Skip to main content

2024 | OriginalPaper | Buchkapitel

Leveraging Transfer Learning for Enhancing Graph Optimization Problem Solving

verfasst von : Hui-Ju Hung, Wang-Chien Lee, Chih-Ya Shen, Fang He, Zhen Lei

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reinforcement learning to solve graph optimization problems has attracted increasing attention recently. Typically, these models require extensive training over numerous graph instances to develop generalizable strategies across diverse graph types, demanding significant computational resources and time. Instead of tackling these problems one by one, we propose to employ transfer learning to utilize knowledge gained from solving one graph optimization problem to aid in solving another. Our proposed framework, dubbed the State Extraction with Transfer-learning (SET), focuses on quickly adapting a model trained for a specific graph optimization task to a new but related problem by considering the distributional differences among the objective values between the graph optimization problems. We conduct a series of experimental evaluations on graphs that are both synthetically generated and sourced from real-world data. The results demonstrate that SET outperforms other algorithmic and learning-based baselines. Additionally, our analysis of knowledge transferability provides insights into the effectiveness of applying models trained on one graph optimization task to another. Our study is one of the first studies exploring transfer learning in the context of graph optimization problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Notably, the efficacy of knowledge transfer extends beyond this specific pair of graph optimization problems and has been observed in several other problem combinations.
 
2
TSP finds the shortest route that visits each node once and returns to the origin.
 
3
MIS involves selecting the largest set of vertices where no two are adjacent.
 
4
Alternative layer-wise GNN methodologies such as GAT [31], GraphSage [15], or GBP [5] could also be used to build the feature extractors.
 
5
We perform sensitivity tests on those parameters, and select the best-performing settings as the defaults. The sensitivity tests are eliminated for the sake of space.
 
