Skip to main content

Mutation Breeding for Crop Improvement

  • Chapter
Plant Breeding

Abstract

Crop improvement programmes through induced mutations were initiated about seven decades ago, immediately after the discovery of mutagenic effects of X-rays on Drosophila by Muller in 1927, and barley and maize by Stadler in 1928. During 1950–60, several countries including China, India, the Netherlands, USA and Japan took up the task of crop improvement through mutation breeding approaches. A coordinated programme on mutation breeding was also initiated in rice in south east Asia in 1964 by IAEA. Over 2252 mutant varieties of crop plants including cereals, oilseeds, pulses, vegetables, fruits, fibres and ornamentals have been developed by the end of the 20th century. More than 60% of these mutant varieties were developed and released after 1985. While 1585 varieties were released as direct mutants, the rest were released through cross breeding with mutants. Most of the mutant varieties (around 89 %) have been developed using physical mutagens (X-rays, gamma rays, thermal and fast neutrons), with gamma rays alone accounting for the development of 60 % of the mutant varieties. A wide range of characters which have been improved through mutation breeding include plant architecture, yield, flowering and maturity duration, quality and tolerance to biotic and abiotic stresses. Mutation breeding has made a significant contribution to the national economy of the countries like China, India, Japan, Pakistan and USA. With the release of more than 305 mutant cultivars belonging to 56 plant species, India has also become a major recognised centre for work on induced mutations and the second largest contributor of the mutant varieties in the world. In recent years interest has rekindled in mutation research, since induced mutagenesis is gaining importance in plant molecular biology as a tool to identify and isolate genes and to study their structure and function. These studies will definitely have a major impact on the future crop improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed Z. U., Shaikh M. A. Q. and Begum S. 1995. Development of the high yielding and disease resistant mungbean variety, BINA Moong-2 using nuclear and cross breeding techniques. In: Proc. IAEA/FAO Symp., on Induced Mutations and Molecular Techniques for Crop Improvement. June 19-23, 1995, Vienna. IAEA, Vienna, pp. 638–640.

    Google Scholar 

  • Ali M., Malik I. A., Sabir H. M., Ahmad B. 1997. Technical Bulletin No. 24. AVRDC, Shanhua, Taiwan, ROC. 66 p.

    Google Scholar 

  • Amano E. 1997. Mutation breeding in Japan and contribution to the region. In: Strategy Paper on Application of Mutation Techniques for Crop Improvement in East Asia and Pacific Region. IAEA, Vienna.

    Google Scholar 

  • Anderson P. A., Okubara P. A., Arroyo-Garcia R., Meyers B. C. and Michelmore R. W. 1996. Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa. Molecular and General Genetics, 251: 316–325.

    PubMed  CAS  Google Scholar 

  • Ankineedu G., Sharma K. D. and Kulkarni L. G. 1968. Effect of fast neutrons and gamma-rays on castor. Indian J. Genet., 28: 31–39.

    Google Scholar 

  • Anonymous. 1977. Manual on Mutation Breeding (Second Edition), Technical Reports Series, No. 119. Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria, pp. 288.

    Google Scholar 

  • Anonymous. 1987. Mutation breeding of cowpea and mungbean in Venezuela. Mutation Breeding Newsletter, 29: 3.

    Google Scholar 

  • Auerbach C. 1941. The effect of sex on the spontaneous mutation rate in Drosophila melanogaster, J. Genet., 11: 255–265.

    Article  Google Scholar 

  • Auerbach C. and Robson J. M. 1946. Chemical production of mutations. Nature, 157157: 302.

    Article  Google Scholar 

  • Awan M. A. 1991. Use of induced mutations for crop improvement in Pakistan. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. IAEA, Vienna, pp. 67–72.

    Google Scholar 

  • Bahl J. R. and Gupta P. K. 1982. Promising mutants in mungbean, Vigna radiata (L. ) Wilczek. Mutation Breeding Newsletter, 20: 13.

    Google Scholar 

  • Bhagwat S. G., Bhatia C. R., Krishna T. G., Joshua D. C., Mitra R. K., Narahari P., Pawar S. E. and Thakre R. G. 1979. Increasing protein production in cereals and grain legumes. In: Proc. Symp. on Seed Protein Improvement in cereals and grain legumes, IAEA, Vienna, vol. II. pp. 225–236.

