Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Materials that Move

verfasst von : Murat Bengisu, Marinella Ferrara

Erschienen in: Materials that Move

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kinetic materials range from well-known shape memory alloys to more “exotic” materials such as ferrogels and shape memory ceramics. The common characteristic of all these smart materials is their ability to undergo a predetermined shape change as a response to an external stimulus such as light, electricity, humidity, or heat. The shape change can be reversible or irreverbible. This chapter attempts to categorize kinetic materials according to two features: based on the material type (e.g. alloys, polymers, gels) and based on the stimulus they respond to (e.g. thermoresponsive, magnetostrictive, or electroactive). After explaining these categories, details of the most important kinetic materials are discussed. This chapter focuses mainly on the mechanismas that lead to a shape with an explanation of the underlying material science principles. Some key terms are defined and important properties of shape memory materials (alloys and polymers) are listed. A brief history on the discovery and development of certain kinetic materials is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arndt, K. F., Schmidt, T., Richter, A., & Kuckling, D. (2004). High response smart gels: Synthesis and application. In Macromolecular Symposia (Vol. 207, No. 1, pp. 257–268). Wiley VCH Verlag.CrossRef Arndt, K. F., Schmidt, T., Richter, A., & Kuckling, D. (2004). High response smart gels: Synthesis and application. In Macromolecular Symposia (Vol. 207, No. 1, pp. 257–268). Wiley VCH Verlag.CrossRef
Zurück zum Zitat Bar-Cohen, Y. (2002). Electroactive polymers as artificial muscles: A review. Journal of Spacecraft and Rockets, 39(6), 822–827.CrossRef Bar-Cohen, Y. (2002). Electroactive polymers as artificial muscles: A review. Journal of Spacecraft and Rockets, 39(6), 822–827.CrossRef
Zurück zum Zitat Behl, M., Langer, R., & Lendlein, A. (2007). Intelligent materials: Shape-memory polymers. Intelligent Materials, 301–316. Behl, M., Langer, R., & Lendlein, A. (2007). Intelligent materials: Shape-memory polymers. Intelligent Materials, 301–316.
Zurück zum Zitat Behl, M., & Lendlein, A. (2010). Overview of shape-memory polymers. In L. J & D. S (Eds.), Shape-memory polymers and multifunctional composites. Boca Raton: CRC Press. Behl, M., & Lendlein, A. (2010). Overview of shape-memory polymers. In L. J & D. S (Eds.), Shape-memory polymers and multifunctional composites. Boca Raton: CRC Press.
Zurück zum Zitat Bhandari, B., Lee, G. Y., & Ahn, S. H. (2012). A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 13(1), 141–163.CrossRef Bhandari, B., Lee, G. Y., & Ahn, S. H. (2012). A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 13(1), 141–163.CrossRef
Zurück zum Zitat Calleja, G., Jourdan, A., Ameduri, B., & Habas, J. P. (2013). Where is the glass transition temperature of poly (tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. European Polymer Journal, 49(8), 2214–2222.CrossRef Calleja, G., Jourdan, A., Ameduri, B., & Habas, J. P. (2013). Where is the glass transition temperature of poly (tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. European Polymer Journal, 49(8), 2214–2222.CrossRef
Zurück zum Zitat Chopra, I., & Sirohi, J. (2013). Smart structures theory. Cambridge: Cambridge University Press. Chopra, I., & Sirohi, J. (2013). Smart structures theory. Cambridge: Cambridge University Press.
Zurück zum Zitat Christian, J. W. (2002). The theory of transformations in metals and alloys. Oxford: Pergamon. Christian, J. W. (2002). The theory of transformations in metals and alloys. Oxford: Pergamon.