Literatur
1.
Zurück zum Zitat Ahn, S., Seo, Y., Shin, J.: Learning what to defer for maximum independent sets. In: ICML (2020) Ahn, S., Seo, Y., Shin, J.: Learning what to defer for maximum independent sets. In: ICML (2020)
2.
Zurück zum Zitat Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. (2002) Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. (2002)
3.
Zurück zum Zitat Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016) Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:​1611.​09940 (2016)
4.
Zurück zum Zitat Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics (1992) Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics (1992)
5.
Zurück zum Zitat Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., Wen, J.R.: Scalable graph neural networks via bidirectional propagation. In: NeurIPS (2020) Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., Wen, J.R.: Scalable graph neural networks via bidirectional propagation. In: NeurIPS (2020)
6.
Zurück zum Zitat Dai, H., Khalil, E., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: NeurIPS (2017) Dai, H., Khalil, E., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: NeurIPS (2017)
7.
Zurück zum Zitat Dai, Q., Wu, X.M., Xiao, J., Shen, X., Wang, D.: Graph transfer learning via adversarial domain adaptation with graph convolution. IEEE Trans. Knowl. Data Eng. (2022) Dai, Q., Wu, X.M., Xiao, J., Shen, X., Wang, D.: Graph transfer learning via adversarial domain adaptation with graph convolution. IEEE Trans. Knowl. Data Eng. (2022)
8.
Zurück zum Zitat Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning heuristics for the TSP by policy gradient. In: CPAIOR (2018) Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning heuristics for the TSP by policy gradient. In: CPAIOR (2018)
9.
Zurück zum Zitat Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolutionary Comput. (1997) Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolutionary Comput. (1997)
10.
Zurück zum Zitat Evci, U., Dumoulin, V., Larochelle, H., Mozer, M.C.: Head2toe: utilizing intermediate representations for better transfer learning. In: ICML (2022) Evci, U., Dumoulin, V., Larochelle, H., Mozer, M.C.: Head2toe: utilizing intermediate representations for better transfer learning. In: ICML (2022)
11.
Zurück zum Zitat Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. (2016) Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. (2016)
12.
Zurück zum Zitat Gopalakrishnan, K., Khaitan, S., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Construct. Building Mater. (2017) Gopalakrishnan, K., Khaitan, S., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Construct. Building Mater. (2017)
13.
Zurück zum Zitat Groshev, E., Tamar, A., Goldstein, M., Srivastava, S., Abbeel, P.: Learning generalized reactive policies using deep neural networks. In: ICAPS (2018) Groshev, E., Tamar, A., Goldstein, M., Srivastava, S., Abbeel, P.: Learning generalized reactive policies using deep neural networks. In: ICAPS (2018)
14.
Zurück zum Zitat Guze, S.: Graph theory approach to the vulnerability of transportation networks. Algorithms (2019) Guze, S.: Graph theory approach to the vulnerability of transportation networks. Algorithms (2019)
15.
Zurück zum Zitat Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017) Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017)
16.
Zurück zum Zitat Hua, J., Zeng, L., Li, G., Ju, Z.: Learning for a robot: deep reinforcement learning, imitation learning, transfer learning. Sensors (2021) Hua, J., Zeng, L., Li, G., Ju, Z.: Learning for a robot: deep reinforcement learning, imitation learning, transfer learning. Sensors (2021)
17.
Zurück zum Zitat Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artifi. Intell. Res. (1996) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artifi. Intell. Res. (1996)
18.
Zurück zum Zitat Karakostas, G.: A better approximation ratio for the vertex cover problem. In: ICALP (2005) Karakostas, G.: A better approximation ratio for the vertex cover problem. In: ICALP (2005)
19.
Zurück zum Zitat Karalias, N., Loukas, A.: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. In: NeurIPS (2020) Karalias, N., Loukas, A.: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. In: NeurIPS (2020)
20.
Zurück zum Zitat Kim, H., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med. Imaging (2022) Kim, H., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med. Imaging (2022)
21.
Zurück zum Zitat Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., Rohde, G.: Generalized sliced wasserstein distances. In: NeurIPS (2019) Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., Rohde, G.: Generalized sliced wasserstein distances. In: NeurIPS (2019)
22.
Zurück zum Zitat Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: ICML (2019) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: ICML (2019)
23.
Zurück zum Zitat Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In: NeurIPS (2012) Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In: NeurIPS (2012)
24.
Zurück zum Zitat Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: NeurIPS (2018) Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: NeurIPS (2018)
25.
Zurück zum Zitat Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. (2021) Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. (2021)
26.
Zurück zum Zitat Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models. In: CIKM (2020) Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models. In: CIKM (2020)
27.
Zurück zum Zitat Schuetz, M.J., Brubaker, J.K., Katzgraber, H.: Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. (2022) Schuetz, M.J., Brubaker, J.K., Katzgraber, H.: Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. (2022)
28.
Zurück zum Zitat Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685 (2018) Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a sat solver from single-bit supervision. arXiv preprint arXiv:​1802.​03685 (2018)
29.
Zurück zum Zitat Shen, Z., Liu, Z., Qin, J., Savvides, M., Cheng, K.T.: Partial is better than all: revisiting fine-tuning strategy for few-shot learning. In: AAAI (2021) Shen, Z., Liu, Z., Qin, J., Savvides, M., Cheng, K.T.: Partial is better than all: revisiting fine-tuning strategy for few-shot learning. In: AAAI (2021)
30.
Zurück zum Zitat Stastny, J., Skorpil, V., Balogh, Z., Klein, R.: Job shop scheduling problem optimization by means of graph-based algorithm. Appli. Sci. (2021) Stastny, J., Skorpil, V., Balogh, Z., Klein, R.: Job shop scheduling problem optimization by means of graph-based algorithm. Appli. Sci. (2021)
31.
Zurück zum Zitat Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
32.
Zurück zum Zitat Wang, H.P., Wu, N., Yang, H., Hao, C., Li, P.: Unsupervised learning for combinatorial optimization with principled objective relaxation. In: NeurIPS (2022) Wang, H.P., Wu, N., Yang, H., Hao, C., Li, P.: Unsupervised learning for combinatorial optimization with principled objective relaxation. In: NeurIPS (2022)
33.
Zurück zum Zitat Wang, H., Yue, T., Ye, X., He, Z., Li, B., Li, Y.: Revisit finetuning strategy for few-shot learning to transfer the emdeddings. In: ICLR (2023) Wang, H., Yue, T., Ye, X., He, Z., Li, B., Li, Y.: Revisit finetuning strategy for few-shot learning to transfer the emdeddings. In: ICLR (2023)
34.
Zurück zum Zitat Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
35.
Zurück zum Zitat Yang, C.H., Shen, C.Y.: Enhancing machine learning approaches for graph optimization problems with diversifying graph augmentation. In: SIGKDD (2022) Yang, C.H., Shen, C.Y.: Enhancing machine learning approaches for graph optimization problems with diversifying graph augmentation. In: SIGKDD (2022)
36.
Zurück zum Zitat Zhang, W., Dietterich, T.G.: Solving combinatorial optimization tasks by reinforcement learning: a general methodology applied to resource-constrained scheduling. J. Artifi. Intell. Res. (2000) Zhang, W., Dietterich, T.G.: Solving combinatorial optimization tasks by reinforcement learning: a general methodology applied to resource-constrained scheduling. J. Artifi. Intell. Res. (2000)
37.
Zurück zum Zitat Zhu, Z., Lin, K., Jain, A.K., Zhou, J.: Transfer learning in deep reinforcement learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023) Zhu, Z., Lin, K., Jain, A.K., Zhou, J.: Transfer learning in deep reinforcement learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Metadaten
Titel
Leveraging Transfer Learning for Enhancing Graph Optimization Problem Solving
verfasst von
Hui-Ju Hung
Wang-Chien Lee
Chih-Ya Shen
Fang He
Zhen Lei
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2253-2_27

Premium Partner