Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Hydrodynamic Transient Tip Streaming

verfasst von : José María Montanero

Erschienen in: Tip Streaming of Simple and Complex Fluids

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As mentioned in the previous chapter, tip streaming can be categorized into two different classes: transient tip streaming and microdripping/microjetting. This chapter reviews some transient tip streaming flows produced by hydrodynamics means. Specifically, we consider a surfactant-loaded droplet in a linear extensional flow, the viscous entrainment of selective withdrawal, and bubble bursting. The chapter closes by mentioning other examples that have received less attention.
We consider both the subcritical steady flow and the onset of tip streaming in a droplet submerged in a linear extensional flow, paying attention to the effect of a surfactant monolayer. We present the same analysis for the viscous entrainment of selective withdrawal. With respect to bubble bursting, we review the major results for simple liquids and summarize recent studies for liquids containing polymers and surfactants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A 138:41–48CrossRef Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A 138:41–48CrossRef
2.
Zurück zum Zitat Taylor GI (1964) Conical free surfaces and fluid interfaces. In: Gortler H (ed) Proceedings of the 11th international congress of applied mathematics. Springer, Heidelberg, pp 790–796 Taylor GI (1964) Conical free surfaces and fluid interfaces. In: Gortler H (ed) Proceedings of the 11th international congress of applied mathematics. Springer, Heidelberg, pp 790–796
3.
Zurück zum Zitat Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501–523CrossRef Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501–523CrossRef
4.
Zurück zum Zitat Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66CrossRef Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66CrossRef
5.
6.
Zurück zum Zitat Buckmaster JD (1972) Pointed bubbles in slow viscous flow. J Fluid Mech 55:385–400CrossRef Buckmaster JD (1972) Pointed bubbles in slow viscous flow. J Fluid Mech 55:385–400CrossRef
7.
Zurück zum Zitat Eggers J, Courrech du Pont S (2009) Numerical analysis of tips in viscous flow. Phys Rev E 79(066):311 Eggers J, Courrech du Pont S (2009) Numerical analysis of tips in viscous flow. Phys Rev E 79(066):311
8.
Zurück zum Zitat Courrech du Pont S, Eggers J (2020) Fluid interfaces with very sharp tips in viscous flow. Proc Natl Acad Sci 117:32,238–32,243 Courrech du Pont S, Eggers J (2020) Fluid interfaces with very sharp tips in viscous flow. Proc Natl Acad Sci 117:32,238–32,243
9.
Zurück zum Zitat De Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48:277–284CrossRef De Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48:277–284CrossRef
10.
Zurück zum Zitat Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef
11.
Zurück zum Zitat Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241–283CrossRef Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241–283CrossRef
12.
Zurück zum Zitat Eggleton CD, Tsai TM, Stebe KJ (2001) Tip streaming from a drop in the presence of surfactants. Phys Rev Lett 87(048):302 Eggleton CD, Tsai TM, Stebe KJ (2001) Tip streaming from a drop in the presence of surfactants. Phys Rev Lett 87(048):302
13.
Zurück zum Zitat Wang Q, Siegel M, Booty MR (2014) Numerical simulation of drop and bubble dynamics with soluble surfactant. Phys Fluids 26(052):102 Wang Q, Siegel M, Booty MR (2014) Numerical simulation of drop and bubble dynamics with soluble surfactant. Phys Fluids 26(052):102
14.
Zurück zum Zitat Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow influence of surface viscosity. J Fluid Mech 934:A26 Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow influence of surface viscosity. J Fluid Mech 934:A26
15.
Zurück zum Zitat Vlahovska PM, Lawzdziewicz JB, Loewenberg M (2009) Small-deformation theory for a surfactant-covered drop in linear flows. J Fluid Mech 624:293–337MathSciNetCrossRef Vlahovska PM, Lawzdziewicz JB, Loewenberg M (2009) Small-deformation theory for a surfactant-covered drop in linear flows. J Fluid Mech 624:293–337MathSciNetCrossRef
16.