Zurück zum Zitat Chun, B. C., Cha, S. H., Chung, Y. C., & Cho, J. W. (2002). Enhanced dynamic mechanical and shape-memory properties of a poly (ethylene terephthalate)–poly (ethylene glycol) copolymer crosslinked by maleic anhydride. Journal of Applied Polymer Science, 83(1), 27–37.CrossRef Chun, B. C., Cha, S. H., Chung, Y. C., & Cho, J. W. (2002). Enhanced dynamic mechanical and shape-memory properties of a poly (ethylene terephthalate)–poly (ethylene glycol) copolymer crosslinked by maleic anhydride. Journal of Applied Polymer Science, 83(1), 27–37.CrossRef
Zurück zum Zitat Citerin, J., & Kheddar, A. (2008). Electro-active polymer actuators for tactile displays. In Sense of touch and its rendering: Progress in haptics research (Vol. 45, pp. 131–154). Citerin, J., & Kheddar, A. (2008). Electro-active polymer actuators for tactile displays. In Sense of touch and its rendering: Progress in haptics research (Vol. 45, pp. 131–154).
Zurück zum Zitat Claeyssen, F., Lhermet, N., LeLetty, R., & Bouchilloux, P. (1997). Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258(1–2), 61–73.CrossRef Claeyssen, F., Lhermet, N., LeLetty, R., & Bouchilloux, P. (1997). Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258(1–2), 61–73.CrossRef
Zurück zum Zitat Clark, N. A. (2013). Soft-matter physics: Ferromagnetic ferrofluids. Nature, 504(7479), 229–230.CrossRef Clark, N. A. (2013). Soft-matter physics: Ferromagnetic ferrofluids. Nature, 504(7479), 229–230.CrossRef
Zurück zum Zitat Duclos, T. G., Carlson, J. D., Chrzan, M. J., & Coulter, J. P. (1992). Electrorheological fluids—Materials and applications. In Intelligent structural systems (pp. 213–241). Netherlands: Springer. Duclos, T. G., Carlson, J. D., Chrzan, M. J., & Coulter, J. P. (1992). Electrorheological fluids—Materials and applications. In Intelligent structural systems (pp. 213–241). Netherlands: Springer.
Zurück zum Zitat Duerig, T. W., Melton, K. N., Stöckel, D., & Wayman, C. M. (1990). Engineering aspects of shape memory alloys. London: Butterworth-Heinemann. Duerig, T. W., Melton, K. N., Stöckel, D., & Wayman, C. M. (1990). Engineering aspects of shape memory alloys. London: Butterworth-Heinemann.
Zurück zum Zitat Duff, A. W. (1896). The viscosity of polarized dielectrics. Physical Review (Series I), 4(1), 23.CrossRef Duff, A. W. (1896). The viscosity of polarized dielectrics. Physical Review (Series I), 4(1), 23.CrossRef
Zurück zum Zitat Gaudenzi, P. (2009). Smart structures: Physical behaviour, mathematical modelling and applications. New Jersey: Wiley Gaudenzi, P. (2009). Smart structures: Physical behaviour, mathematical modelling and applications. New Jersey: Wiley
Zurück zum Zitat Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers. New York: Springer International Publishing.CrossRef Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers. New York: Springer International Publishing.CrossRef
Zurück zum Zitat Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Li, J. H., Wang, Y. F., et al. (2012). pH-induced shape-memory polymers. Macromolecular Rapid Communications, 33(12), 1055–1060.CrossRef Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Li, J. H., Wang, Y. F., et al. (2012). pH-induced shape-memory polymers. Macromolecular Rapid Communications, 33(12), 1055–1060.CrossRef
Zurück zum Zitat Hathaway, K. B., & Clark, A. E. (1993). Magnetostrictive materials. MRS Bulletin, 18(4), 34–41.CrossRef Hathaway, K. B., & Clark, A. E. (1993). Magnetostrictive materials. MRS Bulletin, 18(4), 34–41.CrossRef
Zurück zum Zitat Hodgson, D. E., Ming, W. H., & Biermann, R. J. (1990). Shape memory alloys. US: In ASM Handbook: ASM International. Hodgson, D. E., Ming, W. H., & Biermann, R. J. (1990). Shape memory alloys. US: In ASM Handbook: ASM International.
Zurück zum Zitat Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13(7–8), 54–61.CrossRef Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13(7–8), 54–61.CrossRef
Zurück zum Zitat Huang, W. M., Zhao, Y., Wang, C. C., Ding, Z., Purnawali, H., Tang, C., & Zhang, J. L. (2012). Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. Journal of Polymer Research, 19(9). Huang, W. M., Zhao, Y., Wang, C. C., Ding, Z., Purnawali, H., Tang, C., & Zhang, J. L. (2012). Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. Journal of Polymer Research, 19(9).