    Google Scholar 

  • Bhatia C. R. 1991. Economic impact of mutant varieties in India. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. Vol. 1. IAEA, Vienna, pp. 33–45.

    Google Scholar 

  • Bhatia C. R. 2000. Induced mutations for crop improvement — the generation next. In: Proc., DAE-BRNS Symp., Dec. 6-8, 2000, Mumbai, India, pp. 1–7.

    Google Scholar 

  • Bhatia C. R., Desai R. M. and Suseelan K. N. 1978. Attempts to combine high yield and grain protein in wheat. In: Proc. Meeting on Seed Protein Improvement by Nuclear Technique. Baden, 1997, IAEA, Vienna, pp. 5.

    Google Scholar 

  • Bhatia C. R., Nichterlein K. and Maluszynsky M. 1999. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition. Mutation Breeding Review, 11: 1–36.

    Google Scholar 

  • Bhatnagar S. M. 1991. Dwarf and semi-dwarf barley mutants in cross breeding. In: Proc. FAO/IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. Vol. 1. IAEA, Vienna, pp. 307–319.

    Google Scholar 

  • Buiatti M. and Gimelli F. 1993. Somaclonal variation in ornamentals. In: Proc. XVII EUCARPIA Symp. on Creating Genetic Variation in Ornamentals, (eds. ) San Remo. T. Schiva and A. Mercuri San Remo. Instituto Sperimentale per la Floricoltura. pp. 5–24.

    Google Scholar 

  • Buschges R., Hollrichter K., Panstruga R., Simons G., Wolter M., Frijters A., Van Daelen R., Von der Lee T., Diergaarde P., Groenendijk J., Topsch S., Vos P., Salamini and Schulze-Lefert P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88: 695–705.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S. N. 1996. Role of mutation in improving rice productivity-Retrospect and prospect. In: Isotopes & Radiations in Agriculture and Environment Research, (eds. ) Sachdev M. S., P. Sachdev and D. L Deb. Indian Society for Nuclear Techniques in Agriculture and Biology. New Delhi, pp. 181–195.

    Google Scholar 

  • Cheng X. Y., Gao M. W., Liang Z. Q. and Liu K. Z. 1990. Effect of mutagenic treatments on somaclonal variation in wheat (Triticum aestivum L. ). Plant Breeding, 105: 47–52.

    Article  Google Scholar 

  • Correns C. 1900. Mendels Regal über das Verhalten der Nach-kommenschaft Rassen Bastarde. Ber. Deutsch, bot. Ges., 18: 158–168.

    Google Scholar 

  • Dangl J. L., Dietrich R. A. and Richberg M. H. 1996. Death don’t have no mercy: cell death programme in plant-microbe interaction. The Plant Cell, 8: 1793–1807.

    PubMed  CAS  Google Scholar 

  • Datta S. K. 1997. Ornamental Plants: Role of Mutation. Daya Publishing House, Delhi, pp. 220.

    Google Scholar 

  • Delaunay L. N. 1931. Resultate eines dreijahrigen Rontgen Versuch mit Weitzen. Der Züchter, 3: 129–137.

    Google Scholar 

  • De Vries H. 1901. Die Mutationstheorie. I. Leipzig: Veit & Co.

    Google Scholar 

  • De Vries H. 1903. Die Mutationstheorie. II. Leipzig: Veit & Co

    Google Scholar 

  • Dribnenki J. C. P., Green A. G. and Atlin G. N. 1996. LinolaTM 989 low linolenic flax. Can. J. Plant Sci., 76: 329–331.

    Article  Google Scholar 

  • Feix G., Hochholdinger F. and Wulff D. 1997. Genetic analysis of root formation in maize. In: Developmental Pathways in Plants: Biotechnological Implications. The Hebrew University of Jerusalem, Rehovot. pp. 10.

    Google Scholar 

  • Freisleben R. and Lein A. 1942. Über die Auffindung einer mehltauresistenten mutante nach Röntgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Naturwissenschafen, 30: 608.

    Article  Google Scholar 

  • Frey K. J. 1955. Agronomic mutations in oats induced by X-ray treatment, Agron. J., 47: 207–210.

    Article  Google Scholar 

  • Gaul H., Ulonska E., Winkel C. Z. and Braker G. 1969. Micro-mutations influencing yield in barley — studies over nine generations. In: Induced mutations in plants. Proc. Symp. pullman, 1969, IAEA, Vienna, pp. 375–398.

