Skip to main content

Methods and Techniques of Complex Systems Science: An Overview

  • Chapter
Complex Systems Science in Biomedicine

Abstract

In this chapter, I review the main methods and techniques of complex systems science. As a first step, I distinguish among the broad patterns which recur across complex systems, the topics complex systems science commonly studies, the tools employed, and the foundational science of complex systems. The focus of this chapter is overwhelmingly on the third heading, that of tools. These in turn divide, roughly, into tools for analyzing data, tools for constructing and evaluating models, and tools for measuring complexity. I discuss the principles of statistical learning and model selection; time series analysis; cellular automata; agent-based models; the evaluation of complex-systems models; information theory; and ways of measuring complexity. Throughout, I give only rough outlines of techniques, so that readers, confronted with new problems, will have a sense of which ones might be suitable, and which ones definitely are not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

12. References

  1. Gamma E, Helm R, Johnson R, Vlissides J. 1995. Design patterns: elements of reusable object-oriented software. Addison-Wesley J, Reading, MA 1995.

    Google Scholar 

  2. Anderson RW. 1988. Random-walk learning: a neurobiological correlate to trial-and-error. In Progress in neural networks, pp. 221–244. Ed. OM Omidvar, J Dayhoff. Academic Press, Boston.

    Google Scholar 

  3. Mueller S, Marchettod J, Airaghi S, Koumoutsakos P. 2002. Optimization based on bacterial chemotaxis. IEEE Trans Evolut Comput 6:16–29.

    Article  Google Scholar 

  4. Simon HA. 1962. The architecture of complexity: Hierarchic systems. Proc Am Philos Soc 106:467–482 (reprinted as chap. 8 of [221]).

    Google Scholar 

  5. Simon HA. 1955. On a class of skew distribution functions. Biometrika 42:425–440.

    Google Scholar 

  6. Turing A. 1952. The chemical basis of morphogenesis. Philos Trans Roy Soc B 237:37–72.

    Google Scholar 

  7. Strong SP, Freedman B, Bialek W, Koberle R. 1998. Adaptation and optimal chemotactic strategy for E. coli. Phys Rev E 57:4604–4617 (http://arxiv.org/abs/adap-org/9706001).

    Article  CAS  Google Scholar 

  8. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis. Nature 397:168–171.

    Google Scholar 

  9. Yi T-M, Huang Y, Simon MI, Doyle J. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649–4653.

    Article  PubMed  CAS  Google Scholar 

  10. Badii R, Politi A. 1997. Complexity: hierarchical structures and scaling in physics. Cambridge UP, Cambridge.

    Google Scholar 

  11. Fontana W, Buss, LW. 1994. “Arrival of the fittest”: towards a theory of biological organization. Bull Math Biol 56:1–64 (http://www.santafe.edu/~walter/Papers/arrival.US.ps.gz).

    Google Scholar 

  12. Zurek WH, ed. 1990. Complexity, entropy, and the physics of information. Addison-Wesley, Reading, MA.

    Google Scholar 

  13. Frisch U. 1995. Turbulence: the legacy of A.N. Kolmogorov. Cambridge, Cambridge UP

    Google Scholar 

  14. Cross MC, Hohenberg P. 1993. Pattern formation out of equilibrium. Rev Mod Phys 65:851–1112.

    Article  CAS  Google Scholar 

  15. Ball P. 1999. The self-made tapestry: pattern formation in nature. Oxford UP, Oxford.

    Google Scholar 

  16. Holland JH. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 2nd ed. MIT Press, Cambridge (1st ed. 1975, U Michigan P, Ann Arbor).

    Google Scholar 

  17. Mitchell M. 1996. An introduction to genetic algorithms. MIT Press, Cambridge.

    Google Scholar 

  18. Gintis H. 2000. Game theory evolving: a problem-centered introduction to modeling strategic interaction. Princeton UP, Princeton.

    Google Scholar 

  19. Hofbauer J, Sigmund K. 1988. The theory of evolution and dynamical systems: mathematical aspects of selection. Cambridge UP, Cambridge.

    Google Scholar 

  20. Fischer KH, Hertz JA. 1988. Spin glasses. Cambridge Studies in Magnetism. Cambridge UP, Cambridge.

    Google Scholar 

  21. Stein DL. 2003. Spin glasses: still complex after all these years? In Quantum decoherence and entropy in complex systems. Ed. T Elze. Springer, Berlin.

    Google Scholar 

  22. Vapnik VN. 2000. The nature of statistical learning theory, 2nd ed. Springer, Berlin.

    Google Scholar 

  23. Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In Proceedings of the second international symposium on information theory, pp. 267–281. Ed. BN Petrov, F Caski. Akademiai Kiado, Budapest (repr. in [287, pp. 199–213].

    Google Scholar 

  24. Akaike H. 1977. On entropy maximization principle. In Applications of statistics, pp. 27–41. Ed. PR Krishnaiah. North-Amsterdam, Holland

    Google Scholar 

  25. Schwarz G. 1978. Estimating the dimension of a model. Ann Stat 6:461–464.

    Google Scholar 

  26. van de Geer S. 2000. Empirical processes in M-estimation. Cambridge UP, Cambridge.

    Google Scholar 

  27. Biggers ED. 1928. Behind that curtain. Grosset and Dunlap, New York.

    Google Scholar 

  28. Valiant LF. 1984. A theory of the learnable. Commun Assoc Comput Machinery 27:1134–1142.

    Google Scholar 

  29. Shao X, Cherkassky V, Li W. 2000. Measuring the VC-dimension using optimized experimental design. Neural Comput 12:1969–1986.

    Article  PubMed  CAS  Google Scholar 

  30. Meir R. 2000. Nonparametric time series prediction through adaptive model selection. Machine Learning 39:5–34.

    Article  Google Scholar 

  31. Hastie T, Tibshirani R, Friedman J. 2001. The elements of statistical learning: data mining, inference, and prediction. Springer, New York.

    Google Scholar 

  32. Ripley BD. 1996. Pattern recognition and neural networks. Cambridge UP, Cambridge.

    Google Scholar 

  33. Wahba G. 1990. Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  34. Anthony M, Bartlett PL. 1999. Neural network learning: theoretical foundations. Cambridge UP, Cambridge.

    Google Scholar 

  35. Zapranis A, Refenes A-P. 1999. Principles of neural model identification, selection and adequacy: with applications to financial econometrics. Springer, London.