Zurück zum Zitat Irie, M. (1998). Shape memory polymers. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 203–219). Cambridge: Cambridge University Press. Irie, M. (1998). Shape memory polymers. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 203–219). Cambridge: Cambridge University Press.
Zurück zum Zitat Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.CrossRef Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.CrossRef
Zurück zum Zitat Janocha, H. (1999). Adaptronics and smart structures. Springer-Verlag Berlin Heidelberg. Janocha, H. (1999). Adaptronics and smart structures. Springer-Verlag Berlin Heidelberg.
Zurück zum Zitat Jee, S. C. (2010). Development of morphing aircraft structure using SMP (No. AFIT/GSE/ENV/10-M02). Air Force Institute of Technology. Wright-Patterson AFB OH School of Engineering. Jee, S. C. (2010). Development of morphing aircraft structure using SMP (No. AFIT/GSE/ENV/10-M02). Air Force Institute of Technology. Wright-Patterson AFB OH School of Engineering.
Zurück zum Zitat Jenner, A. G., & Lord, D. G. (2003). Magnetostriction. In K. Worden, W. A. Bullough, & J. Haywood (Eds.), Smart technologies (pp. 171–192). Singapore: World Scientific Publishing.CrossRef Jenner, A. G., & Lord, D. G. (2003). Magnetostriction. In K. Worden, W. A. Bullough, & J. Haywood (Eds.), Smart technologies (pp. 171–192). Singapore: World Scientific Publishing.CrossRef
Zurück zum Zitat Jiang, H. Y., & Schmidt, A. M. (2010). The structural variety of shape-memory polymers. In J. Leng, & S. Du (Ed.), Shape-memory polymers and multifunctional composites (pp. 21–64). Boca Raton: CRC Press.CrossRef Jiang, H. Y., & Schmidt, A. M. (2010). The structural variety of shape-memory polymers. In J. Leng, & S. Du (Ed.), Shape-memory polymers and multifunctional composites (pp. 21–64). Boca Raton: CRC Press.CrossRef
Zurück zum Zitat Jinlian, H. U. (2007). Shape memory polymers and textiles. Netherlands: Elsevier Jinlian, H. U. (2007). Shape memory polymers and textiles. Netherlands: Elsevier
Zurück zum Zitat Jolly, M. R. (1999, November 30–December 02). Properties and applications of magnetorheological fluids. Paper presented at the 3rd Symposium on Smart Materials held at the 1999 MRS Fall Meeting, Boston, Ma. Jolly, M. R. (1999, November 30–December 02). Properties and applications of magnetorheological fluids. Paper presented at the 3rd Symposium on Smart Materials held at the 1999 MRS Fall Meeting, Boston, Ma.
Zurück zum Zitat Jones, R. W. (2009, December). Artificial muscles: Dielectric electroactive polymer-based actuation. In Computer and Electrical Engineering, 2009. ICCEE’09. Second International Conference on (Vol. 2, pp. 209–216). IEEE. Jones, R. W. (2009, December). Artificial muscles: Dielectric electroactive polymer-based actuation. In Computer and Electrical Engineering, 2009. ICCEE’09. Second International Conference on (Vol. 2, pp. 209–216). IEEE.
Zurück zum Zitat Kim, H. C., Yoo, Y. I., & Lee, J. J. (2009). Two-way shape memory effect induced by repetitive compressive loading cycles. Smart Materials and Structures, 18(9), 1–10. Kim, H. C., Yoo, Y. I., & Lee, J. J. (2009). Two-way shape memory effect induced by repetitive compressive loading cycles. Smart Materials and Structures, 18(9), 1–10.