    Google Scholar 

  • Glzenbrook I., Rogers E. E. and Ausubel F. M. 1997. Use of Arabidopsis for genetic dissection of plant defense responses. Annual Rev. Genet., 31: 547–569.

    Article  Google Scholar 

  • Gottashalk W. and Wolff G. 1983. Induced Mutations in Plant Breeding. Monograph on Theoretical and Applied Genetics, Springer-Verlag, Berlin, Heidel berg, pp. 323–327.

    Google Scholar 

  • Green A. G. and Dribnenki J. C. P. 1994. Linola — a new premium polyunsaturated oil. Lipid Technology, March/April: 29–33.

    Google Scholar 

  • Gregory W. C. 1955. X-ray breeding of peanuts (Arachis hypogaea). Agron. J., 47: 396–399.

    Article  CAS  Google Scholar 

  • Gregory W. C. 1965. Mutation frequency, magnitude of change and the probability of improvement in adaptation. In: The use of Induced Mutations in Plant Breeding, Pergamon Press, Oxford, pp. 429–441.

    Google Scholar 

  • Gupta P. K., Singh S. P. and Bahl J. R. 1996. A new mungbean variety through mutation breeding. Mutation Breeding Newsletter, 42: 6–7.

    Google Scholar 

  • Gustafsson A. 1947. Mutations in agricultural plants. Hereditas, 33: 1–100.

    Article  Google Scholar 

  • Gustafsson A. and Mackey J. 1948. The genetic effects of mustard gas substances and neutrons. Hereditas, 34: 371–386.

    Article  CAS  Google Scholar 

  • Gustafsson A., Lundquist U. and Ekberg I. 1967. Yield reactions and rates of origin of chromosome mutations in barley, Heriditas, 56: 200–206.

    Article  Google Scholar 

  • Haq M. A., Sadiq M. and Hasan M. 1988. Improvement of chickpea through induced mutations. In: Proc. FAO/IAEA workshop on Improvement of Grain Legume Production using Induced Mutations. 1-5 July, 1986, Pullman, Washington (USA), IAEA, Vienna, 1988, 75–88.

    Google Scholar 

  • Hutcheson S. W. 1998. Current concepts of active defense in plants. Annual Rev. Phytopathol., 36: 59–90.

    Article  CAS  Google Scholar 

  • Jende-Strid B. 1993. Genetic control of flavonoid biosynthesis in barley. Hereditas, 119: 187–204.

    Article  CAS  Google Scholar 

  • Jensen J. 1991. New high yielding, high lysine mutants in barley. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. IAEA, Vienna, Vol. II, pp. 31–41.

    Google Scholar 

  • Jorgensen J. H. 1991. Experience from mutation studies on cereal disease resistance. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. IAEA, Vienna, Vol. II. pp. 81–91.

    Google Scholar 

  • Joshua D. C. and Ramani S. 1993. An induced mutant with extended vegetative phase in stem nodulating Sesbania rostrata. J. Agric. Sci., (Cambridge). 120: 71–73.

    Article  Google Scholar 

  • Joshua D. C. and Thakre R. G. 1986. A day neutral mutant in jute. Tropical Agriculture (Trinidad). 63: 316–318.

    Google Scholar 

  • Kawai T. and Amano E. 1991. Mutation breeding in Japan. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. IAEA, Vienna, Vol. I. pp. 47–66.

    Google Scholar 

  • Kharkwal M. C. 1996. Accomplishments of mutation breeding in crop improvement in India. In: Isotopes & Radiations in Agriculture and Environment Research, (eds. ) Sachdev M. S., Sachdev P. and D. L Deb. Indian Society for Nuclear Techniques in Agriculture and Biology. New Delhi, pp. 196–218.

    Google Scholar 

  • Kharkwal M. C. 1998a. Induced mutations for improvement of protein in chickpea (Cicer arietinum L. ) Indian J. Genet., 58: 61–68.

    CAS  Google Scholar 

  • Kharkwal M. C. 1998b. Induced mutations in chickpea (Cicer arietinum L. ). I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J. Genet., 58: 159–168.

    CAS  Google Scholar 

  • Kharkwal M. C. 1998c. Induced mutations in chickpea (Cicer arietinum L. ). II. Frequency and spectrum of chlorophyll mutations. Indian J. Genet., 58: 465–474.

