Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Momentum and Energy Transport

verfasst von : Robert Stieglitz, Werner Platzer

Erschienen in: Solar Thermal Energy Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When solar radiation is converted into heat, thermal losses occur mainly due to passive heat transport modes as there are conduction through gases and solids, heat radiation and natural convection. In the latter one, already macroscopic mass transport driven by buoyancy effects can be observed. Convective heat transport is connected to momentum transport and movement of mass. Driven by mechanical pumps or ventilators the forced convective heat transport is supporting the thermal system by transporting heat with the help of a heat transfer medium from the place of optical conversion to the consumer. Effective heat and mass transport thus plays a key role in the design of a solar thermal system. Convective momentum and heat transport covers many aspects and is a-priori a nonlinear phenomenon. For example, flows can differ in the type of momentum transport, which can be forced, mixed or buoyancy-driven. In addition, the mass flow can have different flow patterns, for example laminar or turbulent. In the engineering treatment, a stability parameter plays a role in predicting the transition between the flow regimes. These regimes are even more complex in two-phase flows. Furthermore, the mass flow can be confined by walls, e.g. in tubes or between plates, often called bounded flows. On the other hand mass flow may fully include bodies as external flow for instance when an air flow occurs around a thermal storage tank. The interaction of mass flow and momentum transport within the media and with solid bodies not only leads to heat transfer but also to friction, which determines the hydraulic performance. External drives like pumps have to be dimensioned in a way that the pressure loss due to these hydraulic forces can be overcome. Last but not least, the effects of cold/heat can lead to phase changes, such as boiling, evaporation and condensation, which do not alter only the momentum characteristics but also the heat transfer characteristics of the transport. There is an extensive literature on convective momentum and energy transport in its various forms. The objective of this section is to elaborate the basic ideas of single-phase and multiphase momentum and energy transport, to show methods for classifying the flow type, and based on this, to present engineering approaches as well as relevant correlations for quantitative calculations, which can be used to carry out assessments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aicher, T., & Martin, H. (1997, October). New correlations for mixed turbulent natural and forced convection heat transfer in vertical tubes (Elsevier, Ed.). International Journal of Heat and Mass Transfer, 40(15), 3617–3626. Aicher, T., & Martin, H. (1997, October). New correlations for mixed turbulent natural and forced convection heat transfer in vertical tubes (Elsevier, Ed.). International Journal of Heat and Mass Transfer, 40(15), 3617–3626.
Zurück zum Zitat Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. Hemisphere Publishing Co. Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. Hemisphere Publishing Co.
Zurück zum Zitat Arpaci, V. S., & Larsen, P. S. (1984). Convection heat transfer. Prentice Hall Inc. Arpaci, V. S., & Larsen, P. S. (1984). Convection heat transfer. Prentice Hall Inc.
Zurück zum Zitat Baehr, H. D., & Stephan, K. (2008). Wärme- und Stoffübertragung (6. Auflage ed.). Springer. Baehr, H. D., & Stephan, K. (2008). Wärme- und Stoffübertragung (6. Auflage ed.). Springer.
Zurück zum Zitat Baker, O. (1954, July). Design of pipe lines for simultaneous flow of oil and gas. Oil and Gas Journal, 53, 185–195. Baker, O. (1954, July). Design of pipe lines for simultaneous flow of oil and gas. Oil and Gas Journal, 53, 185–195.
Zurück zum Zitat Bankoff, S. G. (1957). Ebullition from solid surfaces in the presence of a pre-existing gaseous phase. Transactions ASME, 79, 735ff. Bankoff, S. G. (1957). Ebullition from solid surfaces in the presence of a pre-existing gaseous phase. Transactions ASME, 79, 735ff.
Zurück zum Zitat Barenblatt, G. I., & Chorin, A. J. (1998). Turbulence: An old challenge and new perspectives. Meccanica, 33(5), 445–468.MathSciNet Barenblatt, G. I., & Chorin, A. J. (1998). Turbulence: An old challenge and new perspectives. Meccanica, 33(5), 445–468.MathSciNet
Zurück zum Zitat Bejan, A. (2013). Convection heat transfer (4th ed.). Wiley. Bejan, A. (2013). Convection heat transfer (4th ed.). Wiley.