    Google Scholar 

  36. Engel A, Van den Broeck C. 2001. Statistical mechanics of learning. Cambridge UP, Cambridge.

    Google Scholar 

  37. Breiman L, Friedman J, Olshen R, Stone C. 1984. Classification and regression trees. Wadsworth, Belmont, CA.

    Google Scholar 

  38. Gigerenzer G, Todd PM, ABC Research Group. 1999. Simple heuristics that make us smart. Oxford UP, Oxford.

    Google Scholar 

  39. Herbrich R. 2002. Learning kernel classifiers: theory and algorithms. MIT Press, Cambridge.

    Google Scholar 

  40. Cristianini N, Shawe-Taylor J. 2000. An introduction to support vector machines: and other kernel-based learning methods. Cambridge UP, Cambridge.

    Google Scholar 

  41. Pearl J. 2000. Causality: models, reasoning, and inference. Cambridge UP, Cambridge.

    Google Scholar 

  42. Shafer G. 1996. The art of causal conjecture. MIT Press, Cambridge.

    Google Scholar 

  43. Spirtes P, Glymour C, Scheines R. 2001. Causation, prediction, and search, 2nd ed. MIT Press, Cambridge.

    Google Scholar 

  44. Dayan P, Hinton GE, Neal RM, Zemel, RS. 1995. The Helmholtz machine. Neural Comput 7:889–904 (http://www.cs.utoronto.ca/~hinton/absps/helmholtz.htm).

    Article  PubMed  CAS  Google Scholar 

  45. Domingos P. 1999. The role of Occam’s Razor in knowledge discovery. Data Mining and Knowledge Discovery 3:409–425 (http://www.cs.washington.edu/home/pedrod/dmkd99.pz.gz).

    Article  Google Scholar 

  46. Klein JL. 1997. Statistical visions in time: a history of time series analysis, 1662–1938. Cambridge UP, Cambridge.

    Google Scholar 

  47. Dirac PAM. 1935. Principles of quantum mechanics. Clarendon Press, Oxford.

    Google Scholar 

  48. Knight FB. 1975. A predictive view of continuous time processes. Ann Probability 3:573–596.

    Google Scholar 

  49. Knight FB. 1992. Foundations of the prediction process. Oxford Studies in Probability, Vol. 1. Clarendon Press, Oxford.

    Google Scholar 

  50. Mayo DG. 1996. Error and the growth of experimental knowledge. U Chicago P, Chicago.

    Google Scholar 

  51. Gray RM. 1988. Probability, random processes, and ergodic properties. Springer, New York (http://ee-www.stanford.edu/~gray/arp.html)

    Google Scholar 

  52. Basawa IV, Scott DJ. 1983. Asymptotic optimal inference for non-ergodic models. Springer, Berlin.

    Google Scholar 

  53. West BJ, Deering B. 1995. The lure of modern science: fractal thinking. World Scientific, Singapore.

    Google Scholar 

  54. Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. 1992. Numerical recipes in c: the art of scientific computing, 2nd ed. Cambridge UP, Cambridge.

    Google Scholar 

  55. Shumway RH, Stoffer DS. 2000. Time series analysis and its applications. Springer Texts in Statistics. Springer, New York.

    Google Scholar 

  56. Wiener N. 1961. Cybernetics: or, control and communication in the animal and the machine, 2nd ed. MIT Press, Cambridge (1st ed. 1948, Wiley, New York).

    Google Scholar 

  57. Hubbard BB. 1996. The world according to wavelets: the story of a mathematical technique in the making. A.K. Peters, Wellesley.

    Google Scholar 

  58. Honerkamp J. 1994. Stochastic dynamical systems: concepts, numerical methods, data analysis. Transl. Katja Lindenberg. VCH, New York.

    Google Scholar 

  59. Box GEP, Jenkins GM. 1970. Time series analysis, forecasting, and control. Holden-Day, Oakland, CA.

    Google Scholar 

  60. Durbin J, Koopman SJ. 2001. Time series analysis by state space methods. Oxford UP, Oxford.

    Google Scholar 

  61. Eyink GL. 1998. Linear stochastic models of nonlinear dynamical systems. Phys Rev E 58:6975–6991.

    Article  CAS  Google Scholar 

  62. Barndorff-Nielsen OE, Jensen JL, Sorensen M. 1990. Parametric modelling of turbulence. Philos Trans Roy Soc A 332:439–455.

    Google Scholar 

  63. Eyink GL, Alexander FJ. 1998. Predictive turbulence modeling by variational closure. J Stat Phys 91:221–283.

    Article  Google Scholar 

  64. Beran J. 1994. Statistics for long-memory processes. Chapman and Hall, New York.

    Google Scholar 

  65. Embrechts P, Maejima M. 2002. Selfsimilar processes. Princeton UP, Princeton.

    Google Scholar 

  66. Bosq D. 1998. Nonparametric statistics for stochastic processes: estimation and prediction, 2nd ed. Springer, Berlin.

    Google Scholar 

  67. Algoet P. 1992. Universal schemes for prediction, gambling and portfolio selection. Ann Probability 20:901–941. See also an important Correction, Ann Probability 23:474–478, 1995.

    Google Scholar 

  68. Takens F. 1981. Detecting strange attractors in fluid turbulence. In Symposium on dynamical systems and turbulence, pp. 366–381. Ed. DA Rand and LS Young. Springer, Berlin.

    Chapter  Google Scholar 

  69. Kantz H, Schreiber T. 1997. Nonlinear time series analysis. Cambridge UP, Cambridge.

    Google Scholar 

  70. Judd K, Mees A. 1998. Embedding as a modeling problem. Physica D 120:273–286.

    Article  Google Scholar 

  71. Small M, Tse CK. 2004. Optimal embedding parameters: a modelling paradigm. Physica D 194:283–296 (http://arxiv.org/abs/physics/0308114).

    Article  Google Scholar 

  72. Kennel MB, Brown R, Abarbanel HDI. 1992. Determining minimum embedding dimension using a geometric construction. Phys Rev A 45:3403–3411.

    Article  PubMed  Google Scholar 

  73. Sprott JC. 2003. Chaos and time-series analysis. Oxford UP, Oxford.

    Google Scholar 

  74. Smith LA. 1988. Intrinsic limits on dimension calculations. Phys Lett A 133:283–288.

    Article  Google Scholar 

  75. Fraser AM, Swinney HL. 1986. Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140.

    Article  PubMed  Google Scholar 

  76. Cellucci CJ, Albano AM, Rapp PE. 2003. Comparative study of embedding methods. Phys Rev E 67:162–210.

    Article  CAS  Google Scholar 

  77. Letellier C, Aguirre LA. 2002. Investigating nonlinear dynamics from time series: the influence of symmetries and the choice of observables. Chaos 12:549–558.