    Google Scholar 

  • Kharkwal M. C. 1999. Induced mutations in chickpea (Cicer arietinum L. ) III. Frequency and spectrum of viable mutations. Indian J. Genet., 59: 451–464.

    Google Scholar 

  • Kharkwal M. C. 2000. Induced mutations in chickpea (Cicer arietinum L. ) IV. Types of macro-mutations induced. Indian J. Genet., 60: 305–320.

    Google Scholar 

  • Kharkwal M. C. 2001. Induced mutations in chickpea (Cicer arietinum L. ) V. Evaluation of micro-mutations. Indian J. Genet., 61: 115–124.

    Google Scholar 

  • Kharkwal M. C., Jain H. K. and Sharma B. 1988. Induced mutations for improvement of chickpea, lentil, pea and cowpea. pp. 89–109. In: Improvement of Grain Legume Production using Induced Mutations, Proc. FAO/IAEA Workshop. 1-5 July, 1986, Pullman, Washington, USA, IAEA, Vienna, 1988.

    Google Scholar 

  • Kharkwal M. C., Pawar S. E. and Pandey R. N. 2001. Seventy five years of research on induced mutations with special reference to crop improvement in India. In: Proceedings of NAARRI International Conference on Applications of Radioisotopes and Radiation Technology in the 21st Century, (eds. ) N. Ramamurty, M. Ananthakrishnan and A. N. Nandakumar, December 12-14, 2001, Mumbai. pp. 230–235.

    Google Scholar 

  • Kinney A. J. 1995. Improving soybean seed quality. In: Proc. IAEA/FAO Symp., on Induced Mutations and Molecular Techniques for Crop Improvement. June 19-23, 1995, Vienna. IAEA, Vienna. Pp. 101–113.

    Google Scholar 

  • Kleinhofs A., Warner R. L., Muehlbauer F. J. and Nilan R. A. 1978. Induction and selection of specific gene mutations in Hordeum and Pisum. Mutation Research. 51: 29–35.

    Article  CAS  Google Scholar 

  • Konzak C. F. 1954. Stem rust resistance in oats induced by nuclear radiation. Agron. J., 46: 538–540.

    Article  Google Scholar 

  • Konzak C. F., Kleinhofs A. and Ullrich S. E. 1984. Induced mutations in seed propagated crops. In: Plant Breeding Reviews, Vol. 2. (ed. ) J. Janick. Westport, Connecticut. AVI Publishing Company, pp. 13–72

    Google Scholar 

  • Kumar D. 2000. A commercial cultivar suited to rainfed arid lands induced in dew bean (Vigna aconitifolia Jacq Marechal). In: Proc. DAE-BRNS Symp. on The use of Nuclear and Molecular Techniques in Crop Improvement. December 6-8, 2000. BARC, Mumbai. pp. 124–130.

    Google Scholar 

  • Malik I. A. 1988. High yielding and early maturing mutants in mungbean (Vigna radiata (L. ) Wilczek). Mutation Breeding Newsletter, 32: 7–8.

    Google Scholar 

  • Malik I. A., Nadeem M. T., Sarwar G. and Ali S. 1979. Evaluation of radiation induced mutant lines of mungbean (Vigna radiata (L. ) Wilczek) for grain yield and protein content. In: Proc. Symp. on Seed Protein Improvement in cereals and grain legumes, IAEA, Vienna, Vol. II, pp. 445.

    Google Scholar 

  • Maluszynski M., Nichterlein K., Van Zanten L. and Ahloowalia B. S. 2000. Officially released mutant varieties — the FAO/IAEA database. Mutation Breeding Review, 12: 1–84.

    Google Scholar 

  • Maluszynski M., Van Zanten L., Ashri A., Brunner H., Ahloowalia B., Zapata F. J. and Weck E. 1995. Mutation techniques in plant breeding. In: Proc. IAEA/FAO Symp., on Induced Mutations and Molecular Techniques for Crop Improvement. Vienna, June 19-23, 1995. pp. 489–504.

    Google Scholar 

  • Mathews H. and Bhatia C. R. 1983. Experimental mutagenesis of in vitro cultured plant cells and protoplasts. Mutation Breeding Newsletter, 22: 12–17.

    Google Scholar 

  • Matsumoto K. and Yamaguchi H. 1991. Induction and selection of aluminium tolerance in banana. In: Proc. FAO/IAEA Symp. on Plant Mutation Breeding for Crop Improvement. Vienna, 1990. IAEA, Vienna. Vol. 2. pp. 249–256.