Zurück zum Zitat Bejan, A., & Kraus, A. (2003). Heat transfer handbook. Wiley. Bejan, A., & Kraus, A. (2003). Heat transfer handbook. Wiley.
Zurück zum Zitat Betchov, R., & Criminale, O. W. (1967). Stability of parallel flows. Academic Press. Betchov, R., & Criminale, O. W. (1967). Stability of parallel flows. Academic Press.
Zurück zum Zitat Bhatti, M. S. (1985). Fully developed temperature distribution in a circular duct tube with uniform wall temperature. Owens-Corning Fiberglas Cooperation. Bhatti, M. S. (1985). Fully developed temperature distribution in a circular duct tube with uniform wall temperature. Owens-Corning Fiberglas Cooperation.
Zurück zum Zitat Boger, D., & Yeow, Y. (1988). Ullmann’s encyclopedia of industrial chemistry-chapter fluid mechanics (Vol. 1). VCH Verlagsgesellschaft mbH. Boger, D., & Yeow, Y. (1988). Ullmann’s encyclopedia of industrial chemistry-chapter fluid mechanics (Vol. 1). VCH Verlagsgesellschaft mbH.
Zurück zum Zitat Burmeister, L. C. (1993). Convective heat transfer (2nd ed.). Wiley-Interscience. Burmeister, L. C. (1993). Convective heat transfer (2nd ed.). Wiley-Interscience.
Zurück zum Zitat Carteciano, L. N., & Grötzbach, G. (2003). Validation of turbulence models in the computer code FLUTAN for a free hot sodium jet in different buoyancy flow regimes. Forschungszentrum Technik und Umwelt. Carteciano, L. N., & Grötzbach, G. (2003). Validation of turbulence models in the computer code FLUTAN for a free hot sodium jet in different buoyancy flow regimes. Forschungszentrum Technik und Umwelt.
Zurück zum Zitat Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., & Zanetti, G. (1989). Scaling of hard thermal turbulence in Raleigh-Benard convection. Journal of Fluid Mechanics, 204, 1ff. Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., & Zanetti, G. (1989). Scaling of hard thermal turbulence in Raleigh-Benard convection. Journal of Fluid Mechanics, 204, 1ff.
Zurück zum Zitat Cebeci, T., & Bradshaw, P. (1977). Momentum transfer in boundary layers. McGraw-Hill Inc. Cebeci, T., & Bradshaw, P. (1977). Momentum transfer in boundary layers. McGraw-Hill Inc.
Zurück zum Zitat Cengel, Y., & Cimbala, J. M. (2006). Fluid mechanics fundamentals and applications. McGraw-Hill Higher Education. Cengel, Y., & Cimbala, J. M. (2006). Fluid mechanics fundamentals and applications. McGraw-Hill Higher Education.
Zurück zum Zitat Chen, R. Y. (1973). Flow in the entrance region at low Reynolds number. Journal of Fluids Engineering, 95, 153–158. Chen, R. Y. (1973). Flow in the entrance region at low Reynolds number. Journal of Fluids Engineering, 95, 153–158.
Zurück zum Zitat Chenoweth, D. R., & Paolucci, S. (1986). Natural convection in an enclosed vertical air layer with large horizontal temperature differences. Journal of Fluid Mechanics, 169, 173–210. Chenoweth, D. R., & Paolucci, S. (1986). Natural convection in an enclosed vertical air layer with large horizontal temperature differences. Journal of Fluid Mechanics, 169, 173–210.
Zurück zum Zitat Chien, K. Y. (1982). Prediction of channel and boundary-layer flows with a low-Reynolds-number turbulence mode. AIAA Journal, 20(1), 33–38. Chien, K. Y. (1982). Prediction of channel and boundary-layer flows with a low-Reynolds-number turbulence mode. AIAA Journal, 20(1), 33–38.