Zurück zum Zitat Kim, B., & Peppas, N. A. (2002). Synthesis and characterization of pH-sensitive glycopolymers for oral drug delivery systems. Journal of Biomaterials Science-Polymer Edition, 13(11), 1271–1281.CrossRef Kim, B., & Peppas, N. A. (2002). Synthesis and characterization of pH-sensitive glycopolymers for oral drug delivery systems. Journal of Biomaterials Science-Polymer Edition, 13(11), 1271–1281.CrossRef
Zurück zum Zitat Klesa, J. (2009). Experimental evaluation of the properties of Veriflex shape memory polymer. In Konference Studentské Tvurci ˇCinnosti (STC’09). Klesa, J. (2009). Experimental evaluation of the properties of Veriflex shape memory polymer. In Konference Studentské Tvurci ˇCinnosti (STC’09).
Zurück zum Zitat König, W. (1885). Bestimmung einiger Reibungscoëfficienten und Versuche über den Einfluss der Magnetisirung und Electrisirung auf die Reibung der Flüssigkeiten. Annalen der Physik, 261(8), 618–625.CrossRef König, W. (1885). Bestimmung einiger Reibungscoëfficienten und Versuche über den Einfluss der Magnetisirung und Electrisirung auf die Reibung der Flüssigkeiten. Annalen der Physik, 261(8), 618–625.CrossRef
Zurück zum Zitat Kretzer, M. (2016). Information materials: Smart materials for adaptive architecture. New York: Springer. Kretzer, M. (2016). Information materials: Smart materials for adaptive architecture. New York: Springer.
Zurück zum Zitat Kumar, P. K., & Lagoudas, D. C. (2008). Introduction to shape memory materials. In D. C. Lagoudas (Ed.), Shape memory materials, modeling and engineering applications (pp. 1–51). New York: Springer. Kumar, P. K., & Lagoudas, D. C. (2008). Introduction to shape memory materials. In D. C. Lagoudas (Ed.), Shape memory materials, modeling and engineering applications (pp. 1–51). New York: Springer.
Zurück zum Zitat Lai, A., Du, Z. H., Gan, C. L., & Schuh, C. A. (2013). Shape memory and superelastic ceramics at small scales. Science, 341(6153), 1505–1508.CrossRef Lai, A., Du, Z. H., Gan, C. L., & Schuh, C. A. (2013). Shape memory and superelastic ceramics at small scales. Science, 341(6153), 1505–1508.CrossRef
Zurück zum Zitat Lendlein, A., Schmidt, A. M., Schroeter, M., & Langer, R. (2005). Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates. Journal of Polymer Science Part A: Polymer Chemistry, 43, 1369.CrossRef Lendlein, A., Schmidt, A. M., Schroeter, M., & Langer, R. (2005). Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates. Journal of Polymer Science Part A: Polymer Chemistry, 43, 1369.CrossRef
Zurück zum Zitat Leo, D. J. (2007). Engineering analysis of smart material systems. New Jersey: Wiley.CrossRef Leo, D. J. (2007). Engineering analysis of smart material systems. New Jersey: Wiley.CrossRef
Zurück zum Zitat Lexcellent, C. (2013). Shape-memory alloys handbook. New Jersey: Wiley.CrossRef Lexcellent, C. (2013). Shape-memory alloys handbook. New Jersey: Wiley.CrossRef
Zurück zum Zitat Li, F. K., Hou, J. N., Zhu, W., Zhang, X., Xu, M., Luo, X. L., et al. (1996). Crystallinity and morphology of segmented polyurethanes with different soft-segment length. Journal of Applied Polymer Science, 62(4), 631–638.CrossRef Li, F. K., Hou, J. N., Zhu, W., Zhang, X., Xu, M., Luo, X. L., et al. (1996). Crystallinity and morphology of segmented polyurethanes with different soft-segment length. Journal of Applied Polymer Science, 62(4), 631–638.CrossRef
Zurück zum Zitat Li, F. K., Zhu, W., Zhang, X., Zhao, C. T., & Xu, M. (1999). Shape memory effect of ethylene-vinyl acetate copolymers. Journal of Applied Polymer Science, 71(7), 1063–1070.CrossRef Li, F. K., Zhu, W., Zhang, X., Zhao, C. T., & Xu, M. (1999). Shape memory effect of ethylene-vinyl acetate copolymers. Journal of Applied Polymer Science, 71(7), 1063–1070.CrossRef
Zurück zum Zitat Li, G. (2015). Self-healing composites: Shape memory polymer-based structures: Self-healing composites (pp. 1–370). New Jersey: Wiley. Li, G. (2015). Self-healing composites: Shape memory polymer-based structures: Self-healing composites (pp. 1–370). New Jersey: Wiley.