Zurück zum Zitat Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12:98–108CrossRef Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12:98–108CrossRef
17.
18.
Zurück zum Zitat Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA (2013) Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc Natl Acad Sci 110:E3054–E3060CrossRef Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA (2013) Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc Natl Acad Sci 110:E3054–E3060CrossRef
19.
Zurück zum Zitat Samaniuk JR, Mermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matt 10:7023–7033CrossRef Samaniuk JR, Mermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matt 10:7023–7033CrossRef
20.
Zurück zum Zitat Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci 111:3677–3682CrossRef Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci 111:3677–3682CrossRef
21.
Zurück zum Zitat Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065 Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065
22.
Zurück zum Zitat Rubio M, Montanero JM, Eggers J, Herrada MA (2024) Stable production of fluid jets with vanishing diameters via tip streaming. J Flui Mech 893: A4 Rubio M, Montanero JM, Eggers J, Herrada MA (2024) Stable production of fluid jets with vanishing diameters via tip streaming. J Flui Mech 893: A4
23.
24.
Zurück zum Zitat Cohen I, Li H, Hougland JL, Mrksich M, Nagel SR (2001) Using selective withdrawal to coat microparticles. Science 292:265–267CrossRef Cohen I, Li H, Hougland JL, Mrksich M, Nagel SR (2001) Using selective withdrawal to coat microparticles. Science 292:265–267CrossRef
25.
Zurück zum Zitat Case SC, Nagel SR (2007) Spout states in the selective withdrawal of immiscible fluids through a nozzle suspended above a two-fluid interface. Phys Rev Lett 98(114):501 Case SC, Nagel SR (2007) Spout states in the selective withdrawal of immiscible fluids through a nozzle suspended above a two-fluid interface. Phys Rev Lett 98(114):501
26.
Zurück zum Zitat Blanchette F, Zhang WW (2009) Force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 102(144):501 Blanchette F, Zhang WW (2009) Force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 102(144):501
27.
Zurück zum Zitat Evangelio A, Campo-Cortés F, Gordillo JM (2015) Pressure gradient induced generation of microbubbles. J Fluid Mech 778:653–668MathSciNetCrossRef Evangelio A, Campo-Cortés F, Gordillo JM (2015) Pressure gradient induced generation of microbubbles. J Fluid Mech 778:653–668MathSciNetCrossRef
28.
Zurück zum Zitat Cohen I, Nagel SR (2002) Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys Rev Lett 88(074):501 Cohen I, Nagel SR (2002) Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys Rev Lett 88(074):501
29.
Zurück zum Zitat Cohen I (2004) Scaling and transition structure dependence on the fluid viscosity ratio in the selective withdrawal transition. Phys Rev E 70(026):302 Cohen I (2004) Scaling and transition structure dependence on the fluid viscosity ratio in the selective withdrawal transition. Phys Rev E 70(026):302
30.
Zurück zum Zitat Courrech du Pont S, Eggers J (2006) Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys Rev Lett 96(034):501 Courrech du Pont S, Eggers J (2006) Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys Rev Lett 96(034):501
31.
Zurück zum Zitat Berkenbusch MK, Cohen I, Zhang WW (2008) Liquid interfaces in viscous straining flows: numerical studies of the selective withdrawal transition. J Fluid Mech 613:171–203MathSciNetCrossRef Berkenbusch MK, Cohen I, Zhang WW (2008) Liquid interfaces in viscous straining flows: numerical studies of the selective withdrawal transition. J Fluid Mech 613:171–203MathSciNetCrossRef
32.
Zurück zum Zitat Eggers J, Courrech du Pont S (2010) Comment on force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 105(089):401 Eggers J, Courrech du Pont S (2010) Comment on force balance at the transition from selective withdrawal to viscous entrainment. Phys Rev Lett 105(089):401
33.