Zurück zum Zitat Churchill, S., & Ozoe, H. (1973). Correlations for laminar forced convection with uniform heating in flow over a plate and in developing and fully developed flow in a tube. Journal of Heat Transfer, 18, 78ff. Churchill, S., & Ozoe, H. (1973). Correlations for laminar forced convection with uniform heating in flow over a plate and in developing and fully developed flow in a tube. Journal of Heat Transfer, 18, 78ff.
Zurück zum Zitat Churchill, S., & Usagi, R. (1972). A general expression for the correlation of rates of transfer and other. AIChE Journal, 18, 1121–1128. Churchill, S., & Usagi, R. (1972). A general expression for the correlation of rates of transfer and other. AIChE Journal, 18, 1121–1128.
Zurück zum Zitat Cole, J. D. (1968). Perturbation methods in applied mathematics. Blaisdell Publishing Co. Ginn and Co. Cole, J. D. (1968). Perturbation methods in applied mathematics. Blaisdell Publishing Co. Ginn and Co.
Zurück zum Zitat Collier, J. G., & Thome, J. R. (1996). Convective boiling and condensation (3rd ed.). Oxford University Press. Collier, J. G., & Thome, J. R. (1996). Convective boiling and condensation (3rd ed.). Oxford University Press.
Zurück zum Zitat DIN EN ISO 5167. (2004). Durchflussmessung von Fluiden mit Drosselgeräten in voll durchströmten Leitungen mit Kreisquerschnitt. Beuth Verlag GmbH. DIN EN ISO 5167. (2004). Durchflussmessung von Fluiden mit Drosselgeräten in voll durchströmten Leitungen mit Kreisquerschnitt. Beuth Verlag GmbH.
Zurück zum Zitat Donaldson, C. (1972). Calculation of turbulent shear flows for atmospheric and vortex motions. AIAA Journal, 10, 4–12. Donaldson, C. (1972). Calculation of turbulent shear flows for atmospheric and vortex motions. AIAA Journal, 10, 4–12.
Zurück zum Zitat Eberhart, J. G., & Schnyders, H. (1973). Application of the mechanical stability condition to the prediction of the limit of superheat für normal alkanes, ether and water. Journal of Physical Chemistry, 77(23), 2730. Eberhart, J. G., & Schnyders, H. (1973). Application of the mechanical stability condition to the prediction of the limit of superheat für normal alkanes, ether and water. Journal of Physical Chemistry, 77(23), 2730.
Zurück zum Zitat Eckert, E. R., & Drake, R. M. (1972). Analysis of heat and mass transfer. Mc Graw-Hill. Eckert, E. R., & Drake, R. M. (1972). Analysis of heat and mass transfer. Mc Graw-Hill.
Zurück zum Zitat Franc, J.-P., & Michel, J.-M. (2006). Fundamentals of cavitation. Springer. Franc, J.-P., & Michel, J.-M. (2006). Fundamentals of cavitation. Springer.
Zurück zum Zitat Friedel, L. (1979, June). Improved friction drop correlations for horizontal and vertical two-phase pipe flow. European Two-phase Flow Group Meeting, Paper E2. Friedel, L. (1979, June). Improved friction drop correlations for horizontal and vertical two-phase pipe flow. European Two-phase Flow Group Meeting, Paper E2.
Zurück zum Zitat Garbrecht, O. (2017). Large eddy simulation of three-dimensional mixed convectionon a vertical plate. Disseration RWTH Aachen, Fakultät Maschinenwesen. Garbrecht, O. (2017). Large eddy simulation of three-dimensional mixed convectionon a vertical plate. Disseration RWTH Aachen, Fakultät Maschinenwesen.
Zurück zum Zitat Gebhart, B. (1988). Buoyancy-induced flows and transport (1st ed.). Springer. Gebhart, B. (1988). Buoyancy-induced flows and transport (1st ed.). Springer.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic sub-grid scale eddy viscosity model. Physics of Fluids A, 3, 1760–1765. Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic sub-grid scale eddy viscosity model. Physics of Fluids A, 3, 1760–1765.