Zurück zum Zitat Luo, X. L., Zhang, X. Y., Wang, M. T., Ma, D. H., Xu, M., & Li, F. K. (1997). Thermally stimulated shape-memory behavior of ethylene oxide ethylene terephthalate segmented copolymer. Journal of Applied Polymer Science, 64(12), 2433–2440.CrossRef Luo, X. L., Zhang, X. Y., Wang, M. T., Ma, D. H., Xu, M., & Li, F. K. (1997). Thermally stimulated shape-memory behavior of ethylene oxide ethylene terephthalate segmented copolymer. Journal of Applied Polymer Science, 64(12), 2433–2440.CrossRef
Zurück zum Zitat Mavroidis, C. (2002). Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1), 1–32.CrossRef Mavroidis, C. (2002). Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1), 1–32.CrossRef
Zurück zum Zitat McClung, A. J. W., Tandon, G. P., & Baur, J. W. (2013). Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mechanics of Time-Dependent Materials, 17(1), 39–52.CrossRef McClung, A. J. W., Tandon, G. P., & Baur, J. W. (2013). Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mechanics of Time-Dependent Materials, 17(1), 39–52.CrossRef
Zurück zum Zitat Meng, H., & Li, G. Q. (2013). A review of stimuli-responsive shape memory polymer composites. Polymer, 54(9), 2199–2221.CrossRef Meng, H., & Li, G. Q. (2013). A review of stimuli-responsive shape memory polymer composites. Polymer, 54(9), 2199–2221.CrossRef
Zurück zum Zitat Meng, Q. H., & Hu, J. L. (2009). A review of shape memory polymer composites and blends. Composites Part A-Applied Science and Manufacturing, 40(11), 1661–1672.CrossRef Meng, Q. H., & Hu, J. L. (2009). A review of shape memory polymer composites and blends. Composites Part A-Applied Science and Manufacturing, 40(11), 1661–1672.CrossRef
Zurück zum Zitat Meng, Y., Jiang, J. S., & Anthamatten, M. (2016). Body temperature triggered shape-memory polymers with high elastic energy storage capacity. Journal of Polymer Science Part B-Polymer Physics, 54(14), 1397–1404.CrossRef Meng, Y., Jiang, J. S., & Anthamatten, M. (2016). Body temperature triggered shape-memory polymers with high elastic energy storage capacity. Journal of Polymer Science Part B-Polymer Physics, 54(14), 1397–1404.CrossRef
Zurück zum Zitat Morgan, N. B. (2004). Medical shape memory alloy applications—The market and its products. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 378(1–2), 16–23.CrossRef Morgan, N. B. (2004). Medical shape memory alloy applications—The market and its products. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 378(1–2), 16–23.CrossRef
Zurück zum Zitat Morgan, N. B., & Friend, C. B. (2003). In K. Worden, W. A. Bullough & J. Haywood (Eds.), Smart technologies (pp. 109–139). US: World Scientific. Morgan, N. B., & Friend, C. B. (2003). In K. Worden, W. A. Bullough & J. Haywood (Eds.), Smart technologies (pp. 109–139). US: World Scientific.
Zurück zum Zitat Odenbach, S. (2003). Ferrofluids—magnetically controlled suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1), 171–178.CrossRef Odenbach, S. (2003). Ferrofluids—magnetically controlled suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1), 171–178.CrossRef
Zurück zum Zitat Oguro, K., Kawami, Y. & Takenaka H. (1992) Bending of an Ion-conducting polymer film electrode composite by an electric stimulus at low voltage. Trans. J. Micro-Machine Society, 5, 27–30. Oguro, K., Kawami, Y. & Takenaka H. (1992) Bending of an Ion-conducting polymer film electrode composite by an electric stimulus at low voltage. Trans. J. Micro-Machine Society, 5, 27–30.