    Google Scholar 

  • Mendel G. 1865. Versuche über Pflanzen-Hybriden. Vesh. Naturforschung Ver. In Brünn Verh., 4: 3–47.

    Google Scholar 

  • Micke A. 1988. Genetic improvement of grain legumes using induced mutations. In: Proc. FAO/IAEA Workshop on Improvement of Grain Legume Production using Induced Mutations. 1-5 July, 1986, Pullman, Washington (USA), IAEA, Vienna. 1988. pp. 1–51.

    Google Scholar 

  • Micke A. 1991. Induced mutations for crop improvement. In: Biotechnology and Mutation Breeding. Gamma Field symposia 30, 1-21. Ohmiya-Machi, Naka-gun, Ibaraki-ken, Japan. Institute of Radiation Breeding, NIAR MAFF.

    Google Scholar 

  • Micke A. 1993. Durability of resistance in induced mutants. In: Durability of Disease Resistance. (eds. ) Th. Jacobs and J. E. Parlevliet, Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Micke A., Donini B. and Maluszynski M. 1990. Induced mutation for crop improvement. Mutation Breeding Review, 7: 1–41.

    Google Scholar 

  • Muller H. J. 1927. Artificial transmutation of gene. Science, 66: 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Murty B. R. 1996. Significance of induced mutations in crop improvement research. In: Isotopes & Radiations in Agriculture and Environment Research. (eds. ) Sachdev M. S., P. Sachdev and D. L. Deb. Indian Society for Nuclear Techniques in Agriculture and Biology. New Delhi. pp. 176–180.

    Google Scholar 

  • Navarro-Alvarez W. and Salazar-Androvetto R. 1995. Improvement in rice resistance to Pyricularia oryzae through mutagenesis. In: Proc. IAEA/FAO Symp., on Induced Mutations and Molecular Techniques for Crop Improvement. Vienna, June 19-23, 1995. pp. 649–665.

    Google Scholar 

  • Nichterlein K. 1999. The role of induced mutations in the improvement of common beans (Phaseolus vulgaris L. ). Mutation Breeding Newsletter, 44: 6–9.

    Google Scholar 

  • Nichterlein K., Bohlmann H., Nielen S. and Maluszynski M. 2000. Achievements and trends of using induced mutations in crop improvement. In: Proc., DAE-BRNS Symp., Dec. 6-8, 2000, Mumbai, India, pp. 27–35.

    Google Scholar 

  • Nilsson-Ehle H. 1948. The future possibilities of Swedish barley breeding. Svalöf 1886-1946, pp. 113–126.

    Google Scholar 

  • Novak F. J., Afza R., Van Duren M. and Omar M. S. 1990. Mutation induction by gamma irradiation of in vitro cultured shoot tips of banana and plantain (Musa cvs. ). Tropical Agriculture (Trinidad), 67: 21–28.

    Google Scholar 

  • Novak F. J., Afza R., Daskalov S., Hermelin T. and Lucretti T. 1986a. Assessment of somaclonal and radiation-induced variability in maize. In: Proc. FAO/IAEA Symp. on Nuclear Techniques and in vitro Culture for Plant Improvement. Vienna, 1985. IAEA, Vienna, pp. 29–33.

    Google Scholar 

  • Novak F. J., Hermelin T., Daskalov S. and Nesticky M. 1986b. In vitro mutagenesis in maize. In: Proc. International Symp. EUCARPIA, Genetic Manipulation in Plant Breeding. Berlin, 1985. (eds. ) Horn, W., C. J. Jensen, W. Odenbach, and O. Schieder. Berlin. Walter de Gruyter & Co. pp. 563–576.

    Google Scholar 

  • Novak F. J. and Micke A. 1988. Induced mutations and in vitro techniques for plant breeding. In: Proc. SABRAO Int. Symp. & Workshop on Plant Breeding & Genetic Engineering. Kuala Lumpur, Malaysia, 1987. (ed. ) Zakri A. H., pp. 63–86. City Reprographic Service, Kuala Lumpur.

    Google Scholar 

  • Novak F. J., Brunner H., Afza R. and Van Duren M. 1993. Mutation breeding of Musa sp. (banana, plantain). Mutation Breeding Newsletter, 40: 2–4.