Zurück zum Zitat Gnielinski, V. (1975). Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpem mit Hilfe einer einheitlichen Gleichung. Forsch-Ing Wes, 41, 145–150. Gnielinski, V. (1975). Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpem mit Hilfe einer einheitlichen Gleichung. Forsch-Ing Wes, 41, 145–150.
Zurück zum Zitat Grigull, U., & Tratz, H. (1965). Thermischer Einlauf in ausgebildeter laminarer Rohrströmung. International Journal of Heat and Mass Transfer, 8, 669–678. Grigull, U., & Tratz, H. (1965). Thermischer Einlauf in ausgebildeter laminarer Rohrströmung. International Journal of Heat and Mass Transfer, 8, 669–678.
Zurück zum Zitat Guo, J., & Julien, P. Y. (2003). Modified log-wake law for turbulent flow in smooth pipes. Journal of Hydraulic Research, 41(5), 493–501. Guo, J., & Julien, P. Y. (2003). Modified log-wake law for turbulent flow in smooth pipes. Journal of Hydraulic Research, 41(5), 493–501.
Zurück zum Zitat Hanjalic, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to asymmetric shear flows. Journal of Fluid Mechanics, 52, 609–638. Hanjalic, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to asymmetric shear flows. Journal of Fluid Mechanics, 52, 609–638.
Zurück zum Zitat Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Los Alamos Science Lab. Harlow, F. H., & Nakayama, P. I. (1968). Transport of turbulence energy decay rate. Los Alamos Science Lab.
Zurück zum Zitat Heinzel, V. (1998). Solare Prozeßwärmeerzeugung -Siedewasserkollektoren. Universität. Heinzel, V. (1998). Solare Prozeßwärmeerzeugung -Siedewasserkollektoren. Universität.
Zurück zum Zitat Heinzel, V., Holzinger, J., & Simon, M. (1994, August). Flow patterns in horizontal and tilted tubes of direct evaporating solar (H. E. Soc., Ed.). In Proceedings of the ISES Solar World Congress (Vol. 4, pp. 135–140). Heinzel, V., Holzinger, J., & Simon, M. (1994, August). Flow patterns in horizontal and tilted tubes of direct evaporating solar (H. E. Soc., Ed.). In Proceedings of the ISES Solar World Congress (Vol. 4, pp. 135–140).
Zurück zum Zitat Hewitt, G. F., & Roberts, D. N. (1969). Studies of two-phase flow patterns by simultaneous x-ray and flash photography. HMSO. UKAEA. Hewitt, G. F., & Roberts, D. N. (1969). Studies of two-phase flow patterns by simultaneous x-ray and flash photography. HMSO. UKAEA.
Zurück zum Zitat Hickmann, H. J. (1974). An asymptotic study of the Nusselt-Graetz problem, Part 1: Large x behaviour. International Journal of Heat and Mass Transfer, 96, 354–358. Hickmann, H. J. (1974). An asymptotic study of the Nusselt-Graetz problem, Part 1: Large x behaviour. International Journal of Heat and Mass Transfer, 96, 354–358.
Zurück zum Zitat Hsu, C. J. (1968). Exact solution to entry region of Laminar heat transfer with axial conduction. Chemical Engineering Science, 23, 457–468. Hsu, C. J. (1968). Exact solution to entry region of Laminar heat transfer with axial conduction. Chemical Engineering Science, 23, 457–468.
Zurück zum Zitat Incropera, F. P., & DeWitt, D. P. (2001). Fundamentals of heat and mass transfer (5th ed.). Wiley. Incropera, F. P., & DeWitt, D. P. (2001). Fundamentals of heat and mass transfer (5th ed.). Wiley.
Zurück zum Zitat Ishii, M., & Hibiki, T. (2011). Thermo-fluid dynamics of two-phase flow (2nd ed.). Springer. Ishii, M., & Hibiki, T. (2011). Thermo-fluid dynamics of two-phase flow (2nd ed.). Springer.