Zurück zum Zitat Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: experiments. J Non-Newtonian Fluid Mech 165:829–838CrossRef Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: experiments. J Non-Newtonian Fluid Mech 165:829–838CrossRef
34.
Zurück zum Zitat Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: computations. J Non-Newtonian Fluid Mech 165:839–851CrossRef Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: computations. J Non-Newtonian Fluid Mech 165:839–851CrossRef
35.
Zurück zum Zitat Rubio M, Montanero JM (2023) Influence of a soluble surfactant on the transition to tip streaming. Exp Therm Fluid Sci 141(110):776 Rubio M, Montanero JM (2023) Influence of a soluble surfactant on the transition to tip streaming. Exp Therm Fluid Sci 141(110):776
36.
Zurück zum Zitat Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154CrossRef Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154CrossRef
37.
Zurück zum Zitat Ferrera C, López-Herrera JM, Herrada MA, Montanero JM, Acero AJ (2013) Dynamical behavior of electrified pendant drops. Phys Fluids 25(012):104 Ferrera C, López-Herrera JM, Herrada MA, Montanero JM, Acero AJ (2013) Dynamical behavior of electrified pendant drops. Phys Fluids 25(012):104
38.
Zurück zum Zitat Lhuissier H, Villermaux E (2012) Bursting bubble aerosols. J Fluid Mech 696:5–44CrossRef Lhuissier H, Villermaux E (2012) Bursting bubble aerosols. J Fluid Mech 696:5–44CrossRef
39.
Zurück zum Zitat Jiang X, Rotily L, Villermaux E, Wang X (2022) Submicron drops from flapping bursting bubbles. Proc Natl Acad Sci 19:34 Jiang X, Rotily L, Villermaux E, Wang X (2022) Submicron drops from flapping bursting bubbles. Proc Natl Acad Sci 19:34
40.
Zurück zum Zitat Villermaux E, Wang X, Deike L (2023) Bubbles spray aerosols: certitudes and mysteries. Proc Natl Acad Sci Nexus (in Press) Villermaux E, Wang X, Deike L (2023) Bubbles spray aerosols: certitudes and mysteries. Proc Natl Acad Sci Nexus (in Press)
41.
Zurück zum Zitat Duchemin L, Popinet S, Josserand C, Zaleski S (2002) Jet formation in bubbles bursting at a free surface. Phys Fluids 14:3000–3008CrossRef Duchemin L, Popinet S, Josserand C, Zaleski S (2002) Jet formation in bubbles bursting at a free surface. Phys Fluids 14:3000–3008CrossRef
42.
Zurück zum Zitat Ghabache E, Antkowiak A, Josserand C, Seon T (2014) On the physics of fizziness: How bubble bursting controls droplets ejection. Phys Fluids 26(121):701 Ghabache E, Antkowiak A, Josserand C, Seon T (2014) On the physics of fizziness: How bubble bursting controls droplets ejection. Phys Fluids 26(121):701
43.
Zurück zum Zitat Blanchard D, Syzdek L (1970) Mechanism for the water-to-air transfer and concentration of bacteria. Science 170:626–628CrossRef Blanchard D, Syzdek L (1970) Mechanism for the water-to-air transfer and concentration of bacteria. Science 170:626–628CrossRef
44.
45.
Zurück zum Zitat Deike L (2022) Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu Rev Fluid Mech 54:191–224CrossRef Deike L (2022) Mass transfer at the ocean-atmosphere interface: the role of wave breaking, droplets, and bubbles. Annu Rev Fluid Mech 54:191–224CrossRef
46.
Zurück zum Zitat MacIntyre F (1972) Flow patterns in breaking bubbles. J Geophys Res 77:5211–5228CrossRef MacIntyre F (1972) Flow patterns in breaking bubbles. J Geophys Res 77:5211–5228CrossRef
47.