    Google Scholar 

  • Oehlker F. 1943. Chromosome mutation in meiosis by chemicals. In: Mutation Research — Problems, Results and Prospects. (ed. ) C. Auerbach (1976), Chapman and Hall, U. K.

    Google Scholar 

  • Pathak R. S. 1988. Induced mutations for resistance to aphid (Aphis craccivera Koch) in cowpea. In: Proc. Workshop on Improvement of Grain Legume Production using Induced Mutation. Pullman, 1-5 July 1986, IAEA, Vienna, 1988, pp. 279–291.

    Google Scholar 

  • Pathak R. S. 1991. Genetic evaluation of two aphid resistant cowpea mutants in Kenya. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. Vol. 2. IAEA, Vienna, pp. 241–247.

    Google Scholar 

  • Patil S. H., Kale D. M., Deshmukh S. N., Fulzele G. R. and Weginwar D. G. 1995. Semi-dwarf early maturing and high yielding new groundnut variety, TAG-24. J. Oilseed Research, 12: 254–257.

    Google Scholar 

  • Pawar S. E., Thakre R. G., Reddy K. S. and Bhatia C. R. 1991. Use of induced mutations in the breeding of pulse crops. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. Vol. 1. IAEA, Vienna, pp. 413–418.

    Google Scholar 

  • Rao N. G. P., Singh A., Sivasubramanian V., Murty K. S., Mukhopadhyay A. N. and Abraham C. C. 1998. Rice research and production in India. Present status and future perspective. Quinquinneal Review Committee Report 1988-96. Directorate of Rice Research, Hyderabad, India.

    Google Scholar 

  • Rapoport I. A. 1946. Carbonyl compounds and the chemical mechanism of mutation. C. R. Doklady Acad. Sci., USSR, 54: 65.

    CAS  Google Scholar 

  • Rapoport I. A. 1948. Alkylation of the gene molecule. Doklady Acad. Sci., USSR., 59: 1183–86.

    CAS  Google Scholar 

  • Robbelen G. 1990. Mutation breeding for quality improvement: a case study for oilseed crops. Mutation Breeding Review, 6: 1–44.

    Google Scholar 

  • Rutger J. N. 1992. Searching for apomixis in rice. In: Proc. Apomixis Workshop. Atlanta, G. A. pp. 36–39.

    Google Scholar 

  • Sapehin A. A. 1930. Rontgen-mutationen beim Weizen (Triticum vulgare). Der Züchter, 2: 257–259.

    Google Scholar 

  • Sapehin A. A. 1936. X-ray mutants in soft wheat, Bull. Appl. Bot. Genet. Pl. Breed. Ser. II., 9: 3–37.

    Google Scholar 

  • Sauls J. W. 1999. Texas citrus — Root stock and scion varieties, http://aggie-horticulture. tamu. edu/citrus/12304. htm. 1–7.

    Google Scholar 

  • Scarascia-Mugnozza G. T., D’Mato F., Avanzi S., Bagnara D., Belli M. L., Bozzini A., Brunori A., Cervigni T., Devreux M., Donini B., Giorgi B., Martini G., Monti L. M., Moschini E., Mosconi C., Porreca G., Rossi L. 1991. Mutation breeding programme for durum wheat (Triticum turgidum ssp. durum Desf. ) improvement in Italy. In: Proc. FAO/IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. Vol. 1. IAEA, Vienna, pp. 95–109.

    Google Scholar 

  • Shah J., Kachroo P. and Klessig D. 1998. The Arabidopsis ssil mutation restores pathogenesis related gene expression nprl plants and renders defense gene expression salicylic acid dependent. The Plant Cell, 11: 191–206.

    Google Scholar 

  • Sheikh M. A. Q., Ahmed Z. U., Majid M. A. and Wadud M. A. 1982. A high-yielding and high-protein mutant of chickpea (Cicer arietinum L. ) derived through mutation breeding, Environ. Exp. Bot., 22: 483–389.

    Article  Google Scholar 

  • Shaikh M. A. Q. and Majid M. A. 1995. A disease resistant and high yielding blackgram variety, BINA Mash-1, derived through induced mutation. In: Proc. IAEA/FAO Symp., on Induced Mutations and Molecular Techniques for Crop Improvement. Vienna, June 19-23, 1995. pp. 635–637.