    Article  PubMed  Google Scholar 

  78. Wiener N. 1949. Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Technology Press of MIT, Cambridge.

    Google Scholar 

  79. Kolmogorov AN. 1941. Interpolation und extrapolation von stationären zufälligen folgen. Bull Acad Sci USSR Math 3:3–14 (in Russian with German summary).

    Google Scholar 

  80. Kalman RE. 1960. A new approach to linear filtering and prediction problems. ASME Trans J Basic Eng 82D:35–50.

    Google Scholar 

  81. Kalman RE, Bucy RS. 1961. New results in linear filtering and prediction. ASME Trans J Basic Eng 83D:95–108.

    Google Scholar 

  82. Bucy RS. 1994. Lectures on discrete time filtering. Springer, Berlin.

    Google Scholar 

  83. Stratonovich RL. 1968. Conditional markov processes and their application to the theory of optimal control, 2nd ed., revised by the author. Transl. RN and NB McDonough, with a preface by R Bellman. Elsevier, New York. (1st ed. 1966, Uslovnyye markovskiye protessy i ikh primeneiye k teorri optimal’nogo upravleniya, Moscow UP, Moscow).

    Google Scholar 

  84. Kushner HJ. 1967. Dynamical equations for optimal nonlinear filtering. J Differ Eqs 3:179–190.

    Article  Google Scholar 

  85. Lipster RS, Shiryaev AN. 2001. Statistics of random processes, 2 vols., 2nd ed. Transl. AB Aries. Springer, Berlin (first published 1974, Statistika sluchainykh protessov, Nauka, Moscow).

    Google Scholar 

  86. Tanizaki H. 1996. Nonlinear filters: estimation and applications, 2nd ed. Springer, Berlin.

    Google Scholar 

  87. Darling RWR. 1998. Geometrically intrinsic nonlinear recursive filters I: algorithms. Technical Report 494, Statistics Department, University of California-Berkeley (http://www.stat.berkeley.edu/tech-reports/494.abstract).

    Google Scholar 

  88. Darling RWR. 1998. Geometrically intrinsic nonlinear recursive filters ii: foundations. Technical Report 512, Statistics Department, University of California-Berkeley (http://www.stat.berkeley.edu/tech-reports/512.abstract).

    Google Scholar 

  89. Eyink GL. 2000. A variational formulation of optimal nonlinear estimation. Methodology and Computing in Applied Probability. submitted (http://arxiv.org/abs/physics/0011049).

    Google Scholar 

  90. Ahmed NU. 1998. Linear and nonlinear filtering for scientists and engineers. World Scientific, Singapore.

    Google Scholar 

  91. Chomsky N. 1956. Three models for the description of language. IRE Trans Inf Theory 2:113–124.

    Article  Google Scholar 

  92. Charniak E. 1993. Statistical language learning. MIT Press, Cambridge.

    Google Scholar 

  93. Manning CD, Schütze H. 1999. Foundations of statistical natural language processing. MIT Press, Cambridge.

    Google Scholar 

  94. Elliott RJ, Aggoun L, Moore JB. 1995. Hidden markov models: estimation and control. Applications of Mathematics: Stochastic Modelling and Applied Probability, Vol. 29. Springer, New York.

    Google Scholar 

  95. Baldi P, Brunak S. 2001. Bioinformatics: the machine learning approach, 2nd ed. MIT Press, Cambridge.

    Google Scholar 

  96. Neal RM, Hinton GE. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, pp. 355–368. Ed. MI Jordan, Kluwer Academic, Dordrecht.

    Google Scholar 

  97. Rissanen J. 1983. A universal data compression system. IEEE Trans Inf Theory 29:656–664.

    Article  Google Scholar 

  98. Willems F, Shtarkov Y, Tjalkens T. 1995. The context-tree weighting method: basic properties. IEEE Trans Inf Theory 41:653–664.

    Article  Google Scholar 

  99. Ron D, Singer Y, Tishby N. 1996. The power of amnesia: learning probabilistic automata with variable memory length. Machine Learning 25:117–149.

    Article  Google Scholar 

  100. Bühlmann P, Wyner AJ. 1999. Variable length Markov chains. Ann Stat 27:480–513 (http://www.stat.berkeley.edu/tech-reports/479.abstract1).

    Article  Google Scholar 

  101. Kennel MB, Mees AI. 2002. Context-tree modeling of observed symbolic dynamics. Phys Rev E 66:056209.

    Article  CAS  Google Scholar 

  102. Crutchfield JP, Young K. 1989. Inferring statistical complexity. Phys Rev Lett 63:105–108.

    Article  PubMed  Google Scholar 

  103. Jaeger H. 2000. Observable operator models for discrete stochastic time series. Neural Comput 12:1371–1398 (http://www.faculty.iu-bremen.de/hjaeger/pubs/oom/neco00.pdf).

    Article  PubMed  CAS  Google Scholar 

  104. Littman ML, Sutton RS, Singh S. 2002. Predictive representations of state. In Advances in neural information processing, pp. 1555–1561. Ed. TG Dietterich, S Becker, Z Ghahramani, Systems 14. MIT Press, Cambridge (http://www.eecs.umich.edu/~baveja/Papers/psr.pdf).

    Google Scholar 

  105. Shalizi CR, Shalizi KL. 2004. Blind construction of optimal nonlinear recursive predictors for discrete sequences. In Uncertainty in artificial intelligence: proceedings of the twentieth conference, pp. 504–511. Ed. M Chickering, J Halpern. AUAI Press, Arlington, VA (http://arxiv.org/abs/cs.LG/0406011).

    Google Scholar 

  106. Salmon WC. 1971. Statistical explanation and statistical relevance. With contributions by RC Jeffrey and JG Greeno. U Pittsburgh P.

    Google Scholar 

  107. Salmon WC. 1984. Scientific explanation and the causal structure of the world. Princeton UP, Princeton.

    Google Scholar 

  108. Singh S, Littman, ML, Jong NK, Pardoe D, Stone P. 2003. Learning predictive state representations. In Proceedings of the twentieth international conference on machine learning (ICML-2003), pp. 712–719. Ed. T Fawcett, N Mishra. AAAI Press, New York (http://www.eecs.umich.edu/~baveja/Papers/ICMLfinal.ps.gz).