Zurück zum Zitat Jones, W. P., & Launder, B. E. (1972, February). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2), 301–314. Jones, W. P., & Launder, B. E. (1972, February). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2), 301–314.
Zurück zum Zitat Kakac, S., Aung, W., & Viskanta, R. (1985). Natural convection: Fundamentals and applications. Hemisphere Publishing. Kakac, S., Aung, W., & Viskanta, R. (1985). Natural convection: Fundamentals and applications. Hemisphere Publishing.
Zurück zum Zitat Kakac, S., Shah, R., & Aung, W. (1987). Handbook of single phase convective heat transfer (A. W. Publication, Ed.). Wiley. Kakac, S., Shah, R., & Aung, W. (1987). Handbook of single phase convective heat transfer (A. W. Publication, Ed.). Wiley.
Zurück zum Zitat Kasagi, N., & Ohtsubo, Y. (1992). Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow. In F. Durst et al. (Eds.), Turbulent shear flows (Vol. 8, pp. 97–119). Springer. Kasagi, N., & Ohtsubo, Y. (1992). Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow. In F. Durst et al. (Eds.), Turbulent shear flows (Vol. 8, pp. 97–119). Springer.
Zurück zum Zitat Kawamura, H., Abe, H., & Matsuo, Y. (1999, June). DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. International Journal of Heat and Fluid Flow, 20(3), 196–207. Kawamura, H., Abe, H., & Matsuo, Y. (1999, June). DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. International Journal of Heat and Fluid Flow, 20(3), 196–207.
Zurück zum Zitat Kays, W. M. (1994). Turbulent Prandtl number. Where are we? Journal of Heat Transfer, Transactions ASME, 116, 284–296. Kays, W. M. (1994). Turbulent Prandtl number. Where are we? Journal of Heat Transfer, Transactions ASME, 116, 284–296.
Zurück zum Zitat Kek, V., & Müller, U. (1993, July). Low Prandtl number convection in layers heated from below. International Journal of Heat and Mass Transfer, 36(11), 2795–2804. Kek, V., & Müller, U. (1993, July). Low Prandtl number convection in layers heated from below. International Journal of Heat and Mass Transfer, 36(11), 2795–2804.
Zurück zum Zitat Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation. In 33rd Aerospace Sciences Meeting and Exhibit, Reno NV-USA. Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation. In 33rd Aerospace Sciences Meeting and Exhibit, Reno NV-USA.
Zurück zum Zitat Kreith, F., & Goswami, D. Y. (2005). The CRC handbook of mechanical engineering (2nd ed.). CRC-Press LLC. Kreith, F., & Goswami, D. Y. (2005). The CRC handbook of mechanical engineering (2nd ed.). CRC-Press LLC.
Zurück zum Zitat Kreith, F., Manglik, R. M., & Bohn, M. S. (2011). Principles of heat transfer (7th ed.). Cengage Learning. Kreith, F., Manglik, R. M., & Bohn, M. S. (2011). Principles of heat transfer (7th ed.). Cengage Learning.
Zurück zum Zitat Kunii, D., & Levenspiel. (2013). Fluidization engineering (2nd ed.) (Brenner, Ed.). Butterworth-Heinemann-Elsevier. Kunii, D., & Levenspiel. (2013). Fluidization engineering (2nd ed.) (Brenner, Ed.). Butterworth-Heinemann-Elsevier.
Zurück zum Zitat Lamb, H. (1993). Hydrodynamics (6th ed.). Cambridge University Press. Lamb, H. (1993). Hydrodynamics (6th ed.). Cambridge University Press.
Zurück zum Zitat Launder, B. E., Reece, G., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566. Launder, B. E., Reece, G., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566.
Zurück zum Zitat Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289. Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.
Zurück zum Zitat Ledinegg, M. (1938). Instability of flow during natural and forced circulation. Die Wärme, 61, 8. Ledinegg, M. (1938). Instability of flow during natural and forced circulation. Die Wärme, 61, 8.
Zurück zum Zitat Lockhart, R.W., Martinelli, R.C. (1949). Chemical engineering progress, 45, pp. 39–48. Lockhart, R.W., Martinelli, R.C. (1949). Chemical engineering progress, 45, pp. 39–48.
Zurück zum Zitat Mandhane, J., Gregory, G., & Aziz, K. (1974). A flow pattern map for gas–liquid flow in horizontal. International Journal of Multiphase Flow, 1, 537–553. Mandhane, J., Gregory, G., & Aziz, K. (1974). A flow pattern map for gas–liquid flow in horizontal. International Journal of Multiphase Flow, 1, 537–553.
Zurück zum Zitat Michelsen, M. L., & Villadsen, J. (1974). The Graetz problem with axial conduction. International Journal of Heat and Mass Transfer, 17, 1391–1402. Michelsen, M. L., & Villadsen, J. (1974). The Graetz problem with axial conduction. International Journal of Heat and Mass Transfer, 17, 1391–1402.
Zurück zum Zitat Müller, U., & Ehrhard, P. (1999). Freie Konvektion und Wärmeübertragung. C.F. Müller-Verlag. Müller, U., & Ehrhard, P. (1999). Freie Konvektion und Wärmeübertragung. C.F. Müller-Verlag.
Zurück zum Zitat Ng, K. H., & Spalding, D. B. (1972). Turbulence model for boundary layers near walls. Physics of Fluids, 15, 20–30. Ng, K. H., & Spalding, D. B. (1972). Turbulence model for boundary layers near walls. Physics of Fluids, 15, 20–30.
Zurück zum Zitat Nicoud, F., & Duos, F. (1999). Subgrid-scale modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183–200. Nicoud, F., & Duos, F. (1999). Subgrid-scale modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183–200.
Zurück zum Zitat Otic, I., Grötzbach, G., & Wörner, M. (2005). Analysis and modelling of the temperature variance equation in turbulent natural variance equation in turbulent natural (C. U. Press, Ed.). Journal of Fluid Mechanics, 525, 237–261. Otic, I., Grötzbach, G., & Wörner, M. (2005). Analysis and modelling of the temperature variance equation in turbulent natural variance equation in turbulent natural (C. U. Press, Ed.). Journal of Fluid Mechanics, 525, 237–261.
Zurück zum Zitat O'Toole, J. L., & Silveston, P. L. (1961). Correlation of convective heat transfer in confined horizontal layers. Chemical Engineering Progress Symposium Series, 67, 81ff. O'Toole, J. L., & Silveston, P. L. (1961). Correlation of convective heat transfer in confined horizontal layers. Chemical Engineering Progress Symposium Series, 67, 81ff.
Zurück zum Zitat Pederson, R. J., & May, E. K. (1982). Flow instability during direct steam generation in a line-focus solar collector system. Solar Energy Research Institute Report. Pederson, R. J., & May, E. K. (1982). Flow instability during direct steam generation in a line-focus solar collector system. Solar Energy Research Institute Report.
Zurück zum Zitat Piller, M., Nobile, E., & Hanratty, T. J. (2002). DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics, 458, 419–441. Piller, M., Nobile, E., & Hanratty, T. J. (2002). DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics, 458, 419–441.
Zurück zum Zitat Reichhardt, H. (1951, Juli). Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Zeitschrift für Angewandte Math Mech, 31(7), 208ff. Reichhardt, H. (1951, Juli). Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Zeitschrift für Angewandte Math Mech, 31(7), 208ff.
Zurück zum Zitat RELAP Code Development Team. (1995). RELAP5/MOD3 code manual volume I–IV: Code structure, system models, and solution methods. Idaho National Engineering Laboratory: Lockheed Idaho Technologies Company. RELAP Code Development Team. (1995). RELAP5/MOD3 code manual volume I–IV: Code structure, system models, and solution methods. Idaho National Engineering Laboratory: Lockheed Idaho Technologies Company.