    Google Scholar 

  • Shirley B. W., Hanley S. and Goodman H. M. 1992. Effects of ionizing radiation on a plant genome: Analysis of two Arabidopsis transparent testa mutations. The Plant Cell, 4: 333–347.

    PubMed  CAS  Google Scholar 

  • Siddique S. M., Sarwar G., Khattak G. S. S. and Saleem M. 1999. Development of mungbean variety ‘NIAB Mung-98’ involving induced mutants through conventional breeding. Mutation Breeding Newsletter, 44: 11–13.

    Google Scholar 

  • Stadler L. J. 1928. Genetic effects of X-rays in maize. Prod Natl. Acad Sci., USA, 14: 69–75.

    Article  CAS  Google Scholar 

  • Stadler LJ. 1930. Some genetic effects of X-rays in plants. J. Hered., 21: 3–19.

    Google Scholar 

  • Swaminathan M. S., Siddiq E. A., Savin V. N. and Varughese G. 1968. Mutations in Plant Breeding II, IAEA, Vienna, 233.

    Google Scholar 

  • Sybenga J. 1983. Genetic manipulation in plant breeding: Somatic versus generative, Theor. Appl. Genet., 66: 179–201.

    Article  CAS  Google Scholar 

  • Syukur S., Jacobs M. and Negrutiu I. 1991. Analysis of mutant plants resistant to salt or water stress and to proline analogues obtained from the protoplasts of Nicotiana plumbaginifolia viviani. In: Proc. FAO/IAEA Symp. on Plant Mutation Breeding for Crop Improvement. 1990, Vienna. IAEA, Vienna, Vol. 2, pp. 265–269.

    Google Scholar 

  • Szarejko I. and Maluszynski M. 1980. Analysis of usefulness of sodium azide in plant breeding. Acta. Biol, 9: 60–66.

    Google Scholar 

  • Tschermak E. Von. Über Kunstliche Kreuzung bei Pisum sativum, Ber. der. Bot. Ges., 18: 232-239.

    Google Scholar 

  • Tickoo J. L. and Chandra N. 1996. Induced variability and selection for improved quality characters in mungbean, Vigna radiata (L. ) Wilczek. DAE-BRNS Symp. on Nuclear Techniques in increasing crop and animal productivity. BARC, Mumbai. pp. 71.

    Google Scholar 

  • Tollenaar D. 1934. Untersuchungen über Mutation bei Tabak: I. Entstechungsweise und Wesen Küntslich erzeugter Gene-Mutanten. Genetica, 16: 111–152.

    Article  Google Scholar 

  • Tollenaar D. 1938. Untersuchungen über Mutation bei Tabak: II. Eigine Künstlich erzeugte Chromosomen-Mutanten. Genetica, 20: 285–294.

    Article  Google Scholar 

  • Van Harten A. M. 1998. Mutation Breeding: Theory and Practical Applications. Cambridge University Press.

    Google Scholar 

  • Wang L. Q. 1991. Induced mutation for crop improvement in China. In: Proc. IAEA Symp. on Plant Mutation Breeding for Crop Improvement. June 18-22, 1990. IAEA, Vienna, pp. 9–32.

    Google Scholar 

  • Week E., Maluszynski M., Van Zanten L., Ahloowalia B. and Nichterlein K. 1996. Mutation techniques and related molecular technologies in plant Breeding. In: Proc. Conference on Hundred Years of X-rays and Radioactivity. BARC, Mumbai. 21-24 February, 1996. (eds. ) Sood D. D., H. C. Jain A. V. R. Reddy, K. L. Ramakumar and S. G. Kulkarni. BARC, Mumbai. pp. 489–504.

    Google Scholar 

  • Wong R. C. S. and Swanson E. 1991. Genetic modification of canola oil: high oleic acid canola. pp. 154–164. In: Fat and Cholesterol Reduced Food, (eds. ) Haberstroh C. and C. E. Morris. Gulf, Houston.

    Google Scholar 

  • Yang Y., Shah J. and Klessig D. F. 1997. Signal perception and transduction in plant defense responses. Genes & Development, 11: 1621–1639.

    Article  CAS  Google Scholar 

  • Yang X., Yie Y., Zhu F., Kang L., Wang X. and Tien P. 1997. Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes. Proc. Natl. Acad. Sci., USA, 94: 4861–4865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kharkwal, M.C., Pandey, R.N., Pawar, S.E. (2004). Mutation Breeding for Crop Improvement. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics