück zum Zitat J.S. Shamma, An overview of LPV systems. Control of Linear Parameter Varying Syst. Appl. 3–26 (2012) J.S. Shamma, An overview of LPV systems. Control of Linear Parameter Varying Syst. Appl. 3–26 (2012)
37.
Zurück zum Zitat A. Marcos, G. Balas, Linear parameter varying modeling of the Boeing 747–100/200 longitudinal motion. AIAA Guidance, Navigation, and Control Conference and Exhibit, 4347 (2001) A. Marcos, G. Balas, Linear parameter varying modeling of the Boeing 747–100/200 longitudinal motion. AIAA Guidance, Navigation, and Control Conference and Exhibit, 4347 (2001)
38.
Zurück zum Zitat S. Ganguli, A. Marcos, G. Balas, Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. Proceedings of the 2002 American control conference, 5, 3612–3617 (2002) S. Ganguli, A. Marcos, G. Balas, Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. Proceedings of the 2002 American control conference, 5, 3612–3617 (2002)
39.
Zurück zum Zitat H. Alwi, C. Edwards, A. Marcos, Fault reconstruction using a LPV sliding mode observer for a class of LPV systems. J. Franklin Inst. 349(2), 510–530 (2012)MathSciNetCrossRef H. Alwi, C. Edwards, A. Marcos, Fault reconstruction using a LPV sliding mode observer for a class of LPV systems. J. Franklin Inst. 349(2), 510–530 (2012)MathSciNetCrossRef
40.
Zurück zum Zitat L. Chen, C. Edwards, H. Alwi et al., Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica 114, 108829 (2020)MathSciNetCrossRef L. Chen, C. Edwards, H. Alwi et al., Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control. Automatica 114, 108829 (2020)MathSciNetCrossRef
41.
Zurück zum Zitat Z. Zhou, X. Wang, S. Wang et al., LPV active fault-tolerant control strategy of large civil aircraft under elevator failures. CSAA/IET international conference on aircraft utility systems (AUS 2020). IET, 2020 (2020), pp. 976–981 Z. Zhou, X. Wang, S. Wang et al., LPV active fault-tolerant control strategy of large civil aircraft under elevator failures. CSAA/IET international conference on aircraft utility systems (AUS 2020). IET, 2020 (2020), pp. 976–981
42.
Zurück zum Zitat L. Chen, H. Alwi, C. Edwards et al., Flight evaluation of an LPV sliding mode observer for sensor FTC. IEEE Trans. Control Syst. Technol. 30(3), 1319–1327 (2021)CrossRef L. Chen, H. Alwi, C. Edwards et al., Flight evaluation of an LPV sliding mode observer for sensor FTC. IEEE Trans. Control Syst. Technol. 30(3), 1319–1327 (2021)CrossRef
43.
Zurück zum Zitat X. Yu, J. Jiang, Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Technol. 20(4), 871–886 (2011)CrossRef X. Yu, J. Jiang, Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Technol. 20(4), 871–886 (2011)CrossRef
44.
Zurück zum Zitat K. Rudin, G.J.J. Ducard, R.Y. Siegwart, Active fault-tolerant control with imperfect fault detection information: Applications to UAVs. IEEE Trans. Aerosp. Electron. Syst. 56(4), 2792–2805 (2019)CrossRef K. Rudin, G.J.J. Ducard, R.Y. Siegwart, Active fault-tolerant control with imperfect fault detection information: Applications to UAVs. IEEE Trans. Aerosp. Electron. Syst. 56(4), 2792–2805 (2019)CrossRef
45.
Zurück zum Zitat J. Chang, R. De Breuker, X. Wang, Adaptive nonlinear incremental flight control for systems with unknown control effectiveness. IEEE Trans. Aerosp. Electron. Syst. 59(1), 228–240 (2022)CrossRef J. Chang, R. De Breuker, X. Wang, Adaptive nonlinear incremental flight control for systems with unknown control effectiveness. IEEE Trans. Aerosp. Electron. Syst. 59(1), 228–240 (2022)CrossRef
46.
Zurück zum Zitat X. Yu, Y. Fu, P. Li et al., Fault-tolerant aircraft control based on self-constructing fuzzy neural networks and multivariable SMC under actuator faults. IEEE Trans. Fuzzy Syst. 26(4), 2324–2335 (2017)MathSciNetCrossRef X. Yu, Y. Fu, P. Li et al., Fault-tolerant aircraft control based on self-constructing fuzzy neural networks and multivariable SMC under actuator faults. IEEE Trans. Fuzzy Syst. 26(4), 2324–2335 (2017)MathSciNetCrossRef
47.
Zurück zum Zitat J. Liu, L. Sun, W. Tan et al., Finite time observer based incremental nonlinear fault-tolerant flight control. Aerosp. Sci. Technol. Sci. Technol. 104, 105986 (2020)CrossRef J. Liu, L. Sun, W. Tan et al., Finite time observer based incremental nonlinear fault-tolerant flight control. Aerosp. Sci. Technol. Sci. Technol. 104, 105986 (2020)CrossRef
Metadaten
Titel
Introduction
verfasst von
Xingjian Wang
Yuwei Zhang
Shaoping Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1654-8_1

    Premium Partner