Zurück zum Zitat Ohm, C., Brehmer, M., & Zentel, R. (2012). Applications of liquid crystalline elastomers. Liquid Crystal Elastomers: Materials and Applications, 250, 49–93.CrossRef Ohm, C., Brehmer, M., & Zentel, R. (2012). Applications of liquid crystalline elastomers. Liquid Crystal Elastomers: Materials and Applications, 250, 49–93.CrossRef
Zurück zum Zitat Olabi, A. G., & Grunwald, A. (2008). Design and application of magnetostrictive materials. Materials and Design, 29(2), 469–483.CrossRef Olabi, A. G., & Grunwald, A. (2008). Design and application of magnetostrictive materials. Materials and Design, 29(2), 469–483.CrossRef
Zurück zum Zitat Papell, S. S. (1965). Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles U.S. (Patent No. 3,215,572). Washington, DC: U.S. Patent and Trademark Office. Papell, S. S. (1965). Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles U.S. (Patent No. 3,215,572). Washington, DC: U.S. Patent and Trademark Office.
Zurück zum Zitat Peelamedu, S. M. (2003). Piezoelectric effect and its applications. In R. G. Driggers (Ed.), Encyclopedia of optical engineering, (pp. 2093–2111). US: Marcel Dekker. Peelamedu, S. M. (2003). Piezoelectric effect and its applications. In R. G. Driggers (Ed.), Encyclopedia of optical engineering, (pp. 2093–2111). US: Marcel Dekker.
Zurück zum Zitat Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836–839.CrossRef Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836–839.CrossRef
Zurück zum Zitat Pretsch, T. (2010). Review on the functional determinants and durability of shape memory polymers. Polymers, 2(3), 120–158.CrossRef Pretsch, T. (2010). Review on the functional determinants and durability of shape memory polymers. Polymers, 2(3), 120–158.CrossRef
Zurück zum Zitat Quincke, G. (1897). Die Klebrigkeit isolierender Flüssigkeiten im constanten electrischen Felde. Annalen der Physik, 298(9), 1–13.CrossRef Quincke, G. (1897). Die Klebrigkeit isolierender Flüssigkeiten im constanten electrischen Felde. Annalen der Physik, 298(9), 1–13.CrossRef
Zurück zum Zitat Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167–1167.CrossRef Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167–1167.CrossRef
Zurück zum Zitat Ratna, D., & Karger-Kocsis, (2008). Recent advances in shape memory polymers and composites: A review. Journal Materials Science, 43, 254–269.CrossRef Ratna, D., & Karger-Kocsis, (2008). Recent advances in shape memory polymers and composites: A review. Journal Materials Science, 43, 254–269.CrossRef
Zurück zum Zitat Reyes-Morel, P. E., Cherng, J. S., & Chen, I. W. (1988). Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals. 2. pseudoelasticity and shape memory effect. Journal of the American Ceramic Society, 71(8), 648–657.CrossRef Reyes-Morel, P. E., Cherng, J. S., & Chen, I. W. (1988). Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals. 2. pseudoelasticity and shape memory effect. Journal of the American Ceramic Society, 71(8), 648–657.CrossRef
Zurück zum Zitat Rousseau, I. A. (2008). Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polymer Engineering & Science, 48(11), 2075–2089.CrossRef Rousseau, I. A. (2008). Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polymer Engineering & Science, 48(11), 2075–2089.CrossRef
Zurück zum Zitat Scherer, C., & Figueiredo Neto, A. M. (2005). Ferrofluids: Properties and applications. Brazilian Journal of Physics, 35(3A), 718–727.CrossRef Scherer, C., & Figueiredo Neto, A. M. (2005). Ferrofluids: Properties and applications. Brazilian Journal of Physics, 35(3A), 718–727.CrossRef
Zurück zum Zitat Schetky, L. M. (2007). Shape-memory alloys as multifunctional materials. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent Materials (pp. 317–338). Cambridge: RCS Publishing.CrossRef Schetky, L. M. (2007). Shape-memory alloys as multifunctional materials. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent Materials (pp. 317–338). Cambridge: RCS Publishing.CrossRef
Zurück zum Zitat Schlaak, H. F., Jungmann, M., Matysek, M., Lotz, P. (2005). Novel multilayer electrostatic solid state actuators with elastic dielectric. In Y. Bar-Cohen (Ed.), SPIE (Vol. 5759, pp. 121–133). Schlaak, H. F., Jungmann, M., Matysek, M., Lotz, P. (2005). Novel multilayer electrostatic solid state actuators with elastic dielectric. In Y. Bar-Cohen (Ed.), SPIE (Vol. 5759, pp. 121–133).