Zurück zum Zitat Remmers, K.-H. (2001). Große Solaranlagen: Einstieg in Planung und Praxis (2. überarb. Auflage ed.). Solarpraxis AG. Remmers, K.-H. (2001). Große Solaranlagen: Einstieg in Planung und Praxis (2. überarb. Auflage ed.). Solarpraxis AG.
Zurück zum Zitat Reynolds, W. C. (1976). Computation of turbulent flows. Annual Review of Fluid Mechanics, 8, 183–208. Reynolds, W. C. (1976). Computation of turbulent flows. Annual Review of Fluid Mechanics, 8, 183–208.
Zurück zum Zitat Rodi, W. (1981). Progress in turbulence modelling for incompressible flows. AIAA Journal, Paper 81-0045. Rodi, W. (1981). Progress in turbulence modelling for incompressible flows. AIAA Journal, Paper 81-0045.
Zurück zum Zitat Rodi, W. (1993). Turbulence models and their application—a state of the art review. Monograph Int.l Ass. for Hydraulic Res. (IAHR): A.A. Balkema. Rodi, W. (1993). Turbulence models and their application—a state of the art review. Monograph Int.l Ass. for Hydraulic Res. (IAHR): A.A. Balkema.
Zurück zum Zitat Rodi, W. (2005). Engineering turbulence modelling and experiments 6 (E. I. ETMM6, Ed.). Elsevier Science. Rodi, W. (2005). Engineering turbulence modelling and experiments 6 (E. I. ETMM6, Ed.). Elsevier Science.
Zurück zum Zitat Rohsenow, W. M. (1998). Handbook of heat transfer. McGraw-Hill. Rohsenow, W. M. (1998). Handbook of heat transfer. McGraw-Hill.
Zurück zum Zitat Schlichting, H., & Gersten, K. (2000). Boundary-layer theory (8th ed.). Springer. Schlichting, H., & Gersten, K. (2000). Boundary-layer theory (8th ed.). Springer.
Zurück zum Zitat Schulenberg, T., & Stieglitz, R. (2010). Flow measurement techniques in heavy liquid metals. Flow Measurement Techniques in Heavy Liquid Metals, 240, 2077–2087. Schulenberg, T., & Stieglitz, R. (2010). Flow measurement techniques in heavy liquid metals. Flow Measurement Techniques in Heavy Liquid Metals, 240, 2077–2087.
Zurück zum Zitat Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts: A source book for compact heat exchanger analytical data (Vols. Advances in heat transfer, Supplement 1). Academic Press. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts: A source book for compact heat exchanger analytical data (Vols. Advances in heat transfer, Supplement 1). Academic Press.
Zurück zum Zitat Shah, R. K., & Sekulic, D. (2003). Fundamentals of heat exchanger design. Wiley. Shah, R. K., & Sekulic, D. (2003). Fundamentals of heat exchanger design. Wiley.
Zurück zum Zitat Smagorinsky, J. (1963). General circulation experiments with the primitive equations I the basic experiment. Monthly Weather Review, 91, 99–164. Smagorinsky, J. (1963). General circulation experiments with the primitive equations I the basic experiment. Monthly Weather Review, 91, 99–164.
Zurück zum Zitat Sparrow, E. M., Patankar, S. V., & Shahrestani, H. (1978). Laminar heat transfer in a pipe subjected to circumferentially varying external heat transfer coefficients. Numerical Heat Transfer, 1, 117–127. Sparrow, E. M., Patankar, S. V., & Shahrestani, H. (1978). Laminar heat transfer in a pipe subjected to circumferentially varying external heat transfer coefficients. Numerical Heat Transfer, 1, 117–127.
Zurück zum Zitat Stephan, P., Kabelac, S., & Kind, M. M. (2019). VDI-Wärmeatlas (12th ed.). Springer Vieweg. Stephan, P., Kabelac, S., & Kind, M. M. (2019). VDI-Wärmeatlas (12th ed.). Springer Vieweg.
Zurück zum Zitat Stieglitz, R. (2007). Chapter 10: Low Prandtl number thermal hydraulics. In Nuclear Energy Agency NEA-OECD (Ed.), Handbook on lead-bismuth eutectic alloy and lead properties, materials, compatibility, thermalhydraulics and technologies (pp. 399–478). NEA-OECD. Stieglitz, R. (2007). Chapter 10: Low Prandtl number thermal hydraulics. In Nuclear Energy Agency NEA-OECD (Ed.), Handbook on lead-bismuth eutectic alloy and lead properties, materials, compatibility, thermalhydraulics and technologies (pp. 399–478). NEA-OECD.
Zurück zum Zitat Streicher, W. (1991). Simulation des instationären Verhaltens von Kompressionswärmepumpen. Universität Graz. Streicher, W. (1991). Simulation des instationären Verhaltens von Kompressionswärmepumpen. Universität Graz.
Zurück zum Zitat Taitel, Y., & Duckler, A. A. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1), 47–55. Taitel, Y., & Duckler, A. A. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1), 47–55.
Zurück zum Zitat Thome, J. R., & Cioncolini, A. (2015). Chapter 2: Two-phase flow pattern maps for macrochannels. In T. J. R., Encyclopedia of two-phase heat transfer and flow (Vol. 3, p. 1112). World Scientific Publishing. Thome, J. R., & Cioncolini, A. (2015). Chapter 2: Two-phase flow pattern maps for macrochannels. In T. J. R., Encyclopedia of two-phase heat transfer and flow (Vol. 3, p. 1112). World Scientific Publishing.
Zurück zum Zitat van Dyke, M. (1975). Perturbation methods in fluid mechanics (Annotated ed.). Parabolic Press. van Dyke, M. (1975). Perturbation methods in fluid mechanics (Annotated ed.). Parabolic Press.
Zurück zum Zitat Veritas, D. N. (2010). Environmental conditions and environmental loads—Recommended practice. DNV-RP-C205, October 2010, Bærum, Norway. Veritas, D. N. (2010). Environmental conditions and environmental loads—Recommended practice. DNV-RP-C205, October 2010, Bærum, Norway.
Zurück zum Zitat Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics (2nd ed.). Pearson Education Limited. Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics (2nd ed.). Pearson Education Limited.
Zurück zum Zitat Walz, A. (1966). Strömungs- und Temperaturgrenzschichten. G. Braun Verlag. Walz, A. (1966). Strömungs- und Temperaturgrenzschichten. G. Braun Verlag.
Zurück zum Zitat White, F. M. (1991). Viscous fluid flow (2nd ed.). McGraw-Hill Science/Engineering/Math. White, F. M. (1991). Viscous fluid flow (2nd ed.). McGraw-Hill Science/Engineering/Math.
Zurück zum Zitat Whorlow, R. W. (1979). Rheological techniques. Wiley & Sons. Whorlow, R. W. (1979). Rheological techniques. Wiley & Sons.
Zurück zum Zitat Wilcox, D. C. (1986, January). Multiscale model for turbulent flows (A. I. Astronautics, Ed.). In Proceedings of the 24th AIAA Aerospace Sciences Meeting (pp. 1311–1320). Wilcox, D. C. (1986, January). Multiscale model for turbulent flows (A. I. Astronautics, Ed.). In Proceedings of the 24th AIAA Aerospace Sciences Meeting (pp. 1311–1320).
Zurück zum Zitat Wilcox, D. C., & Traci, R. M. (1976). A complete model of turbulence. NASA. Wilcox, D. C., & Traci, R. M. (1976). A complete model of turbulence. NASA.
Zurück zum Zitat You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6), 065110. You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6), 065110.
Zurück zum Zitat Zagarola, M. V., & Smits, A. J. (1998). Mean flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373, 33–79. Zagarola, M. V., & Smits, A. J. (1998). Mean flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373, 33–79.
Metadaten
Titel
Momentum and Energy Transport
verfasst von
Robert Stieglitz
Werner Platzer
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-43173-9_5