Zurück zum Zitat Gañán-Calvo AM (2023) The ocean fine spray. Phys Fluids 35(023):317 Gañán-Calvo AM (2023) The ocean fine spray. Phys Fluids 35(023):317
48.
Zurück zum Zitat Lee JS, Weon BM, Park SJ, Je JH, Fezzaa K, Lee WK (2011) Size limits the formation of liquid jets during bubble bursting. Nat Commun 2:367CrossRef Lee JS, Weon BM, Park SJ, Je JH, Fezzaa K, Lee WK (2011) Size limits the formation of liquid jets during bubble bursting. Nat Commun 2:367CrossRef
49.
Zurück zum Zitat Walls PLL, Henaux L, Bird JC (2015) Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys Rev E 92(021):002(R) Walls PLL, Henaux L, Bird JC (2015) Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys Rev E 92(021):002(R)
50.
Zurück zum Zitat Ji B, Yang Z, Feng J (2021) Compound jetting from bubble bursting at an air-oil-water interface. Nat Commun 12:6305CrossRef Ji B, Yang Z, Feng J (2021) Compound jetting from bubble bursting at an air-oil-water interface. Nat Commun 12:6305CrossRef
51.
Zurück zum Zitat Ghabache E, Seon T (2016) Size of the top jet drop produced by bubble bursting. Phys Rev Fluids 1(051):901(R) Ghabache E, Seon T (2016) Size of the top jet drop produced by bubble bursting. Phys Rev Fluids 1(051):901(R)
52.
Zurück zum Zitat Gañán-Calvo AM (2017) Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys Rev Lett 119(204):502 Gañán-Calvo AM (2017) Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys Rev Lett 119(204):502
53.
Zurück zum Zitat Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(32):357 Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(32):357
54.
Zurück zum Zitat Gañán-Calvo AM (2018) Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit. Phys Rev Fluids 3(091):601(R) Gañán-Calvo AM (2018) Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit. Phys Rev Fluids 3(091):601(R)
55.
Zurück zum Zitat Deike L, Ghabache E, Liger-Belair G, Das AK, Zaleski S, Popinet S, Seon T (2018) Dynamics of jets produced by bursting bubbles. Phys Rev Fluids 3(013):603 Deike L, Ghabache E, Liger-Belair G, Das AK, Zaleski S, Popinet S, Seon T (2018) Dynamics of jets produced by bursting bubbles. Phys Rev Fluids 3(013):603
56.
Zurück zum Zitat Berny A, Deike L, Seon T, Popinet S (2020) Role of all jet drops in mass transfer from bursting bubbles. Phys Rev Fluids 5(033):605 Berny A, Deike L, Seon T, Popinet S (2020) Role of all jet drops in mass transfer from bursting bubbles. Phys Rev Fluids 5(033):605
57.
Zurück zum Zitat Gañán-Calvo AM, López-Herrera JM (2021) On the physics of transient ejection from bubble bursting. J Fluid Mech 929:A12MathSciNetCrossRef Gañán-Calvo AM, López-Herrera JM (2021) On the physics of transient ejection from bubble bursting. J Fluid Mech 929:A12MathSciNetCrossRef
58.
Zurück zum Zitat Yang Z, Ji B, Ault JT, Feng J (2023) Enhanced singular jet formation in oil-coated bubble bursting. Nat Phys 19:884–890CrossRef Yang Z, Ji B, Ault JT, Feng J (2023) Enhanced singular jet formation in oil-coated bubble bursting. Nat Phys 19:884–890CrossRef
59.
Zurück zum Zitat Berny A, Deike L, Seon T, Popinet S (2022) Size and speed of jet drops are robust to initial perturbations. Phys Rev Fluids 7(013):602 Berny A, Deike L, Seon T, Popinet S (2022) Size and speed of jet drops are robust to initial perturbations. Phys Rev Fluids 7(013):602
60.