Zurück zum Zitat Schmidt, C., Sarwaruddin Chowdhury, A. M., Neuking, K., & Eggeler, G. (2011). Thermo-mechanical behaviour of Shape Memory Polymers, eg, Tecoflex® by 1WE method: SEM and IR analysis. Journal of Polymer Research, 18(6), 1807–1812.CrossRef Schmidt, C., Sarwaruddin Chowdhury, A. M., Neuking, K., & Eggeler, G. (2011). Thermo-mechanical behaviour of Shape Memory Polymers, eg, Tecoflex® by 1WE method: SEM and IR analysis. Journal of Polymer Research, 18(6), 1807–1812.CrossRef
Zurück zum Zitat Segalman, D. J., Witkowski, W. R., Adolf, D. B., Shahinpoor, M. (1992). Theory and application of electrically controlled polymeric gels. International Journal of Smart Material and Structures, 1, 95–100.CrossRef Segalman, D. J., Witkowski, W. R., Adolf, D. B., Shahinpoor, M. (1992). Theory and application of electrically controlled polymeric gels. International Journal of Smart Material and Structures, 1, 95–100.CrossRef
Zurück zum Zitat Sheng, P., & Wen, W. (2012). Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annual Review of Fluid Mechanics, 44, 143–174.CrossRef Sheng, P., & Wen, W. (2012). Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annual Review of Fluid Mechanics, 44, 143–174.CrossRef
Zurück zum Zitat Stanway, R. (2004). Smart fluids: current and future developments. Materials Science and Technology, 20(8), 931–939.CrossRef Stanway, R. (2004). Smart fluids: current and future developments. Materials Science and Technology, 20(8), 931–939.CrossRef
Zurück zum Zitat Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. In Proceedings of Shape Memory Alloys for Power Systems EPRI (pp. 1–13), Palo Alto, CA. Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. In Proceedings of Shape Memory Alloys for Power Systems EPRI (pp. 1–13), Palo Alto, CA.
Zurück zum Zitat Sun, L., Huang, W. M., Wang, C. C., Ding, Z., Zhao, Y., Tang, C., et al. (2014). Polymeric shape memory materials and actuators. Liquid Crystals, 41(3), 277–289.CrossRef Sun, L., Huang, W. M., Wang, C. C., Ding, Z., Zhao, Y., Tang, C., et al. (2014). Polymeric shape memory materials and actuators. Liquid Crystals, 41(3), 277–289.CrossRef
Zurück zum Zitat Tobushi, H., Hayashi, S., & Kojima, S. (1992). Mechanical-properties of shape memory polymer of polyurethane series—(basic characteristics of stress-strain-temperature relationship). JSME International Journal Series I-Solid Mechanics Strength of Materials, 35(3), 296–302.CrossRef Tobushi, H., Hayashi, S., & Kojima, S. (1992). Mechanical-properties of shape memory polymer of polyurethane series—(basic characteristics of stress-strain-temperature relationship). JSME International Journal Series I-Solid Mechanics Strength of Materials, 35(3), 296–302.CrossRef
Zurück zum Zitat Uchino, K. (1986). Piezoelectric and electrostrictive actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 33(6), 806–806. Uchino, K. (1986). Piezoelectric and electrostrictive actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 33(6), 806–806.
Zurück zum Zitat Uchino, K. (1998). Shape memory ceramics. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 184–202). Cambridge: Cambridge University Press. Uchino, K. (1998). Shape memory ceramics. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 184–202). Cambridge: Cambridge University Press.
Zurück zum Zitat Wang, X. J., & Gordaninejad, F. (2007). Magnetorheological materials and their applications. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent materials (pp. 339–385). Cambridge: RCS Publishing.CrossRef Wang, X. J., & Gordaninejad, F. (2007). Magnetorheological materials and their applications. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent materials (pp. 339–385). Cambridge: RCS Publishing.CrossRef
Zurück zum Zitat Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y., & Purnawali, H. (2012). Cooling-/water-responsive shape memory hybrids. Composites Science and Technology, 72(10), 1178–1182.CrossRef Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y., & Purnawali, H. (2012). Cooling-/water-responsive shape memory hybrids. Composites Science and Technology, 72(10), 1178–1182.CrossRef
Zurück zum Zitat Wen, W. J., Huang, X. X., & Sheng, P. (2008). Electrorheological fluids: Structures and mechanisms. Soft Matter, 4(2), 200–210.CrossRef Wen, W. J., Huang, X. X., & Sheng, P. (2008). Electrorheological fluids: Structures and mechanisms. Soft Matter, 4(2), 200–210.CrossRef
Zurück zum Zitat Winslow, W. M. (1949). Induced Fibration of Suspensions. Journal of Applied Physics, 20(12), 1137–1140.CrossRef Winslow, W. M. (1949). Induced Fibration of Suspensions. Journal of Applied Physics, 20(12), 1137–1140.CrossRef
Zurück zum Zitat Xiao, X. L., Kong, D. Y., Qiu, X. Y., Zhang, W. B., Liu, Y. J., Zhang, S., Leng, J. S. (2015). Shape memory polymers with high and low temperature resistant properties. Scientific Reports, 5. Xiao, X. L., Kong, D. Y., Qiu, X. Y., Zhang, W. B., Liu, Y. J., Zhang, S., Leng, J. S. (2015). Shape memory polymers with high and low temperature resistant properties. Scientific Reports, 5.
Zurück zum Zitat Xie, T. (2011). Recent advances in polymer shape memory. Polymer, 52(22), 4985–5000.CrossRef Xie, T. (2011). Recent advances in polymer shape memory. Polymer, 52(22), 4985–5000.CrossRef
Zurück zum Zitat Yamada, Y., & Kuwabara, T. (2007). Materials for springs. Berlin: Springer Science & Business Media. Yamada, Y., & Kuwabara, T. (2007). Materials for springs. Berlin: Springer Science & Business Media.
Zurück zum Zitat Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9–12), 2079–2095.CrossRef Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9–12), 2079–2095.CrossRef
Zurück zum Zitat Yang, J. H., Chun, B. C., Chung, Y. C., & Cho, J. H. (2003). Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 44(11), 3251–3258.CrossRef Yang, J. H., Chun, B. C., Chung, Y. C., & Cho, J. H. (2003). Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 44(11), 3251–3258.CrossRef
Zurück zum Zitat Zhang, Y. L., Jin, X. J., Hsu, T. Y., Zhang, Y. F., & Shi, J. L. (2001). Shape-memory effect in Ce-Y-TZP ceramics. Shape Memory Materials and Its Applications, 394–3, 573–576. Zhang, Y. L., Jin, X. J., Hsu, T. Y., Zhang, Y. F., & Shi, J. L. (2001). Shape-memory effect in Ce-Y-TZP ceramics. Shape Memory Materials and Its Applications, 394–3, 573–576.
Zurück zum Zitat Zhao, Q., Behl, M., & Lendlein, A. (2013). Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 9(6), 1744–1755.CrossRef Zhao, Q., Behl, M., & Lendlein, A. (2013). Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 9(6), 1744–1755.CrossRef
Zurück zum Zitat Zrinyi, M. (2000). Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science 278(2), 98–103.CrossRef Zrinyi, M. (2000). Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science 278(2), 98–103.CrossRef
Zurück zum Zitat Zrinyi, M. (2007). Magnetic polymeric gels as intelligent artificial muscles. In M. Zrinyi, M. Shahinpoor, & H. J. Schneider (Eds.), Intelligent materials (pp. 282–300). Cambridge: RCS Publishing.CrossRef Zrinyi, M. (2007). Magnetic polymeric gels as intelligent artificial muscles. In M. Zrinyi, M. Shahinpoor, & H. J. Schneider (Eds.), Intelligent materials (pp. 282–300). Cambridge: RCS Publishing.CrossRef
Metadaten
Titel
Materials that Move
verfasst von
Murat Bengisu
Marinella Ferrara
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76889-2_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.