    Google Scholar 

  109. Upper DR. 1997. Theory and algorithms for hidden markov models and generalized hidden markov models. PhD thesis, University of California, Berkeley (http://www.santafe.edu/projects/CompMech/ or papers/TAHMMGHMM.html).

    Google Scholar 

  110. Dupont P, Denis F, Esposito Y. 2004. Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms. Pattern Recognit Forthcoming (http://www.info.ucl.ac.be/people/pdupont/pdupont/postscript/Links_PA_HMM_preprint.ps.gz)

    Google Scholar 

  111. Jaeger H. 1999. Characterizing distributions of stochastic processes by linear operators. Technical Report 62, German National Center for Information Technology (http://www.faculty.iu-bremen.de/hjaeger/pubs/oom_distributionsTechRep.pdf).

    Google Scholar 

  112. Jaeger H. 2000. Modeling and learning continuous-valued stochastic processes with OOMs. Technical Report 102, German National Center for Information Technology (http://www.faculty.iu-bremen.de/hjaeger/pubs/jaeger.00.tr.contoom.pdf).

    Google Scholar 

  113. Crutchfield JP. 1992. Unreconstructible at any radius. Phys Lett A 171:52–60.

    Article  Google Scholar 

  114. Bollt EM, Stanford T, Lai Y-C, Zyczkowski K. 2000. Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series. Phys Rev Lett 85:3524–3527.

    Article  CAS  PubMed  Google Scholar 

  115. Bollt EM, Stanford T, Lai Y-C, Zyczkowski K. 2001. What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossing analysis of chaotic time-series. Physica D 154:259–286.

    Article  Google Scholar 

  116. Kitchens BP. 1998. Symbolic dynamics: one-sided, two-sided and countable state markov shifts. Springer, Berlin.

    Google Scholar 

  117. Kennel MB, Buhl M. 2003. Estimating good discrete partitions from observed data: symbolic false nearest neighbors. Phys Rev Lett 91:084102 (http://arxiv.org/abs/nlin.CD/0304054).

    Article  PubMed  CAS  Google Scholar 

  118. Hirata Y, Judd K, Kilminster D. 2004. Estimating a generating partition from observed time series: Symbolic shadowing. Phys Rev E 70:016215.

    Article  CAS  Google Scholar 

  119. Crutchfield JP, Packard NH. 1983. Symbolic dynamics of noisy chaos. Physica D 7:201–223.

    Article  Google Scholar 

  120. Moore C. 1997. Majority-vote cellular automata, Ising dynamics, and P-completeness. J Stat Phys 88:795–805 (http://arxiv.org/abs/cond-mat/9701118).

    Article  Google Scholar 

  121. Moore C, Nordahl MG. 1997. Lattice gas prediction is P-complete. Electronic preprint (http://arxiv.org/abs/nlin.CG/9704001).

    Google Scholar 

  122. Hardy J, Pomeau Y, de Pazzis O. 1976. Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev A 13:1949–1960,.

    Article  CAS  Google Scholar 

  123. Frisch U, Hasslacher B, Pomeau Y. 1986. Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505–1508.

    Article  CAS  PubMed  Google Scholar 

  124. Rothman DH, and Zaleski S. 1997. Lattice-gas cellular automata: simple models of complex hydrodynamics. Cambridge UP, Cambridge.

    Google Scholar 

  125. Fisch R, Gravner J, Griffeath D. 1991. Threshold-range scaling of excitable cellular automata. Stat Comput 1:23–39 (http://psoup.math.wisc.edu/papers/tr.zip).

    Article  Google Scholar 

  126. Nilsson M, Rasmussen S, Mayer B, Whitten D. 2003. Constructive molecular dynamics (MD) lattice gases: 3-D molecular self-assembly. In New constructions in cellular automata, pp. 275–290. Ed. D Griffeath, C Moore. Oxford UP, Oxford.

    Google Scholar 

  127. Nilsson M, Rasmussen S. 2003. Cellular automata for simulating molecular self-assembly. Discr Math Theor Comput Sci AB (DMCS):31–42 (http://dmtcs.loria.fr/proceedings/html/dmAB0103.abs.html).

    Google Scholar 

  128. Bartlett MS. 1955. An introduction to stochastic processes, with special reference to methods and applications. Cambridge UP, Cambridge.

    Google Scholar 

  129. Jacquez JA, Koopman JS, Simon CP, Longini IM. 1994. The role of the primary infection in epidemics of HIV-infection in gay cohorts. J Acq Immune Def Synd Hum Retrovirol 7:1169–1184.

    CAS  Google Scholar 

  130. Koopman J, Jacquez J, Simon C, Foxman B, Pollock S, Barth-Jones D, Adams A, Welch G, Lange K. 1997. The role of primary HIV infection in the spread of HIV through populations. J AIDS 14:249–258.

    CAS  Google Scholar 

  131. Budd T. 2000. Understanding object-oriented programming with Java, 2nd ed. Addison-Wesley, Reading, MA.

    Google Scholar 

  132. Resnick M. 1994. Turtles, termites and traffic jams: explorations in massively parallel microworlds. MIT Press, Cambridge.

    Google Scholar 

  133. Brown JS, Duguid P. 2000. The social life of information. Harvard Business School Press P, Boston.

    Google Scholar 

  134. Bonabeau E, Dorigo M, Theraulaz G. 1999. Swarm intelligence: from natural to artificial systems. Oxford UP, Oxford.

    Google Scholar 

  135. Lerman K. Design and mathematical analysis of agent-based systems. E-print, Information Sciences Institute, University of Southern California, 2000 (http://www.isi.edu/~lerman/papers/fmw00_abstract.html).

    Google Scholar 

  136. Ossowski S. 2000. Co-ordination in artificial agent societies: social structure and its implications for autonomous problem-solving agents. Springer, Berlin.

    Google Scholar 

  137. Wooldridge M. 2000. Reasoning about rational agents. MIT Press, Cambridge.

    Google Scholar 

  138. Jonker CM, Snoep JL, Treur J, Westerhoff HV, Wijngaards WAC. 2002. Putting intentions into cell biochemistry: An artificial intelligence perspective. J Theor Biol 214:105–134.

    Article  PubMed  CAS  Google Scholar 

  139. Chaikin PM, Lubensky TC. 1995. Principles of condensed matter physics. Cambridge UP, Cambridge.

    Google Scholar 

  140. Hammersley JM, Handscomb DC. 1964. Monte Carlo methods. Chapman and Hall, London.

    Google Scholar 

  141. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092.

    Article  CAS  Google Scholar 

  142. Brémaud P. 1999. Markov chains: gibbs fields, monte carlo simulation, and queues. Springer, Berlin.

    Google Scholar 

  143. Beckerman M. 1997. Adaptive cooperative systems. Wiley, New York.

    Google Scholar 

  144. Jordan MI, ed. 1998. Learning in graphical models. Kluwer Academic, Dordrecht.

    Google Scholar 

  145. Young HP. 1998. Individual strategy and social structure: an evolutionary theory of institutions. Princeton UP, Princeton.

    Google Scholar 

  146. Sutton J. 1998. Technology and market structure: theory and history. MIT Press, Cambridge.

    Google Scholar 

  147. Epstein IR, Pojman JA. 1998. An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. Oxford UP, Oxford.

    Google Scholar 

  148. Winfree AT. 1987. When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton UP, Princeton.

    Google Scholar 

  149. Varela FJ, Maturana HR, Uribe R. 1974. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196.

    Article  CAS  Google Scholar 

  150. Luhmann N. 1984/1995. Social systems. Transl. J Bednarz Jr, with D Baecker, and foreword by EM Knodt. Stanford UP, Stanford. Originally published as Soziale systeme: grundriss einer allgemeinen theorie. Suhrkamp-Verlag, Frankfurt am Main.

    Google Scholar 

  151. McMullin B. 1997. The case of the independent test. Santa Fe Inst Bull 12(2).

    Google Scholar 

  152. McMullin B, Varela FJ. 1997. Rediscovering computational autopoesis. Technical Report no. 97-02-012, Santa Fe Institute (http://www.santafe.edu/research/publications/wpabstract/199702012).

    Google Scholar 

  153. Mitchell M, Hraber PT, Crutchfield JP. 1993. Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130. (http://www.cse.ogi.edu/~mm/revedge.pdf).

    Google Scholar 

  154. Schuessler AA. 1999. Ecological inference. Proc Natl Acad Sci USA 96:10578–10581.

    Article  PubMed  CAS  Google Scholar 

  155. Atkinson AC, Donev AN. 1992. Optimum experimental designs. Clarendon Press, Oxford.

    Google Scholar 

  156. Borowiak DS. 1989. Model discrimination for nonlinear regression models. Marcel Dekker, New York.

    Google Scholar 

  157. Newman MEJ, Palmer RG. 2003. Modeling extinction. Oxford UP, Oxford (http://arxiv.org/abs/adap-org/9908002).

    Google Scholar 

  158. Cover TM, Thomas JA. 1991. Elements of information theory. Wiley, New York.

    Google Scholar 

  159. Kullback S. 1968. Information theory and statistics, 2nd ed. Dover, New York.

    Google Scholar 

  160. Kulhavy R. 1996. Recursive nonlinear estimation: a geometric approach. Springer, Berlin.

    Google Scholar 

  161. Khinchin AI. 1957. Mathematical foundations of information theory. Transl. RA Silverman, MD Friedman. Dover, New York. Originally published as two Russian articles in Uspekhi Matematicheskikh Nauk (7:3–20, 1953; 9:17–75, 1956).

    Google Scholar 

  162. Ruelle D. 1989. Chaotic evolution and strange attractors: the statistical analysis of time series for deterministic nonlinear systems. Cambridge UP, Cambridge. Notes prepared by Stefano Isola.

    Google Scholar 

  163. Beck C, Schlögl F. 1993. Thermodynamics of chaotic systems: an introduction. Cambridge UP, Cambridge.

    Google Scholar 

  164. Victor JD. 2000. Asymptotic bias in information estimates and the exponential (Bell) polynomials. Neural Comput 12:2797–2804.

    Article  PubMed  CAS  Google Scholar 

  165. Kraskov A, Stögbauer H, Grassberger P. 2003. Estimating mutual information. Phys Rev E. Submitted (http://arxiv.org/abs/cond-mat/0305641).

    Google Scholar 

  166. Kontoyiannis I, Algoet M. Sukhov YuM, and Wyner AJ. 1998. Nonparametric entropy estimation for stationary processes and random fields, with applications to english text. IEEE Trans Inf Theory 44:1310–1327 (http://www.dam.brown.edu/people/yiannis/PAPERS/suhov2.pdf).

    Article  Google Scholar 

  167. Benedetto D, Caglioti E, Loreto V. 2002. Language trees and zipping. Phys Rev Lett 88:048702 (http://arxiv.org/abs/cond-mat/0108530).

    Article  PubMed  CAS  Google Scholar 

  168. Khmelev DV, Teahan WJ. 2003. Comment on “Language trees and zipping.” Phys Rev Lett 90:089803 (http://arxiv.org/abs/cond-mat/0205521).

    Article  PubMed  CAS  Google Scholar 

  169. Goodman J. 2002. Extended comment on “Language trees and zipping.” Electronic pre-print (http://arxiv.org/abs/cond-mat/0202383).

    Google Scholar 

  170. MacKay DJC. 2003. Information theory, inference, and learning algorithms. Cambridge UP, Cambridge (http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html).

    Google Scholar 

  171. Durbin R, Eddy S, Krogh A, Mitchison G. 1998. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge UP, Cambridge.

    Google Scholar 

  172. Rieke F, Warland D, van Steveninck RDR, Bialek W. 1997. Spikes: exploring the neural code. MIT Press, Cambridge.

    Google Scholar 

  173. Abbott LF, Sejnowski TJ, eds. 1998. Neural codes and distributed representations: foundations of neural computation. MIT Press, Cambridge.

    Google Scholar 

  174. Billingsley P. 1965. Ergodic theory and information. Wiley, New York.

    Google Scholar 

  175. Katok AB, Hasselblatt B. 1995. Introduction to the modern theory of dynamical systems. Cambridge UP, Cambridge.

    Google Scholar 

  176. Solomonoff RJ. 1964. A formal theory of inductive inference. Inf Control 7:1–22, 224–254 (http://world.std.com/~rjs/pubs.html).

    Article  Google Scholar 

  177. Li M, Vitanyi PMB. 1993. An introduction to Kolmogorov complexity and its applications. Springer, New York.

    Google Scholar 

  178. Zurek WH. 1998. Algorithmic randomness, physical entropy, measurements, and the demon of choice. E-print, arxiv.org (http://arxiv.org/abs/quant-ph/9807007).

    Google Scholar 

  179. Bennett CH. 1985. Dissipation, information, computational complexity and the definition of organization. In Emerging syntheses in science, pp. 215–234. Ed D Pines. Santa Fe Institute, Santa Fe, NM.

    Google Scholar 

  180. Bennett CH. 1986. On the nature and origin of complexity in discrete, homogeneous locally-interacting systems. Found Phys 16:585–592.

    Article  Google Scholar 

  181. Bennett CH. 1990. How to define complexity in physics, and why. In Complexity, entropy, and the physics of information, pp. 137–148. Ed. WH Zurek. Addison-Wesley, Reading, MA.

    Google Scholar 

  182. Lloyd S, Pagels H. 1988. Complexity as thermodynamic depth. Ann Phys 188:186–213.

    Article  Google Scholar 

  183. Gács P, Tromp JT, and Vitanyi PMB. 2001. Algorithmic statistics. IEEE Trans Inf Theory 47:2443–2463 (http://arxiv.org/abs/math.PR/0006233).

    Article  Google Scholar 

  184. Rissanen J. 1978. Modeling by shortest data description. Automatica 14:465–471.

    Article  Google Scholar 

  185. Rissanen J. 1989. Stochastic complexity in statistical inquiry. World Scientific, Singapore.

    Google Scholar 

  186. Hraber PT, Korber BT, Wolinsky S, Erlich H, Trachtenberg E. 2003. HLA and HIV infection progression: application of the minimum description length principle to statistical genetics. Technical Report 03-04-23, Santa Fe Institute (http://www.santafe.edu/research/publications/wpabstract/200304023).

    Google Scholar 

  187. Grassberger P. 1986. Toward a quantitative theory of self-generated complexity. Int J Theor Phys 25:907–938.

    Article  Google Scholar 

  188. Shalizi CR. 2001. Causal architecture, complexity and self-organization in time series and cellular automata. PhD thesis, University of Wisconsin-Madison (http://bactra.org/thesis/).

    Google Scholar 

  189. Shaw R. 1984. The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz, CA.

    Google Scholar 

  190. Lindgren K, Nordahl MG. 1988. Complexity measures and cellular automata. Complex Syst 2:409–440.

    Google Scholar 

  191. Li W. 1991. On the relationship between complexity and entropy for Markov chains and regular languages. Complex Syst 5:381–399.

    Google Scholar 

  192. Arnold D. 1996. Information-theoretic analysis of phase transitions. Complex Syst 10:143–155.

    Google Scholar 

  193. Bialek W, Nemenman I, Tishby N. 2001. Predictability, complexity and learning. Neural Comput 13:2409–2463 (http://arxiv.org/abs/physics/0007070).

    Article  PubMed  CAS  Google Scholar 

  194. Crutchfield JP, Young K. 1990. Computation at the onset of chaos. In Complexity, entropy, and the physics of information, pp. 223–269. Ed. WH Zurek. Addison-Wesley, Reading, MA.

    Google Scholar 

  195. Shalizi CR, Crutchfield JP. 2001. Computational mechanics: Pattern and prediction, structure and simplicity. J Stat Phys 104:817–879 (http://arxiv.org/abs/cond-mat/9907176).

    Article  Google Scholar 

  196. Shalizi CR. 2003. Optimal nonlinear prediction of random fields on networks. Discr Math Theor Comput Sci AB (DMCS):11–30 (http://arxiv.org/abs/math.PR/0305160).

    Google Scholar 

  197. Shalizi, CR, Shalizi KL, Haslinger R. 2004. Quantifying self-organization with optimal predictors. Phys Rev Lett 93:118701 (http://arxiv.org/abs/nlin.AO/0409024).

    Article  PubMed  CAS  Google Scholar 

  198. Lewis HR, Papadimitriou CH. 1998. Elements of the theory of computation. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  199. Clarke RW, Freeman MP, Watkins NW. 2003. Application of computational mechanics to the analysis of natural data: an example in geomagnetism. Phys Rev E 67:0126203 (http://arxiv.org/abs/cond-mat/0110228).

    Article  CAS  Google Scholar 

  200. Chandler D. 1987. Introduction to modern statistical mechanics. Oxford UP, Oxford.

    Google Scholar 

  201. Reed WJ, Hughes BD. 2002. From gene families and genera to incomes and Internet file sizes: why power laws are so common in nature. Phys Rev E 66:067103.

    Article  CAS  Google Scholar 

  202. Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: An explanation of 1/f noise. Phys Rev Lett 59:381–384.

    Article  PubMed  Google Scholar 

  203. Jensen HJ. 1998. Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge UP, Cambridge.

    Google Scholar 

  204. Carlson JM, Doyle J. 1999. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys Rev E 60:1412–1427.

    Article  CAS  Google Scholar 

  205. Carlson JM, Doyle J. 2000. Highly optimized tolerance: robustness and design in complex systems. Phys Rev Lett 84:2529–2532.

    Article  CAS  PubMed  Google Scholar 

  206. Newman MEJ, Girvan M, Farmer JD. 2002. Optimal design, robustness, and risk aversion. Phys Rev Lett 89:028301 (http://arxiv.org/abs/cond-mat/0202330).

    Article  PubMed  CAS  Google Scholar 

  207. Shirky C. 2003. Power laws, weblogs, and inequality. In Extreme democracy. Ed. M Ratcliffe, J Lebkowsky. Forthcoming. First published online February 2003 (http://www.shirky.com/writings/powerlaw_weblog.html).

    Google Scholar 

  208. Drenzer D, Farrell H. 2004. The power and politics of blogs. Persp Politics. Submitted (http://www.utsc.utoronto.ca/~farrell/blogpaperfinal.pdf).

    Google Scholar 

  209. Crutchfield JP, Shalizi CR. 1999. Thermodynamic depth of causal states: objective complexity via minimal representations. Phys Rev E 59:275–283 (http://arxiv.org/abs/cond-mat/9808147).

    Article  CAS  Google Scholar 

  210. Huberman BA, Hogg T. 1986. Complexity and adaptation. Physica D 22:376–384.

    Google Scholar 

  211. Wolpert DH, Macready WG. 2000. Self-dissimilarity: an empirically observable measure of complexity. In Unifying themes in complex systems. Ed. Y Bar-Yam. Perseus Books, Boston (http://www.santafe.edu/research/publications/wpabstract/199712087).

    Google Scholar 

  212. Sporns O, Tononi G, Edelman GM. 2000. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13:909–992 (http://php.indiana.edu/~osporns/nn_connectivity.pdf).

    Article  PubMed  CAS  Google Scholar 

  213. Sporns O, Tononi G, Edelman GM. 2000. Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10:127–141.

    Article  PubMed  CAS  Google Scholar 

  214. Sporns O, Tononi G. 2002. Classes of network connectivity and dynamics. Complexity 7:28–38 (http://php.indiana.edu/~osporns/complexity_2002.pdf).

    Article  Google Scholar 

  215. Bates J, Shepard H. 1993. Measuring complexity using information fluctuation. Phys Lett A 172:416–425 (http://physics.unh.edu/people/profiles/bates_shepard.pdf).

    Article  Google Scholar 

  216. Boffetta G, Cencini M, Falcioni M, Vulpiani A. 2002. Predictability: A way to characterize complexity. Phys Rep 356:367–474 (http://arxiv.org/abs/nlin.CD/0101029).

    Article  Google Scholar 

  217. Feldman DP, Crutchfield JP. 1998. Measures of statistical complexity: why? Phys Lett A 238:244–252 (http://hornacek.coa.edu/dave/Publications/MSCW.html).

    Article  CAS  Google Scholar 

  218. Axelrod R, Cohen MD. 1999. Harnessing complexity: organizational implications of a scientific frontier. Free Press, New York.

    Google Scholar 

  219. Flake GW. 1998. The computational beauty of nature: computer explorations of fractals, chaos, complex systems and adaptation. MIT Press, Cambridge.

    Google Scholar 

  220. Holland JH. 1998. Emergence: from chaos to order. Addison-Wesley, Reading.

    Google Scholar 

  221. Simon HA. 1996. The sciences of the artificial, 3rd ed. MIT Press, Cambridge.

    Google Scholar 

  222. Boccara N. 2004. Modeling complex systems. Springer, Berlin.

    Google Scholar 

  223. Hand D, Mannila H, Smyth P. 2001. Principles of data mining. MIT Press, Cambridge.

    Google Scholar 

  224. Kearns MJ, Vazirani UV. 1994. An introduction to computational learning theory. MIT Press, Cambridge.

    Google Scholar 

  225. Vapnik VN. 1979/1982. Estimation of dependencies based on empirical data. Transl. S Kotz. Springer, Berlin. From Vosstanovlyenie Zavicimostei po Empiricheckim Dannim, Nauka, Moscow.

    Google Scholar 

  226. Vapnik VN. 1998. Statistical learning theory. Wiley, New York.

    Google Scholar 

  227. Nelles O. 2001. Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin.

    Google Scholar 

  228. Tukey JW. 1977. Exploratory data analysis. Addison-Wesley, Reading, MA.

    Google Scholar 

  229. Tufte ER. 1983. The visual display of quantitative information. Graphics Press, Cheshire, CT.

    Google Scholar 

  230. Tufte ER. 1990. Envisioning information. Graphics Press, Cheshire, CT.

    Google Scholar 

  231. Tufte ER. 1997. Visual explanations: images and quantities, evidence and narrative. Graphics Press, Cheshire, CT.

    Google Scholar 

  232. Abarbanel HDI. 1996. Analysis of observed chaotic data. Springer, New York.

    Google Scholar 

  233. Casdagli M, Eubank S, eds. 1992. Nonlinear modeling and forecasting. Addison-Wesley, Reading, MA.

    Google Scholar 

  234. Weigend AS, Gershenfeld NA, eds. 1993. Time series prediction: forecasting the future and understanding the past. Addison-Wesley, Reading, MA.

    Google Scholar 

  235. Azencott R, Dacunha-Castelle D. 1984/1986. Series of irregular observations: forecasting and model building. Springer, Berlin. Originally published as Series d’observations irregulieres, Masson, Paris.

    Google Scholar 

  236. Taniguchi M, Kakizawa Y. 2000. Asymptotic theory of statistical inference for time series. Springer, Berlin.

    Google Scholar 

  237. Amari S, Nagaoka H. 1993/2000. Methods of information geometry. American Mathematical Society, Providence, RI. Transl. D Harada from Joho Kika no Hoho, Iwanami Shoten Publishers, Tokyo.

    Google Scholar 

  238. Ay N. 2002. An information-geometric approach to a theory of pragmatic structuring. Ann Probability 30:416–436 (http://www.mis.mpg.de/preprints/2000/prepr5200-abstr.html).

    Article  Google Scholar 

  239. Ay N. 2001. Information geometry on complexity and stochastic interaction. Technical Report 95-2001, Max Planck Institute for Mathematics in the Sciences (http://www.mis.mpg.de/preprints/2001/prepr9501-abstr.html).

    Google Scholar 

  240. Cutler CD, Kaplan DT, eds. 1997. Nonlinear dynamics and time series: building a bridge between the natural and statistical sciences. American Mathematical Society, Providence, RI.

    Google Scholar 

  241. Tong H. 1990. Nonlinear time series: a dynamical systems approach. Oxford UP, Oxford.

    Google Scholar 

  242. Pearson RK. 1999. Discrete-time dynamic models. Oxford UP, New York.

    Google Scholar 

  243. Stengel RF. 1994. 1986. Optimal control and estimation. Dover, New York. Originally published as Stochastic optimal control: theory and application. Wiley, New York.

    Google Scholar 

  244. Lind D, Marcus B. 1995. An introduction to symbolic dynamics and coding. Cambridge UP, Cambridge.

    Google Scholar 

  245. Gershenfeld N. 1999. The nature of mathematical modeling. Cambridge UP, Cambridge.

    Google Scholar 

  246. Ilachinski A. 2001. Cellular automata: a discrete universe. World Scientific, Singapore.

    Google Scholar 

  247. Chopard B, Droz M. 1998. Cellular automata modeling of physical systems. Cambridge UP, Cambridge.

    Google Scholar 

  248. Toffoli T, Margolus N. 1987. Cellular automata machines: a new environment for modeling. MIT Press, Cambridge.

    Google Scholar 

  249. Farmer JD, Toffoli T, Wolfram S, eds. 1984. Cellular automata: proceedings of an interdisciplinary workshop, Los Alamos, NM 87545, March 7–11. North-Holland, Amsterdam. Also published in Physica D 10(1–2), 1984.

    Google Scholar 

  250. Gutowitz H, ed. 1991. Cellular automata: theory and experiment. MIT Press, Cambridge. Also published in Physica D 45(1–3), 1990.

    Google Scholar 

  251. Manneville P, Boccara N, Vichniac GY, Bidaux R, eds. 1990. Cellular automata and modeling of complex systems: proceedings of the winter school, Les Houches, France, February 21–28, 1989. Springer, Berlin.

    Google Scholar 

  252. von Neumann J. 1966. Theory of self-reproducing automata, Ed. and completed by AW Burks. U Illinois P, Urbana.

    Google Scholar 

  253. Burks AW, ed. 1970. Essays on cellular automata. U Illinois P, Urbana.

    Google Scholar 

  254. Poundstone W. 1984. The recursive universe: cosmic complexity and the limits of scientific knowledge. William Morrow, New York.

    Google Scholar 

  255. Langton CG, ed. 1988. Artificial life. Addison-Wesley, Reading, MA.

    Google Scholar 

  256. Wolfram S. 1994. Cellular automata and complexity: collected papers. Addison-Wesley, Reading, MA (http://www.stephenwolfram.com/publications/books/ca-reprint/).

    Google Scholar 

  257. Griffeath D, Moore C, eds. 2003. New constructions in cellular automata. Oxford UP, Oxford.

    Google Scholar 

  258. Rivet J, Boon J. 2001. Lattice gas hydrodynamics. Cambridge UP, Cambridge.

    Google Scholar 

  259. Doolen GD, ed. 1989. Lattice gas methods for partial differential equations: a volume of lattice gas reprints and articles. Addison-Wesley, Reading, MA.

    Google Scholar 

  260. Doolen GD, ed. 1991. Lattice gas methods: theory, applications, and hardware. MIT Press, Cambridge. Also published in Physica D 47(1–2), 1991.

    Google Scholar 

  261. Axelrod R. 1984. The evolution of cooperation. Basic Books, New York.

    Google Scholar 

  262. Varela FJ, Bourgine P, eds. 1992. Toward a practice of autonomous systems: proceedings of the first European conference on artificial life. MIT Press, Cambridge.

    Google Scholar 

  263. Epstein JM, Axtell R. 1996. Growing artificial societies: social science from the bottom up. MIT Press, Cambridge.

    Google Scholar 

  264. Epstein JM. 1999. Agent-based computational models and generative social science. Complexity 4(5):41–60.

    Article  Google Scholar 

  265. Macy MW, Willer R. 2002. From factors to actors: Computational sociology and agent-based modeling. Ann Rev Sociol 28:143–66.

    Article  Google Scholar 

  266. Gimblett R, ed. 2001. Integrating geographic information systems and agent-based modeling techniques for understanding social and ecological processes. Oxford UP, Oxford.

    Google Scholar 

  267. Kohler TA, Gumerman GJ, eds. 2000. Dynamics in human and primate societies: agent-based modeling of social and spatial processes. Santa Fe Institute Studies in the Sciences of Complexity. Oxford UP, Oxford.

    Google Scholar 

  268. Bonabeau E. 1997. From classical models of morphogenesis to agent-based models of pattern formation. Artificial Life 3:191–211.

    Article  PubMed  CAS  Google Scholar 

  269. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, and Bonabeau E. 2001. Self-organization in biological systems. Princeton UP, Princeton.

    Google Scholar 

  270. Gardiner CW. 1990. Handbook of stochastic methods for physics, chemistry, and the natural sciences, 2nd ed. Springer, Berlin.

    Google Scholar 

  271. Newman MEJ, Barkema GT. 1999. Monte Carlo methods in statistical physics. Clarendon Press, Oxford.

    Google Scholar 

  272. MacKeown PK. 1997. Stochastic simulation in physics. Springer, Singapore.

    Google Scholar 

  273. King G. 1997. A solution to the ecological inference problem: reconstructing individual behavior from aggregate data. Princeton UP, Princeton.

    Google Scholar 

  274. Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27:379–423. Reprinted in The mathematical theory of communication. Ed. Shannon CE, Weaver W. U Illinois P, Urbana, 1963 (http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html).

    Google Scholar 

  275. Hartley RVL. 1928. Transmission of information. Bell Syst Tech J, pp. 535–563.

    Google Scholar 

  276. Gray RM. 1990. Entropy and information theory. Springer, New York (http://wwwee.stanford.edu/~gray/it.html).

    Google Scholar 

  277. Peliti L, Vulpiani AV, eds. 1988. Measures of complexity: proceedings of a conference held in Rome, September 30–October 2, 1987. Springer, Berlin.

    Google Scholar 

  278. Edmonds BH. 1997. Hypertext bibliography of measures of complexity (http://www.cpm.mmu.ac.uk/~bruce/combib/).

    Google Scholar 

  279. Grünwald P. 2005. A tutorial introduction to the minimum description length principle. In Advances in minimum description length: theory and applications. Ed. P Grünwald, IJ Myung, M Pitt. MIT Press, Cambridge (http://arxiv.org/abs/math.ST/0406077).

    Google Scholar 

  280. Skouras S. 2001. Decisionmetrics: A decision-based approach to econometric modeling. Technical Report 01-11-064, Santa Fe Institute (http://www.santafe.edu/research/publications/wpabstract/200111064).

    Google Scholar 

  281. Vidyasagar M. 1997. A theory of learning and generalization: with applications to neural networks and control systems. Springer, Berlin.

    Google Scholar 

  282. William of Ockham. 1964. Philosophical writings: a selection. Transl. with an introduction by Philotheus Boehner. Bobbs-Merrill, Indianapolis. Originally published in various European cities during the early 1300s.

    Google Scholar 

  283. Lehmann EL. 1997. Testing statistical hypotheses, 2nd ed. Springer Texts in Statistics. Springer, Berlin.

    Google Scholar 

  284. Churchland PS, Sejnowski TJ. 1992. The computational brain. MIT Press, Cambridge.

    Google Scholar 

  285. Giunti M. 1997. Computation, dynamics, and cognition. Oxford UP, Oxford.

    Google Scholar 

  286. Margolus N. 1999. Crystalline computation. In Feynman and computation: exploring the limits of computers, pp. 267–305. Ed. AJG Hey. Perseus Books, Reading, MA (http://arxiv.org/abs/nlin.CG/9811002).

    Google Scholar 

  287. Hirotugu Akaike. 1998. Selected papers of Hirotugu Akaike. Ed. E Parzen, K Tanabe, G Kitagawa. Springer, Berlin.

    Google Scholar 

  288. Shannon CE, Weaver W, eds. 1963. The mathematical theory of communication. U Illinois P, Urbana.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosma Rohilla Shalizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Shalizi, C.R. (2006). Methods and Techniques of Complex Systems Science: An Overview. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_2

Download citation

Publish with us

Policies and ethics