Zurück zum Zitat Lai CY, Eggers J, Deike L (2018) Bubble bursting: universal cavity and jet profiles. Phys Rev Lett 121(144):501 Lai CY, Eggers J, Deike L (2018) Bubble bursting: universal cavity and jet profiles. Phys Rev Lett 121(144):501
61.
Zurück zum Zitat Gordillo JM, Rodriguez-Rodriguez J (2019) Capillary waves control the ejection of bubble bursting jets. J Fluid Mech 867:556–571MathSciNetCrossRef Gordillo JM, Rodriguez-Rodriguez J (2019) Capillary waves control the ejection of bubble bursting jets. J Fluid Mech 867:556–571MathSciNetCrossRef
62.
Zurück zum Zitat Blanco-Rodríguez FJ, Gordillo JM (2020) On the sea spray aerosol originated from bubble bursting jets. J Fluid Mech 886:R2MathSciNetCrossRef Blanco-Rodríguez FJ, Gordillo JM (2020) On the sea spray aerosol originated from bubble bursting jets. J Fluid Mech 886:R2MathSciNetCrossRef
63.
Zurück zum Zitat Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, Tsutsumanova GG, Stone HA (2014) Nanoemulsions obtained via bubble-bursting at a compound interface. Nat Phys 10:606–612 Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, Tsutsumanova GG, Stone HA (2014) Nanoemulsions obtained via bubble-bursting at a compound interface. Nat Phys 10:606–612
64.
Zurück zum Zitat Dubitsky L, McRae O, Bird JC (2023) Enrichment of scavenged particles in jet drops determined by bubble size and particle position. Phys Rev Lett 130(054):001 Dubitsky L, McRae O, Bird JC (2023) Enrichment of scavenged particles in jet drops determined by bubble size and particle position. Phys Rev Lett 130(054):001
66.
Zurück zum Zitat Neel B, Deike L (2021) Collective bursting of free-surface bubbles, and the role of surface contamination. J Fluid Mech 917:A46CrossRef Neel B, Deike L (2021) Collective bursting of free-surface bubbles, and the role of surface contamination. J Fluid Mech 917:A46CrossRef
67.
Zurück zum Zitat Neel B, Erinin MA, Deike L (2021) Role of contamination in optimal droplet production by collective bubble bursting. Geophys Res Lett 49:e2021GL096,740 Neel B, Erinin MA, Deike L (2021) Role of contamination in optimal droplet production by collective bubble bursting. Geophys Res Lett 49:e2021GL096,740
68.
Zurück zum Zitat Constante-Amores CR, Kahouadji L, Batchvarov A, Shin S, Chergui J, Juric D, Matar O (2021) Dynamics of a surfactant-laden bubble bursting through an interface. J Fluid Mech 911:A57MathSciNetCrossRef Constante-Amores CR, Kahouadji L, Batchvarov A, Shin S, Chergui J, Juric D, Matar O (2021) Dynamics of a surfactant-laden bubble bursting through an interface. J Fluid Mech 911:A57MathSciNetCrossRef
69.
Zurück zum Zitat Boulton-Stone JM (1995) The effect of surfactant on bursting gas bubbles. J Fluid Mech 302:231–257CrossRef Boulton-Stone JM (1995) The effect of surfactant on bursting gas bubbles. J Fluid Mech 302:231–257CrossRef
70.
Zurück zum Zitat Roche M, Aytouna M, Bonn D, Kellay H (2009) Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys Rev Lett 103(264):501 Roche M, Aytouna M, Bonn D, Kellay H (2009) Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys Rev Lett 103(264):501
71.
Zurück zum Zitat Mayer HC, Krechetnikov R (2012) Landau-Levich flow visualization: revealing the flow topology responsible for the film thickening phenomena. Phys Fluids 24(052):103 Mayer HC, Krechetnikov R (2012) Landau-Levich flow visualization: revealing the flow topology responsible for the film thickening phenomena. Phys Fluids 24(052):103
72.
Zurück zum Zitat Kamat PM, Wagoner BW, Castrejón-Pita AA, Castrejón-Pita JR, Anthony CR, Basaran OA (2020) Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments. J Fluid Mech 899:A28MathSciNetCrossRef Kamat PM, Wagoner BW, Castrejón-Pita AA, Castrejón-Pita JR, Anthony CR, Basaran OA (2020) Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments. J Fluid Mech 899:A28MathSciNetCrossRef
73.
Zurück zum Zitat Pierre J, Poujol M, Seon T (2022) Influence of surfactant concentration on drop production by bubble bursting. Phys Rev Fluids 7(073):602 Pierre J, Poujol M, Seon T (2022) Influence of surfactant concentration on drop production by bubble bursting. Phys Rev Fluids 7(073):602
74.
Zurück zum Zitat Vega E, Montanero J (2024) Influence of a surfactant on bubble bursting. Exp Therm Fluid Sci 151(111):097 Vega E, Montanero J (2024) Influence of a surfactant on bubble bursting. Exp Therm Fluid Sci 151(111):097
75.
Zurück zum Zitat Rodríguez-Díaz P, Rubio A, Montanero JM, Gañán-Calvo A, Cabezas MG (2023) Bubble bursting in a weakly-viscoelastic liquid. Phys Fluids 35(102):107 Rodríguez-Díaz P, Rubio A, Montanero JM, Gañán-Calvo A, Cabezas MG (2023) Bubble bursting in a weakly-viscoelastic liquid. Phys Fluids 35(102):107
76.
Zurück zum Zitat Ji B, Yang Z, Wang Z, Ewoldt RH, Feng J (2023) Secondary bubble entrainment via primary bubble bursting at a viscoelastic surface. Phys Rev Lett 131(104):002 Ji B, Yang Z, Wang Z, Ewoldt RH, Feng J (2023) Secondary bubble entrainment via primary bubble bursting at a viscoelastic surface. Phys Rev Lett 131(104):002
77.
Zurück zum Zitat Zeff BW, Kleber B, Fineberg J, Lathrop DP (2000) Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403:401–404CrossRef Zeff BW, Kleber B, Fineberg J, Lathrop DP (2000) Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403:401–404CrossRef
78.
Zurück zum Zitat Antokowiak A, Bremond N, Le Dices S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250CrossRef Antokowiak A, Bremond N, Le Dices S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250CrossRef
79.
Zurück zum Zitat Bartolo D, Josserand C, Bonn D (2006) Singular jets and bubbles in drop impact. Phys Rev Lett 96(124):501 Bartolo D, Josserand C, Bonn D (2006) Singular jets and bubbles in drop impact. Phys Rev Lett 96(124):501
80.
Zurück zum Zitat Andersen A, Bohr T, Stenum B, Rasmussen JJ, Lautrup B (2003) Anatomy of a bathtub vortex. Phys Rev Lett 91(104):502 Andersen A, Bohr T, Stenum B, Rasmussen JJ, Lautrup B (2003) Anatomy of a bathtub vortex. Phys Rev Lett 91(104):502
81.
Zurück zum Zitat Bergmann R, Andersen A, van der Meer D, Bohr T (2009) Bubble pinch-off in a rotating flow. Phys Rev Lett 102(104):502 Bergmann R, Andersen A, van der Meer D, Bohr T (2009) Bubble pinch-off in a rotating flow. Phys Rev Lett 102(104):502
82.
Zurück zum Zitat Schroll RD, Wunenburger R, Casner A, Zhang WW, Delville JP (2007) Liquid transport due to light scattering. Phys Rev Lett 98(133):601 Schroll RD, Wunenburger R, Casner A, Zhang WW, Delville JP (2007) Liquid transport due to light scattering. Phys Rev Lett 98(133):601
Metadaten
Titel
Hydrodynamic Transient Tip Streaming
verfasst von
José María Montanero
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-52768-5_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.